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Abstract

Electricity taxes have strongly gained in importance over the past years. Intended as a
corrective carbon tax or as an instrument to �nance renewable energy sources (RES), elec-
tricity taxes can represent an important cost factor for the industry with potential negative
implications for �rm competitiveness. Based on comprehensive data from the German Manu-
facturing Census, this paper investigates the causal impact of an exemption from the RES levy,
accounting for roughly 30% of the average industry electricity price, on plant-level electric-
ity consumption, fuel input choices, and competitiveness indicators. Employing a matching
di�erence-in-di�erences estimator, we �nd that plants increase electricity consumption by
about 5-7.5% in response to the exemption. We show that exempt plants substitute electricity
for gas and reduce own electricity generation capacities. By contrast, we do not �nd evidence
that the exemption had an impact on competitiveness indicators. Investigating response het-
erogeneity, we �nd that electricity-intensive plants adjust energy inputs more strongly in
response to an exemption. Export-oriented �rms respond less, which contrasts the policy
objective to foster the competitiveness of exporters in international markets.
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1 Introduction

The global threat of climate change has put actions to reduce carbon emissions on the government

agenda of most counties.1 A key element in reducing carbon emissions in electricity markets are

energy taxes. They promise to improve energy e�ciency by internalizing the external cost of

energy generation from fossil fuels, while simultaneously raising public funds that can be used

to spur the development of renewable energy sources (RES). In Germany, for example, feed-in

tari�s (FiTs) for producers of “green electricity” have been �nanced through a levy on electricity

prices, the so-called renewable energy levy (EEG levy). Paralleling the massive deployment of

renewable energy sources over the past decade, the EEG levy has risen from 0.19 Euro-cent per

kilowatt hour (kWh) in 2000 to 6.24 Euro-cent per kWh in 2014. Similar FiT schemes have found

wide adoption in a number of jurisdictions around the world including California, Japan, and

Australia.

The prospect of increasing energy prices has led to a heated policy debate about potential

negative impacts on �rm competitiveness, especially in the energy-intensive industry. As a con-

sequence, governments have implemented exemptions from paying energy taxes for heavy elec-

tricity users. The decision to exempt �rms from paying the levy is mostly based on the assumption

that �rms might lose international competitiveness. Yet, �rms might be able to substitute energy

inputs or passing on the cost to their consumers (Ganapati et al. 2016). Despite its high policy rel-

evance, evidence on �rm’s response to energy taxation and the size of potential adverse impacts

on �rms’ competitiveness is scarce.

This paper exploits a policy change in Germany that considerably extended the eligibility cri-

teria for �rms to be exempt from the EEG levy, to study the impact of a large drop in electricity

prices on fuel inputs, fuel substitution, and competitiveness indicators in the manufacturing in-

dustry. We also explore whether the policy has produced unintended consequences, for example,

by inducing more carbon emissions through higher electricity consumption. Furthermore, we

test for heterogeneous treatment e�ects by energy-intensity and export share, which allows us

to assess whether the policy has reached its stated goal of supporting exporters in international

markets.
1The United Nations Framework Convention on Climate Change, COP21 (Paris agreement) has been rati�ed by

184 out of 197 parties to the convention (December 2018).
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We conduct our analysis in Germany, where increasing RES shares have made the EEG levy

the most important component of electricity cost, accounting for roughly 30% of the industry

electricity price in 2014. The 2012 policy reform that we study lowered the threshold for plants to

apply for the exemption from 10 Gigawatt hours (GWh) annual electricity consumption to 1 GWh

and considerably extended the number of exempt plants in the manufacturing sector from 683

to 1,667.2 To estimate the causal impact of the EEG levy exemption on plant-level outcomes, we

use rich administrative data (Amtliche Firmendaten in Deutschland, A�D) covering the universe

of manufacturing plants with more than 20 employees. We focus our analysis on the short-run

impact of the EEG levy exemption in the �rst year a plant bene�tted from the exemption.

Our empirical analysis focuses on plants that became newly exempt from paying the full

levy after the 2012 policy reform and compares their outcomes with similar plants that continue

to pay the full levy. As treatment status – in our case the EEG levy exemption – is correlated

with plant characteristics, such as its electricity intensity, we employ a matching di�erence-in-

di�erences (DiD) approach to construct valid counterfactuals and to estimate causal treatment

e�ects. This estimator has gained increasing attention in the literature on the ex-post evaluation

of emission markets (see for instance Calel and Dechezlepretre 2016, Petrick and Wagner 2014,

Fowlie et al. 2012). Combining matching with the standard DiD estimator allows us to exploit

both the longitudinal structure of our dataset and the rich information on plant characteristics to

recover the average treatment e�ect on the treated (ATT) under weaker identifying assumptions

that allow for di�erences in characteristics between treated and control observations as long as

they share a common trend.

One challenge for the identi�cation of causal e�ects is that plants need to apply for exemp-

tions, which might result in selection into treatment based on time-invariant plant characteristics,

such as its productivity and managerial skills. By taking �rst di�erences, our empirical approach

allows us to account for such factors. Nevertheless, selection into treatment could be problematic

when it is related to unobserved time-varying factors, such as �rms’ growth expectations. As a

robustness check, we exploit the policy change as a natural experiment and estimate intention-
2Source: BMU (2014). To be eligible for the exemption, plants need to verify that their annual electricity con-

sumption exceeds 1 GWh and that they classify as energy-intensive, i.e. the ratio of the total payment for electricity

to gross value added at the �rm level needs to be at least 14%.
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to-treat (ITT) e�ects of passing the lower eligibility threshold after the 2012 reform, regardless

of individual exemption status. This estimator implicitly assumes that all newly eligible plants

were treated and thus provides us with a lower bound for the ATT that is robust to selection.

Our main results show that EEG levy exemptions have a positive and signi�cant impact on

electricity consumption. In particular, plants that are exempt from the EEG levy in 2013 consume

5-7.5% more electricity compared to plants in the control group, which translates into a short-run

own-price elasticity of electricity of -0.22 to -0.33. Furthermore, we �nd that treated plants ad-

just their energy input mix in the year of the exemption. They respond to the drop in electricity

prices by substituting electricity for gas and by reducing their own electricity generation, which

uncovers an important mechanism how plants respond to energy taxation. Fuel switches also

imply unintended consequences for climate policy. When we calculate carbon emissions based

on the average carbon content of all energy inputs, we �nd that plants’ fuel substitution implies

an increase in carbon emissions by 3.1-5.8%. This �nding is mainly driven by the large share of

coal and lignite in the German electricity-mix.3 Regarding competitiveness indicators like sales

and export share, we do not �nd any evidence that the levy exemption increases plant compet-

itiveness in the short-run. Rather, we �nd a small, but negative impact on employment, which

is in line with the reduction in own-electricity production in the treatment group. We perform

additional robustness checks to our main results concerning the matching strategy, selection into

treatment, the timing of the policy announcement, and intra-�rm spillovers, which con�rm our

main �ndings. Finally, testing for heterogeneous e�ects, we do not �nd evidence that the ex-

emption has particularly bene�tted the export-oriented industry, which was the main focus of

the policy. Rather, we �nd that plants with a high electricity-to-sales ratio were most respon-

sive to the exemption. These �ndings suggest that the policy design was not e�ective and lead

to rent-transfer to the energy-intensive industry. A back-of-the-envelope calculation shows that

the EEG levy reform in 2012 led to a redistribution of about 190 million Euros from the group of

electricity consumers to the group of newly exempt manufacturing plants, which illustrates that

such exemptions have important distributional implications (see also Reguant 2018).
3Due to the increased share of RES production in the German electricity market, these technologies are often the

marginal (price setting) plants. By using the average emission factors, our estimates provide a conservative estimates

of the CO2 impact.
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Our study relates to two main strands of literature. First and foremost, it contributes to a

growing body of literature that evaluates the impact of environmental regulation on industry

outcomes (Abrell et al. 2011, Greenstone 2002, Greenstone et al. 2012, Hanna 2010, Martin et al.

2014a,b, 2016, Petrick and Wagner 2014, Colmer et al. 2018 or Dechezleprêtre and Sato 2017 for

a review). Much of this literature focuses on the impact of carbon markets or carbon taxes on

the industry. For instance, Martin et al. (2014b) analyze the impact of the European Emission

Trading Scheme (EU ETS) on the competitiveness of the French manufacturing industry. While

they do not �nd adverse competitiveness impacts, they �nd clear evidence for fuel substitution at

the plant level. Similarly, Martin et al. (2014a) analyze the impact of the climate change levy on

�rms in the UK manufacturing sector and �nd that electricity use patterns and energy intensity

are a�ected signi�cantly by the tax, in contrast to competitiveness indicators. Other recent work

in the US has found negative impact of energy prices on employment (Deschenes 2011, Kahn and

Mansur 2013). Our results complement these earlier studies. In particular, the focus on the impact

of the EEG levy exemption enables us to study the e�ects of a large reduction in electricity prices

on energy input choices and plant-level outcomes. We are thus able to contrast previous results

in terms of symmetric responses. Additionally, we contribute to the public policy debate on RES

�nancing by highlighting that exemptions were poorly targeted.

Second, this paper relates to recent work that analyzes electricity taxation and plant level

outcomes in the manufacturing sector (Dussaux et al. 2018, Flues and Lutz 2015, Gerster 2017,

Marin and Vona 2017). Compared to most of these studies, our setting allows us to rely on a

large exogenous variation in the electricity price for identi�cation. To the best of our knowledge,

Gerster (2017) is the only paper that analyses EEG levy exemptions in Germany. Compared to his

work, which investigates how plants respond to short-run variation in eligibility status induced

by the �nancial crisis, our study focuses on the impact of a reduction in eligibility thresholds that

induces a long-run (permanent) reduction in energy prices for exempted manufacturing plants.

We document the potential for fuel substitution and adjustments of the capital stock that may

explain why long-run elasticities found in the literature typically exceed short-run elasticities.

Furthermore, our identi�cation strategy allows us to test for heterogeneity in treatment e�ects

and possible mechanisms, such as own electricity production, both of which might have impor-

tant implications for policy design.
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The remainder of this paper is structured as follows. The next section explains in detail the

institutional background of the EEG levy design. Section 3 introduces the datasets and data link-

ing procedure, while Section 4 develops on the empirical strategy. Section 5 presents the main

results, robustness, and elaborates on heterogeneous e�ects. Finally, Section 6 puts our results in

further context and Section 7 concludes.

2 Institutional Setting

Germany is a worldwide leader for RES deployment such as wind and solar.4 This success is

often associated with the introduction of the renewable energy act (Erneuerbare Energien Gesetz,

EEG) in 2000, which established feed-in tari�s (FiTs) for private investors. FiT pay a �xed price

per kWh of electricity produced by renewable resources and are �nanced through a levy on

electricity prices. Due to increasing RES deployment, the surcharge has increased from 0.19 cent

per kWh in 2000 to 6.24 cent per kWh in 2014. Figure 1 displays the average industry electricity

price for plants with an annual electricity consumption between 0.2 GWh and 200 GWh in 2013,

highlighting the contribution of the EEG levy to the electricity prices in the industry. The EEG

levy exemption is the single largest cost component of electricity, accounting for about 30% of

the industry electricity price.5 The �gure highlights the overall importance of surcharges and

levies on electricity prices in the industry: plants that are non-exempt face one of the highest

electricity prices in Europe, while plants that qualify for the exemptions (fully-exempt) have one

of the lowest electricity prices in Europe.6

The introduction of the EEG has led to a heated policy debate about the loss of international

competitiveness of the German manufacturing industry due to increasing electricity prices. As a

result, the policy-maker allowed energy-intensive plants in the manufacturing, mining, and rail-

way sector to be exempt from 2003 onwards. The exemptions initially focused on large industrial

plants exceeding 10 GWh annual electricity consumption that qualify as ‘energy intensive’, i.e.
4Despite its small size, in 2014 Germany was the global leader in installed solar PV capacity and third largest

country in terms of installed wind capacity (REN 21, Global Status Report 2015.)
5Electricity prices based on survey data (Source: German federal network agency). As we focus on small and

medium-sized manufacturing plants consuming between 1 and 10 GWh of electricity, the EEG levy is likely to rep-

resent an even larger share of total electricity prices.
6Source: Eurostat.
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that have a ratio of electricity cost to gross value added at the �rm level of at least 15%. Plants

apply on an annual basis for the exemption based on certi�ed accounts. Exempt plants paid a

reduced EEG levy of 0.05 cent per kWh for all of the plant’s electricity use exceeding 10% of the

baseline use that determines eligibility.

As the EEG levy continued to increase continuously in the late 2000s (see Appendix Fig-

ure A.1), the political pressure increased to extend the eligibility criteria and to include smaller

energy-intensive manufacturing plants. The eligibility rules have been revised in an 2012 amend-

ment to the original EEG, decreasing the eligibility cuto�s to 1 GWh of electricity in the previous

business year and to a share of electricity cost to gross value added at the �rm level of at least

14%. The updated eligibility criteria were �rst employed in 2013. For a plant to be exempt in 2013,

it must apply in 2012, based on the electricity consumption in 2011.7 As a result of this reform,

the number of exempt plants in the manufacturing sector grew considerably from 683 in 2012 to

1,663 in 2013. Furthermore, to avoid incentives for plants to strategic manipulate their electricity

consumption and to place right of the threshold, the payment schedule has been revised as part

of the 2012 reform. All plants pay the full EEG levy for the �rst GWh of electricity and, if exempt,

they pay 10% of the levy for any consumption between 1 and 10 GWh, and 1% for consumption

above 10 GWh. Figure 2 depicts the EEG payment schedule for exempt and non-exempt plants.

As the EEG levy corresponds to the largest individual component of industrial electricity prices,

plants have strong incentives to apply if eligible.8

This paper exploits the 2012 amendment to the EEG to investigate the causal e�ects of the EEG

levy exemptions in 2013. As the revision of the eligibility rules passed the legislative process only

in the summer of 2011, we do not expect plants to have strategically manipulated their electricity

consumption that year to be declared eligible.9

7While larger plants, with an annual consumption of more than 10 GWh, need to provide environmental certi�-

cation on the energy-e�ciency potential, smaller plants are not subject to this requirement.
8It appears highly unlikely that many eligible �rms did not apply for the exemption, as the exemption reduces

total electricity costs by about 25% for the average treated plant. In fact, data from the Federal O�ce for Economic

A�airs and Export Control (BAFA) shows that many plants sought the exemption even when they did not qualify.

In 2012, about 19% of applicants have been rejected, which exceeds the rejection rates in previous years of 4-10%.
9Electricity is an intermediate input in the production process and highly dependent on output. It is furthermore

unlikely that �rms made capital investments to increase their level of electricity consumption in the same year based

on the announcement of the law. We provide descriptive evidence of pre-treatment electricity trends at plant level
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3 Data

Our analysis is based on a rich administrative dataset covering the German manufacturing indus-

try (AFiD, Amtliche Firmendaten in Deutschland). The dataset is administered by the research

data center of the Statistical O�ces fo the Federal States and covers the universe of plants from

the manufacturing sector with more than 20 employees. It contains around 40,000 plant-level

observations per year and includes a variety of plant-level characteristics, such as sales, exports,

employees, and wages. It also comprises detailed information on a plant’s energy use for various

energy inputs, most notably electricity, gas, and oil. Based on the disaggregate information on

energy use, we are able to calculate CO2 emissions using annual average emission coe�cients

of the respective fuel types for Germany obtained from the ministry of the environment. Finally,

A�D provides information on the energy cost and the gross value added at the �rm level for a

representative sample of �rms. We observe this data at the annual frequency for the period 2007

to 2013.

We link this data with the full list of plants that are exempt from paying the EEG levy. This

data is publicly available for the years 2010 to 2013 from the Federal O�ce for Economic A�airs

and Export Control (BAFA). As these two datasets do not contain a common identi�er, we rely on

Bureau van Dijk identi�ers, tax identi�cation numbers, and o�cial municipality keys to match

records. This procedure allows us to match close to 80% of the plants that became newly exempt

in 2013. The combined dataset permits us to observe plant-level outcomes for up to �ve years

prior to the policy reform.

Table 1 presents summary statistics for three main groups of plants in the year 2013. The

�rst column reports the plants that are non-exempt from the levy. Columns 2 and 3 refer to EEG

exempt plants. While Column 2 shows summary statistic for the group of plants that were newly

exempt in 2013 (1-10 GWh annual electricity consumption), Column 3 refers to all plants that

were exempt from paying the levy in 2013. The table highlights the fact that the three groups

are very di�erent in terms of observable characteristics, which is not surprising, as the EEG levy

exemption eligibility criteria is based on electricity consumption and closely related to plant size

and energy-inputs. We are able to link 641 newly eligible plants belonging to the 1-10 GWh group.

These plants are typically small and medium-sized manufacturing plants, with an average of 73

to contrast this hypothesis and for robustness estimate treatment e�ects based on the pre-announcement year 2010.
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employees and 26 million Euros of sales. The exempt plants consume approximately 5.5 GWh

of electricity in 2013 and their energy-mix is dominated by electricity (60%) and gas (28%). The

table also presents electricity usage in 2011. While electricity in both the non-exempt group and

the group of all exempt EEG plants decreased slightly over this period, we �nd that the group of

newly eligible plants increased their electricity consumption from 5.1 GWh in 2011 to 5.4 GWh

in 2013. This is �rst descriptive evidence that the policy reform might have led to additional

electricity consumption of newly exempt plants. The next section elaborates on the empirical

strategy to estimate the causal impact of the policy reform.

4 Research Design

We aim at identifying the causal impact of the EEG levy exemptions on energy input choices, CO2
emissions, and competitiveness indicators for German manufacturing plants in 2013. In line with

Rubin’s (1974) potential outcomes framework, let Dit denote a treatment indicator that equals

unity if plant i in year t is exempt and zero otherwise. Potential outcomes are denoted by Yit(1)

if plant i is treated and Yit(0) if it is not treated, i.e. continues to pay the full EEG levy. The

time subscripts t’ and t denote pre-treatment and post-treatment observations, respectively. In

addition, the vector Xit ′ represents a set of covariates of plant i in year t’ that are predetermined

relative to the EEG levy exemption. We are interested in estimating the average treatment e�ect

of the treated (ATT), given by αATT = E[Yit(1) − Yit(0) | Dit = 1], where E[·] denotes the

expectations operator. The fundamental problem of causal inference (Holland 1986) is that only

Yit(0) or Yit(1) can be observed, yet not both, so that we cannot directly estimate the ATT.

The most naive approach would be to compare EEG exempt plants with non-exempt plants in

a di�erence-in-di�erences (DiD) framework. Yet, as the treatment status is based on plant char-

acteristics related to plant size and energy-intensity, this would likely lead to biased estimates.10

Rather, we rely on semi-parametric conditioning strategies and use a combined matching DiD

estimator following recent work in the program evaluation literature (Calel and Dechezlepretre
10Using a conditional DiD framework in which we control for pre-treatment electricity consumption and plant

demographics might lead to similar problems. Even assuming that we were able to control for all relevant covariates,

the conditional DiD might lead to problems with limited overlap in the distribution of the covariate space. Also, this

approach assumes equal weights for all control observations, not taking into account heterogeneity in match quality.
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2016, Petrick and Wagner 2014, Fowlie et al. 2012), which we discuss next.11

4.1 Semi-parametric conditioning

To construct a credible counterfactual for the group of treated plants and to recover a consistent

estimate of the treatment e�ect, we rely on an estimator that combines matching with a DiD

approach. This approach allows us to exploit both the longitudinal structure of our dataset and the

rich information on plant-level characteristics. By combining matching with DiD, the ATT can

be identi�ed under the weaker assumption of ‘conditional independence’ between changes in the

outcome variables and treatment status, conditional on pre-treatment covariates Xit ′ (Heckman

et al. 1997). The ATT is given by the following expression:

α̂ATT =
1

N1

∑
iεI1

{
(Yit(1) − Yit ′(0)) −

∑
kεI0

WN0,N1(i, k)(Ykt(0) − Ykt ′(0))

}
, (1)

where Yit refers to the outcome of plant i in year t and Yi0 is the outcome variable in the base year.

Furthermore, I1 denotes the set ofN1 exempt plants, while I0 andN0 denote the corresponding

control group values. The weightW with
∑
kεI0

WN0,N1(i, k) = 1 determines the weighting of

counterfactual observation k.

We employ propensity score matching to construct a control group of non-exempt plants that

closely match treated plants in terms of pre-treatment covariates Xit ′ . To pair treated and control

plants, we use di�erent matching algorithms based on nearest neighbor (NN) matching without

replacement, NN matching with caliper and replacement, and one-to-many matching with caliper

and replacement. We set the caliper to 25% of the standard deviation of the estimated propensity

score (Rosenbaum and Rubin 1985). In case there is more than one control control plant matched

to the treatment plant, more similar observations receive a higher weight W. We discuss the

detailed matching procedure in Subsection 4.3.
11An alternative empirical strategy builds on a regression kink design. This approach compares plants facing

di�erent marginal tari�s close to the observed cuto�s. While our data allows us to observe the �rst eligibility criteria

(annual electricity consumption at plant level) with precision, we observe the second criteria (electricity cost at the

plant or �rm level) only with error, which might be a threat to identi�cation. This fact combined with the low number

of data points close to the thresholds, might bias our estimates of interest and we refrain from using this approach.
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The validity of the matching DiD estimator depends on three main identifying assumptions:

conditional independence, overlap, and the stable unit treatment value assumption (SUTVA).

First, conditional independence requires that the distribution of the control outcome Yit(0), con-

ditional on observable plant and �rm-level characteristics, is the same among plants that are

exempt from the EEG levy and the group of control plants. Second, we require that the support

of the distribution of the conditioning covariates overlaps for the treatment and control group.

Finally, SUTVA requires that potential outcomes at one plant are independent of the treatment

status of other plants. In practice this means that we rule out spillover e�ects and general equi-

librium e�ects. While some of these assumptions are directly testable in the data, such as overlap,

we will provide indirect evidence to show that both SUTVA and conditional independence are

credible assumptions in the present context in 4.3, where we also elaborate on inference.

4.2 Heterogeneity

As plants depend to a di�erent degree on electricity in their production processes, they are likely

to be a�ected heterogeneously by the EEG levy exemption. Moreover, the original EEG motivated

the exemption of industrial plants from the levy mainly with concerns about international com-

petitiveness. To test for these channels we follow Fowlie et al. (2012) and estimate the following

regression model that builds on the spirit of matching:

∆Yi = δj + βXit ′ + θXit ′Di + αDi + εi, (2)

where∆Yi = Yit−Yit ′ denotes the di�erence in the outcome variable between the post-treatment

year 2013 (t) and the pre-treatment year 2011 (t’), δj refers to �xed-e�ects for group j, which

comprises plant j and itsmj closest matches. Xit ′ denotes the predetermined covariate of plant i

in year t ′ that we use for the estimation of treatment e�ects. To make the estimates comparable

to our main results, we weight the observations as in the one-to-many matching DiD approach.12

12Counterfactual observations are weighted 1/Mj, where Mj is the number of counterfactual obs. in group j.
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4.3 Matching and assessment of identifying assumptions

This section discusses the detailed matching procedure applied in the empirical analysis as well

as the main identifying assumptions concerning the matching DiD strategy. In a �rst step, we re-

strict our sample to manufacturing plants with an annual electricity consumption between 1 and

10 GWh in 2011. This initial data trimming assures that treated (newly EEG exempt in 2013) and

control plants are of similar size and comparable electricity consumption. Figure A.2 illustrates

how trimming and matching improves the covariate balance for the example of electricity.

To match treatment and control plants, we estimate two alternative propensity score spec-

i�cations based on pre-treatment variables in 2011 that either directly determine the treatment

status or that are pre-determined. In line with the EEG act, treatment eligibility is de�ned by

electricity consumption at plant level and the share of electricity cost to gross value added at

the �rm level. As we do not observe the exact electricity expenditure at �rm level, we rely on

energy-related and economic variables to predict treatment status. Speci�cation (1) conditions on

baseline electricity use, number of employees, sales, export share, and average wage payments,

both in linear and in quadratic terms. In addition, we exploit the longitudinal structure of our

data and include lagged electricity consumption to the conditioning variables, which helps us to

eliminate systematic di�erences in electricity use trend for treated and control observations.13

Speci�cation (1) includes furthermore dummies for two-digit sector classi�cations to capture po-

tential di�erences at the sectoral level. Alternatively, Speci�cation (2) uses strict matching on

two-digit economic sub-sectors and includes as additional covariates the number of employees,

sales, and electricity use in 2011, as well as lagged electricity use in 2009, 2010. Strict matching

forces all treatment-control pair to be of the same sector, which might lead to worse balancing

in terms of covariates, but ensures that di�erences in trends by sector cannot confound the esti-

mates. As there is a limited number of treated observations in each manufacturing sub-sector, for

the propensity score estimation, we regroup plants according to their average energy intensity

in the pre-treatment period 2007-2011 into 5 sectors and estimate a separate logistic regression

for each of the groups.14 We estimate the propensity score by logistic regression. The propensity
13As electricity consumption is highly output related, conditioning on past electricity consumption allows us to

match �rms that share a similar economic history. The presence of the economic crisis in 2009-10 makes this feature

especially desirable.
14We provide robustness to this regrouping, estimating the two propensity scores on three digit sub-sectoral
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score regression tables are presented in Tables A.9 and A.10 in the Appendix.

The validity of the semi-parametric DiD rests on the above discussed identifying assumptions:

conditional independence, overlap, and SUTVA. First, for conditional independence to hold, we

require changes in outcome variables to be independent of the treatment status, conditional on

covariates Xit. This assumption is equivalent to the common trend assumption of the DiD model

and is particularly plausible when conditioning on a rich set of covariates is possible. While

untestable in principle, this assumption is more plausible if outcome trends are parallel in the

years leading up to the policy intervention. We provide a visual inspection of the pre-treatment

trends in Figure 3. The �gure plots growth rates with respect to 2011 for a set of outcome variables

for both the treated and control group and illustrates that there are no detectable di�erences in

trends prior to 2011. The individual data points can be interpreted as growth rates with respect

to the base-year 2011 that determines the EEG levy exemption eligibility. This result is con-

�rmed when conducting statistical tests on trend di�erences by treatment status (Table 2). The

table lists the mean di�erence for the treated (exempt) plants, as well as the two control groups

following speci�cations (1) and (2). We then report the t-statistic and p-values for a pairwise

mean-comparison between the treatment and control group. We �nd that none of the outcome

variables in the control groups is statistically di�erent from the treatment group when analyz-

ing the di�erences in 2011-10 and only one is statistically di�erent when considering the growth

rates in 2010-09. This di�erence can likely be explained with di�erences in timing of recovery

after the 2009 economic crisis.

Second, the overlap assumption requires that the propensity scores distribution of both treat-

ment and control group observations overlaps, i.e. that there are no treated observations with

propensity score values that are not reached by any control group observation. This assumption

can easily be veri�ed graphically and, as Figure A.3 shows, it is met in our application.

Third, SUTVA allows only for direct treatment e�ects on treated plants, but not for indirect

e�ects on control group observations. Such indirect e�ects can occur for example when multiple

de�nitions (WZ 2008 de�nition). Also, given recent discussions on the use of ‘pre-treatment’ outcomes in a matching

DiD framework (Chabé-Ferret 2017), we also experiment with a more parsimonious speci�cation of the propensity

score speci�cation that strictly matches within economic sub-sector and only conditions on electricity intensity,

measures as the ‘electricity-to-sales’ ratio in 2011. Our results are robust to the choice of the propensity score

de�nition.
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plants are operated by a single �rm and production capacity is reallocated as it has been shown

in other contexts (see for instance Martin et al. 2014b). In addition, we need to exclude general

equilibrium e�ects of the policy. While there is no formal test for SUTVA, we present indirect

evidence that these assumptions are likely to hold in our empirical setting. More precisely, we

estimate our main treatment e�ect with a subset of �rms that only own a single plant to exclude

the possibility of intra-�rm spillovers. On the other hand, given the EEG levy design, the exemp-

tion of some plants should lead to a higher levy for the remaining contributors by construction.

However, the 2012 EEG reform removed some (non-manufacturing) sectors from the exemption

that nearly o�set the total amount of newly exempt electricity. The EEG reform increased the

levy by only 0.04 Euro-cent / kWh in 2013, which is negligible and we will ignore in the remainder

of this analysis.15

Finally, dealing with matching methods, we face a trade-o� between e�ciency and potential

biases. Combining three di�erent matching estimators with two propensity scores provides �rst

robustness. In our main section, we rely on heteroskedasticity-consistent analytical standard

errors as proposed by Abadie and Imbens (2006). To contrast these standard error estimates, we

implement a regression version of our main matching DiD estimator for the nearest neighbor

matching without replacement, that closely follows equation 2, and includes �xed-e�ects per

matched group and clusters the standard errors at the group level. As pointed out by Abadie and

Spiess (2016) this procedure will produce valid inference. Yet, this increase in precision comes at

the cost of a smaller sample sizes. As we are concerned with the potential bias resulting from a

small control group, as our main estimator of interest, we rely on one-to-many matching with

caliper and replacement, as this approach allows us to have a better pool of control plants.

5 Main Results

Table 3 presents the main results for the ATT, following the two propensity score speci�cations

and main matching algorithms. Each of the columns employs a distinct matching methodology

for nearest neighbor matching, nearest neighbor matching with caliper and replacement, and one-

to-many matching with caliper and replacement. We allow for up to 20 matched control �rms
15Source: BMU (2013).
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for each treated �rm in Columns 3 and 6. The outcome variables are expressed in log di�erences

between the treatment year (2013) and the year that determines the treatment eligibility (2011).16

For ease of exposition, the table is grouped in three main sections of outcome variables: electricity

& gas use (Panel A), fuel inputs and related carbon emissions (Panel B), and competitiveness

indicators (Panel C).

Focusing on electricity use in Panel A, we �nd that the EEG exemption has led on an increase

in electricity consumption of about 5.1-7.5% of the treated plants compared to the control plants.

This e�ect is highly aligned across speci�cations and is signi�cant at least at the 5% signi�cance

level. For an average ‘treated plant’ with 5.5 GWh electricity consumption in 2013, the levy ex-

emption represents an approximate reduction of 23% in electricity input costs. The short-run

price elasticity for electricity is hence to be estimated between -0.22 and -0.33. These estimates

are roughly aligned with previous estimates in the literature that focus on short-run elasticity

for electricity.17 A 10% price reduction thus leads to an increase in electricity demand of approxi-

mately 2-3%. Panel A furthermore tests for di�erences in gas usage and the propensity for a plant

to engage in own electricity generation. Electricity production in manufacturing is often a ben-

e�t of co-generation when gas units are employed. While the individual point estimates for gas

show a similar magnitude as electricity, with a negative sign, estimates are not statistically signif-

icant. In fact, the large standard errors, indicate that there might be considerable heterogeneity

in terms of gas usage in manufacturing sub-sectors. Finally, in line with the reduced gas usage in

the treatment group, we �nd evidence that less �rms engage in own electricity generation. The

point estimates are all negative and signi�cant in two out of six speci�cations.

In a second step, we evaluate the fuel input substitution and carbon emissions at the plant

level. In line with the e�ects from Panel A, we �nd that the point estimates for the electricity

share in the fuel mix of a plant is positive in all speci�cations. However, it only shows up to

be signi�cant in the one-to-many matching in Column 3. On the other hand, we �nd evidence
16Shares are expressed in level di�erences, as is investment. Own electricity generation is a dummy variable equal

to one in case the plant reports positive electricity production.
17Studies that have aimed at identifying elasticities for fuel inputs and fuel substitution in the industry include

Bernstein and Madlener (2015), Hyland and Haller (2018), Neenan and Eom (2008), Paul et al. (2009). These papers

typically rely on time-series variation in energy prices and �nd a short-run elasticity for electricity of about -0.16 to

-0.20 (higher in individual manufacturing sub-sectors).
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that the gas share decreases for plants that are EEG exempt, with a similar magnitude of 1.5-2.1%

and a negative sign. Oil, on the other hand, constitutes an interesting robustness check, as it is

only an important fuel input in speci�c manufacturing sub-sectors and usage should not respond

to changes in electricity prices due to the low substitutability between these two type of fuels.

Finally, based on the individual energy inputs, we can calculate the di�erence of CO2 emissions

between the treated and control group. While the variable total CO2 takes into account all type

of fuels consumed by the plant (including electricity), ‘direct CO2 emissions’ refers only to fossil

fuels consumed at the plant level, such as oil, gas, and coal.18 Given the observed fuel-substitution

in treated plants, and the fossil-fuel dominated electricity mix in Germany, our estimates indicate

that the average fuel emissions increase by 3.1-5.8%, representing a carbon elasticity of -.13 to -

.25.19

As the EEG levy reform was originally motivated with concerns about ‘international compet-

itiveness’ in the manufacturing industry and related job-loss, our third set of outcomes focuses

on competitiveness indicators at the plant level. More precisely, we estimate the change in em-

ployment, sales, export share, and investment. We �nd that the EEG levy exemption has no

signi�cant impact on sales, export share or investment. We �nd a negative impact of the EEG

levy exemption on employment that is signi�cant in three out of the six speci�cations. Accord-

ing to our estimates, employment decreased by around 2-3% in exempt plants. This result can

be likely explained by the reduction in own electricity generation of exempt plants. As the NN

matching and the NN matching with caliper and replacement leads to almost identical results, in

the remainder of this paper, we present matching estimators for NN matching and one-to-many
18To calculate CO2 emissions for individual fuels we take into account the annual average emission factor of

imported fuels in Germany (Federal Ministry of the Environment). For electricity, we rely on the average carbon

factor of the German electricity fuel mix in each year. Ideally, we would be able to calculate the marginal emissions

induced by the policy change. However, for this we would need to combine information on the marginal production

technology in electricity markets with high-frequency data on electricity consumption changes at the plant level.

This information is not available. Using the average carbon content of electricity likely provides us with conservative

estimates for total carbon emission. In 2013 and 2014, the decrease in coal prices and weak electricity demand has

led to ‘hard coal’ and ‘lignite’ plants to dominate the marginal price setting in Germany. Hence, these emissions

would be higher than the average mix (Source: Timera Energy Blog, 20 October, 2014).
19Dussaux et al. (2018) �nd a carbon price elasticity in the same order of magnitude for manufacturing �rms in

France.

15

https://www.timera-energy.com/german-recession-power-prices-generation-margins/


matching with caliper and replacement.

We re-estimate our main treatment e�ects with a reduced sample of plants that show positive

electricity and gas consumption in both 2011 and 2013 for sensitivity, as these plants are more

likely to substitute fuels (see Appendix, Table A.1). These selection reduces our sample to 348

treated plants and con�rms our main results. While we do not �nd signi�cant impacts on gas us-

age, we �nd a signi�cant drop in gas shares of 1.5-2.7% and a similar increase in electricity shares

of 1.1-1.3%. In this sub-sample, we also �nd stronger evidence for the reduction in own-electricity

production and employment. Finally, as the main results in Table 3 refer to the di�erence between

the outcome year 2013 and the year determining treatment eligibility, our overall �ndings can be

either driven by a short-term response to the realized price change in 2013 or by a �rm response

to the expectation of electricity prices changes. To focus on the impact of a realized price change

in 2013, we condition plants to be the same in 2012, and look at outcome di�erences for the years

2013-2012. The results are presented in Table A.2 in the Appendix. We �nd that the realized

electricity price change accounts for at least the half (2.6% to 5%) of the observed increase in elec-

tricity for the treated plants compared to the control plants and thus explains a large portion of

the observed electricity response.

5.1 Robustness

This section deals with potential threats to our identi�cation strategy. First, we take on antici-

pation that might arise from the EEG reform announcement in 2011. Second, SUTVA might be

a�ected by the possibility of �rms reallocating production capacity between plants. Finally, we

deal with possible selection that might arise from plant application to the program.

Table 4 takes into consideration the possibility that plants have anticipated the policy change

in 2011 and strategically modi�ed their electricity consumption in that year to be declared el-

igible for the exemption. To do so, we match the treatment and control group based on the

pre-announcement year 2010. The outcome variables are still expressed as di�erences 2013-2011.

The table con�rms our main results for electricity use and CO2 emissions, yet leads to slightly

less precision.

Second, Table 5 tests for possible intra-�rm spillovers and reallocation of productive capaci-

ties. As a result to the EEG levy, multi-plant �rms might adjust their production processes and
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shift production to plants that are exempt from the levy. To test for this channel, we focus on

single plant �rms.20 In our sample, we observe a total of 369 single-plant �rms that have been

newly exempt from the EEG levy in 2013. The point estimates for electricity are highly aligned

with the ones found in the main section. We �nd a 4.9 to 7.7% increase in electricity consumption

that is statistically signi�cant at the 5% level in 3 out of 4 estimates.

Third, we provide indirect evidence on strategic selection into treatment. While �rst di�er-

encing allows us to control for permanent unobserved di�erences between the treatment and

control group, this does not apply to selection into treatment based on growth expectations. To

deal with this, we rely on the policy change as natural experiment. As eligibility is a necessary

condition for being exempt, we focus on the newly eligible group of plants in 2013 and estimate

a lower bound for the main treatment e�ect by comparing this group to a similar group of plants

for which the incentives to apply did not change considerably in a standard DiD framework.

More speci�cally, we compare the group of plants that consumed 5-10 GWh in 2011 (treated) to

the group of plants that consumed between 10-20 GWh in 2011 that were already eligible for the

levy exemption previously.21 Section 8.2 in the Appendix provides more details on the estimation

strategy. Figure A.4 and Table A.8 also show that the parallel trend assumption holds for these

two groups before 2011. Taking advantage of the exogenous change in the eligibility criteria in

2012 allows us to estimate a lower bound e�ect for the ATT. More importantly, as the change

in cuto� is policy induced, the DiD approach exploits a source of variation that is unrelated to

�rms’ selection into treatment. The results are presented in Table 6. We �nd a lower bound e�ect

of the EEG levy exemption of a 2.6% increase in electricity consumption, signi�cant at the 10%

level. By construction, this measure will lead to a less precise estimates. Yet, the �nding helps

us to bound our main treatment e�ect and we can exclude the possibility that the ATT is solely

driven by selection into treatment.22

Finally, we provide additional robustness checks concerning the matching strategy and infer-

ence in Tables A.4 to A.6 in the Appendix. Table A.4 presents the results when refraining from
20Alternatively, we could also aggregate treatment status at the �rm level, yet this approach would lead to less

precise estimates, as we would need to pool plants of di�erent sizes.
21For this group, the eligibility criteria changed only marginally concerning the de�nition of energy intensity.
22We contrast these results to our main speci�cation in which we limit the sample to plants that consume between

5 and 10 GWh of electricity in 2011 (Table A.3). The results are highly aligned with our main �ndings.
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sub-sector aggregations, i.e. we use 3-digit sub-sectoral de�nitions when estimating the propen-

sity scores. Table A.5 shows the main results when relying on a more parsimonious propensity

score estimation that only conditions on the electricity-to-sales ratio in 2011 and forces matches to

be strict within economic sub-sector. Both tables support our main results. We perform additional

robustness concerning inference in Table A.6, where we estimate the NN matching estimator for

propensity score Speci�cation (1) in a regression framework. This allows us to condition on match

group speci�c �xed-e�ects and to cluster the standard errors at the match group, which will lead

to valid inference (Abadie and Spiess 2016). This table focuses on the main fuel inputs and CO2
emissions. We �nd that our main results are robust to the choice of the matching strategy and

inference used.

5.2 Heterogeneity

As plants in the manufacturing sector are likely to be a�ected di�erently by the EEG levy exemp-

tion, in a next step we focus on heterogeneous treatment e�ects. In particular, we are interested in

the heterogeneous impact of exempt plants with a high electricity-to-sales ratio that should ben-

e�t most from the EEG levy exemption, and plants that have a high export share, and that were

at the center of the policy debate on EEG levy exemptions. We rely on one-to-many matching as

outlined in Section 4 and de�ne a dummy variable equal to one in case the average electricity-to-

sales ratio (export share) at the plant level exceeds the median average electricity-to-sales ratio

(export share) in the manufacturing sector in the pre-treatment period 2007-2011. We report

this estimator for the main propensity score Speci�cation (2), to rely on strict matches within

economic sub-sector and match group �xed-e�ects can take into account all sector speci�c un-

observables.23 Each column in panels A and B of Table 7 refers to a separate regression, where

the dependent variable is measured as di�erences in outcomes 2013-2011.24

Panel A focuses on plants with a high electricity-to-sales ratio. For each regression we report

the main e�ects of being EEG exempt and belonging to the group of high electricity user, as well

as the interaction term EEG × high electricity. The �rst four columns report heterogeneity in
23For completeness we report the results for propensity score estimation (1) in Table A.7 in the Appendix,.
24Similar to the main tables, electricity, total CO2, employment, and sales are measured in log di�erences. Shares

and investment are not transformed before taking di�erences.
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treatment with respect to fuel inputs and carbon emissions, and the last four columns look at

competitiveness indicators. Focusing �rst on fuel inputs, we �nd that the main e�ect of the EEG

levy exemption on electricity use is mainly driven by plants that are highly electricity-dependent

in their operation. The interaction term, EEG × high electricity, is positive and signi�cant at

the 5% level in Column 1, while the main e�ect is not any longer signi�cant. The fuel switching

becomes clear when looking at the fuel shares in Columns 2 and 3. While non-exempt plants that

are highly electricity dependent increase their gas share by 1.6%, we �nd a similar increase for

the electricity share for the interaction term EEG × high electricity. In line with the observed fuel

changes, total CO2 emissions increase for the group of EEG exempt plants that are high electricity

consumers. The competitiveness indicators are in line with the main �ndings from Table 3. For

employment, we �nd both main e�ects to be negative and signi�cant. While the decrease in

employment in EEG exempt plants is in line with the observed reduction in own generation

capacities, plants that highly bene�t from the EEG levy exemption do somewhat counteract this

negative e�ect. We �nd similar results for investment.25 While the average EEG exempt plant

reduces investment compared to the control group, exempt plants that qualify as highly electricity

intensive undo this e�ect. We do not �nd any signi�cant di�erences for EEG exempt plants in

sales and export share, indicating that the short-term impacts are limited to fuel switches.

Panel B, on the other hand, presents results for plants that face international competition,

approximated by a high export share. This sample split reveals that the main e�ects are not

in�uenced by the group of exporters that are EEG exempt. Rather, we �nd that plants with a

high export share do increase their gas consumption more than their electricity consumption,

as indicated by a positive and signi�cant increase in the gas share. The marginal e�ects for the

interaction term on electricity consumption and the electricity share is negative, indicating that

EEG exempt plants in international competition did not particularly bene�t from the exemption.

It has been widely documented in the literature on �rm productivity that exporting �rms are

di�erent with respect to many characteristics (see for instance Bernard and Jensen 2004). As this

paper focuses mainly on small and medium-sized manufacturing plants, it is likely that there

is selection into export markets and that plants with a higher export share are using their fuel

inputs more e�ciently to begin with. Also production processes might be more standardized
25Note that the point estimates are not directly comparable as investment is measured in level di�erences.
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(global value chain), making fuel-switching less attractive for these type of plants. In terms of

competitiveness indicators, we do not �nd a clear heterogeneity pattern by export orientation.

We �nd some evidence that the EEG levy helped plants with a high export share to increase this

share further (interaction term in Column 7). Yet, as Column 6 shows, the e�ect on overall sales

is negative. Investment shows the opposite sign as Panel A, indicating that the exempt plants

with a high export share do not adjust their capital stock due to the exemption.

6 Discussion

Our main results show that the EEG levy exemption did lead to an increase in electricity con-

sumption in the year of the policy introduction and that the main mechanism was fuel switching,

i.e. exempt plants switch from gas to electricity and are moreover less likely to engage in own

electricity production. As treated plants were �rst time receivers of the exemption, our results

highlight the fact that plants in the manufacturing sector have possibilities of fuel switching in

the short-run, which might impact CO2 emissions. Our analysis does not �nd any short-run im-

pacts on competitiveness indicators, such as sales or export share. We furthermore show that the

policy design does favor mainly high electricity users and does not improve competitiveness of

plants in international competition. These results indicate that the 2012 EEG reform was poorly

targeted and led to a large shift in the burden for RES �nancing from the industry to commer-

cial and residential accounts.26 By extending the exemption criteria to energy-intensive plants

consuming between 1 and 10 GWh, the total amount of exempt electricity increased by approxi-

mately 5,200 GWh (BMU 2013), representing around 190 Million Euros of direct rent transfer to

the industry.27 However, our �ndings highlight the fact that exempt �rms have strong incentives

to switch fuels and thus increase their electricity consumption further. This means that the true

increase due to the policy change was likely underestimated by 300 - 400 MWh.

More broadly speaking, the EEG levy exemption in 2013 a�ected a total of 90,724 GWh of

electricity in the manufacturing sector belonging to 1,667 plants.28 Applying the 2013 EEG rules,
26Reguant (2018) describes this trade-o� between charging residential versus industrial consumers at a broader

scale to highlight distributional tensions between these groups.
275,200 GWh × EEG levy of 3.592 Euro-ct / kWh.
28BMU (2014).
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this means that exempt plants only contributed with roughly 140 million Euros to the �nancing

of renewables, while their full contribution would have implied a payment of 3.26 billion Euros.29

This implies that the EEG levy for other electricity consumers could have been roughly one Euro-

cent per kWh (30%) less in 2013.

While we cannot fully generalize our results to the entire manufacturing sector, other work

(Gerster 2017) leads to similar implications. Germany has been a leader in RES investment policies

with very ambiguous climate change targets. Yet, due to the exemption of the energy-intensive

industry, most price increases have fallen on smaller residential and commercial customers. A

restructuring of the EEG levy exemptions could likely distribute the burden on a broader basis.

One limitation to the current approach is that we are focusing only on the short-run impact

of the policy exemption. Exempt plants might invest di�erently and optimize their production

processes endogenously to the exemption, which might lead to competitiveness di�erences in

the long-run. Also, other dynamic choices such as entry or plant exit are not taken into account

in the present analysis.

7 Conclusion

This paper analyses the impact of electricity taxation on �rm competitiveness and a broader set

of plant-level outcomes. Using an exogenous variation in electricity prices resulting from a policy

change in RES �nancing, we �nd that plants that are newly exempt from paying the EEG levy

signi�cantly increase their electricity consumption by 5 to 7.5% compared to a matched control

group. The main mechanism behind this e�ect is fuel-switching from gas to electricity. Given

the electricity-mix in Germany this switch is related to a signi�cant increase in CO2 emissions of

about 5-6%. We run detailed robustness checks for our estimates. Taking advantage of the 2012

EEG levy reform as natural experiment, we estimate a lower bound for the main treatment e�ect

at 2.6% increase in electricity consumption.

Our �ndings suggest that the EEG levy exemptions were not e�ective in strengthening the
29For simplicity we assume that all plants consume at least 10 GWh of electricity in 2013, of which the �rst GWh is

non-exempt, electricity consumption between 2 and 10 GWh has to be paid with 10% of the levy, and the additional

amount with 1%. The full EEG contribution without exemption is calculated by multiplying 90,724 GWh with the

2013 EEG levy rate.
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competitiveness of �rms, at least in the short run. We also �nd that targeting of the policy was

poor, as less export-oriented plants reacted more strongly to being exempt, compared to more

export-oriented plants. By contrast, the strong fuel substitution that we observe shows that �rms

respond to changes in energy prices. As electricity generation in Germany is carbon-intensive,

mainly owing to large shares of coal and lignite in the electricity mix, this fuel substitution pat-

tern may even be associated with increasing carbon emissions, thus counteracting the objective

of the renewable energy support policies. By contrast, the EEG levy reform in 2012 resulted in

substantial rent-transfers to newly exempt �rms. While our analysis provides new evidence on

the short-run impact of a large drop in electricity taxes on plant-level outcomes, our study disre-

gards potential long-term impacts. This provides an interesting opportunity for future work.
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Figures & Tables

Figure 1: Average industry electricity prices in Germany 2013
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Notes: Average electricity prices in the German industry (quantity-weighted).
Source: German federal network agency, Survey, April 2013. N= 206. The
unweighted average electricity price is approximately 0.9 cent/kWh above the
weighted mean of 17.17 cent / kWh for the non-exempt �rms. Taxes include
both value-added tax and electricity taxes. Other includes concession fees,
metering and billing, and additional surcharges.
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Figure 2: EEG levy payment schedule in 2013
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Notes: EEG levy payment schedule as a function of electricity consumption.
EEG exempt plants pay the full EEG levy for the �rst GWh electricity con-
sumption, 10% of the levy for quantities between 1 and 10 GWh, and 1% above
10 GWh.
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Figure 3: Common trends: matching di�erence-in-di�erence (plant-level)
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Notes: Graphical analysis of parallel pre-treatment trends for treated plants
(EEG exempt) and matched control plants. The control group is based on
nearest neighbor matching, following propensity score Speci�cation (2), as
presented in Table A.10. The vertical line indicates the EEG reform in 2012. A
formal test for mean-di�erences in pre-treatment growth rates 2011-2010 and
2010-2009 for both propensity score estimations is given in Table 2.
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Table 1: Summary statistics

Non-exempt plants EEG exempt plants: 1-10GWh All EEG exempt plants

VARIABLE Mean Std. Dev. Obs. Mean Std. Dev. Obs. Mean Std. Dev. Obs.
Plant-level data
Economic covariates
Sales, in million e 37.265 453.930 39,045 26.527 69.815 641 79.284 219.216 1,458

Export share (of sales) 0.214 0.263 39,045 0.212 0.262 641 0.281 0.286 1,458
Number of employees 136 620 38,422 73 83 645 177 251 1,454
Investments, in million e 1.229 15.275 39,198 0.775 5.563 639 2.339 7.160 1,444
Average wage per employee, in thd. e 33.695 13.614 38,421 33.577 9.795 645 38.755 14.848 1,454

Energy-related covariates
Electricity use, in GWh 3.652 48.653 38,917 5.474 4.360 630 52.280 164.919 1,429
Electricity use (2011), in GWh 3.768 46.610 36,693 5.135 2.350 608 56.096 192.672 1,431
Energy use (w/o electricity), in GWh 15.939 631.243 39,049 9.574 18.800 638 120.379 602.199 1,443
Own electricity generation, in % 0.089 0.285 40,755 0.085 0.279 659 0.129 0.335 1,482
Electricity use per sales 3.244 423.100 37,913 2.364 37.007 622 1.737 24.771 1,419
Electricity share in total energy 0.518 0.259 38,917 0.599 0.310 630 0.558 0.316 1,429
Gas share in total energy 0.297 0.292 38,917 0.281 0.307 630 0.281 0.301 1,429
Oil share in total energy 0.134 0.237 38,917 0.050 0.136 630 0.035 0.115 1,429
Coal share in total energy 0.005 0.063 38,917 0.010 0.086 630 0.031 0.134 1,429
Renewables share in total energy 0.047 0.161 38,917 0.061 0.194 630 0.094 0.229 1,429
Total CO2 emissions, in 1,000 t 5540 181444 39,049 4707 4983 638 50328 181140 1,443
Direct CO2 emissions, in 1,000 t 3862 175915 39,049 1692 4064 638 22876 139819 1,443
CO2 intenisty of energy use, in g per kWh 408 121 38,917 416 132 630 395 141 1,429

Firm-level data
Number of plants per �rm 3.124 13.079 40,755 2.088 2.908 659 2.304 3.124 1,482
Gross value added, in million e 118.257 918.299 17,807 19.119 53.772 355 43.443 111.323 1,006
Sales, in million e 172.129 2073.110 40,755 87.524 355.118 659 175.171 512.104 1,482
Total energy cost, in million e 6.094 37.237 17,806 7.068 27.229 355 21.392 44.040 1,006
Notes: Descriptive statistics for the group of EEG exempt and non-exempt plants for the year 2013. Column 2, EEG exempt plants 1-10GWh,
refers to the group of newly eligible plants, while Column 3 relates to all EEG exempt plants. Source: Research Data Centers of the Federal
Statistical O�ces and the Statistical O�ces of the Länder: AFiD Panel Manufacturing Plants, AFiD Module Energy Use, and Cost Structure
Survey, 2007-2013, own calculations.
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Table 2: Balance of covariates: matching di�erence-in-di�erence (plant-level)

Speci�cation 1 Speci�cation 2
Treat Control T-test Control T-test

VARIABLE mean mean t-stat p-value mean t-stat p-value
Di�erences: 2011-2010
Electricity use .026 .024 0.16 0.876 .058 -1.51 0.132
Sales .130 .111 1.54 0.124 .109 1.19 0.236
Employment .025 .020 0.61 0.543 .023 0 1
Wage .032 .027 0.62 0.536 .032 -0.02 0.987
Export share .001 .003 -0.56 0.572 .001 0.01 0.989

Di�erences: 2010-2009
Electricity .098 .10 -0.12 0.904 .091 0.32 0.749
Sales .108 .144 -2.25 0.025** .129 -1.34 0.181
Employment -.0105 -.0025 -1.03 0.304 -.004 -0.77 0.443
Wage .052 0.035 1.11 0.268 .036 0.99 0.322
Export share .001 .004 -0.58 0.564 .006 -0.99 0.321

Note: Pre-treatment di�erences for the group of treated plants (EEG exempt in 2013) and two
distinct control groups, based on nearest neighbor matching. All variables are in logs, except
shares. Propensity score Speci�cation (1) is presented in Table A.9, and Speci�cation (2) in
Table A.10. T-test for equality of means in growth rates 2011-2010 and 2010-2009. * p<.1 ,**
p<.05, and ***p<.01.
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Table 3: Results 2013-2011: matching di�erence-in-di�erence (plant level)

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4) (5) (6)

Matching algorithm 1:1 1:1
caliper

1:20
caliper 1:1 1:1

caliper
1:20

caliper

Panel A: Electricity & gas use
Electricity use 0.075*** 0.075*** 0.051*** 0.069** 0.071** 0.068***

(0.024) (0.024) (0.018) (0.031) (0.029) (0.023)
Gas use -0.086 -0.066 -0.057 -0.056 -0.065 -0.044

(0.063) (0.064) (0.054) (0.073) (0.082) (0.061)
Own electricity generation -0.012 -0.012 -0.01 -0.028* -0.029* -0.011

(0.012) (0.014) (0.011) (0.016) (0.017) (0.012)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.012 0.012 0.01* 0.012 0.013 0.009

(0.008) (0.009) (0.006) (0.008) (0.008) (0.007)
Gas share in total energy -0.021** -0.021** -0.006 -0.016 -0.016 -0.015*

(0.01) (0.01) (0.007) (0.01) (0.01) (0.008)
Oil share in total energy 0.008 0.008 0 0.003 0.003 0.007

(0.008) (0.008) (0.005) (0.007) (0.007) (0.007)
Total CO2 emissions 0.058** 0.058** 0.031** 0.029 0.031 0.052***

(0.023) (0.023) (0.015) (0.022) (0.019) (0.019)
Direct CO2 emissions -0.013 -0.004 -0.029 -0.03 -0.031 0

(0.049) (0.057) (0.041) (0.056) (0.058) (0.043)

Panel C: Competitiveness indicators
Employment -0.016 -0.016 -0.028** -0.017 -0.023* -0.031***

(0.014) (0.016) (0.011) (0.014) (0.014) (0.011)
Sales -0.015 -0.015 -0.014 -0.001 -0.004 -0.026

(0.022) (0.021) (0.018) (0.02) (0.02) (0.018)
Export share -0.002 -0.002 -0.009 -0.004 -0.006 -0.006

(0.009) (0.009) (0.007) (0.008) (0.008) (0.006)
Investment -0.108 -0.111 -0.06 -0.12 -0.126 -0.044

(0.108) (0.103) (0.093) (0.117) (0.117) (0.11)
Observations 1,014 863 2,545 1,012 852 2,534
# treated plants 508 508 508 507 489 489
# control plants 506 355 2,037 505 363 2,045

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel shares, and investment
(level di�erences). Own electricity is a dummy variable indicating a plant with own electricity pro-
duction. Unit of observation is plant-year. Speci�cation (1) is based on propensity score de�nition in
Table A.9, while Speci�cation (2) limits matches to be within the same industry sub-sector (Table A.10).
Columns 1 and 4 employ nearest neighbor matching without replacement. Columns 2 and 5 use nearest
neighbor matching with caliper (set to .25 of the standard deviation) and replacement, and Columns 3 and
6 use a 1:20 matching algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05, and ***p<.01.
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Table 4: Robustness: Anticipation to policy change (base year 2010)

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity use 0.057* 0.033* 0.025 0.034*

(0.031) (0.017) (0.022) (0.019)
Gas use -0.081 -0.074 -0.067 -0.066

(0.064) (0.058) (0.086) (0.059)
Own electricity generation 0 -0.004 -0.015 -0.008

(0.017) (0.011) (0.017) (0.011)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.017** 0.012* 0.008 0.008

(0.008) (0.007) (0.008) (0.005)
Gas share in total energy -0.014 -0.005 -0.016 -0.009

(0.012) (0.008) (0.01) (0.008)
Oil share in total energy -0.004 -0.001 0.013* 0.006

(0.01) (0.006) (0.008) (0.007)
Total CO2 emissions 0.042 0.028* 0.045** 0.041***

(0.028) (0.016) (0.021) (0.014)
Direct CO2 emissions -0.078 -0.06 -0.004 -0.005

(0.05) (0.044) (0.059) (0.039)

Panel C: Competitiveness indicators
Employment -0.019 -0.012 -0.01 -0.023**

(0.014) (0.012) (0.014) (0.012)
Sales 0.007 0.019 0.017 -0.006

(0.027) (0.018) (0.023) (0.018)
Export share 0 -0.002 0 -0.006

(0.01) (0.008) (0.009) (0.006)
Investment -0.056 0.006 0.097 -0.064

(0.147) (0.112) (0.176) (0.121)
Observations 908 2,384 918 2,375
# treated plants 454 454 459 439
# control plants 454 1,930 459 1,936

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table 5: Robustness: Spill-over (single-plant �rms)

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity use 0.077** 0.049** 0.056 0.062**

(0.034) (0.021) (0.039) (0.025)
Gas use -0.09 -0.069 -0.093 -0.055

(0.078) (0.071) (0.091) (0.07)
Own electricity generation -0.024 -0.021 -0.019 -0.019

(0.016) (0.014) (0.016) (0.013)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.025** 0.013* 0.015 0.011

(0.011) (0.007) (0.01) (0.008)
Gas share in total energy -0.011 -0.005 -0.012 -0.004

(0.011) (0.008) (0.011) (0.009)
Oil share in total energy 0.001 0.002 0.002 0.002

(0.01) (0.007) (0.008) (0.007)
Total CO2 emissions 0.046 0.032* 0.009 0.049**

(0.032) (0.018) (0.032) (0.02)
Direct CO2 emissions -0.037 -0.033 -0.023 0.001

(0.065) (0.054) (0.065) (0.048)

Panel C: Competitiveness indicators
Employment -0.015 -0.014 -0.023* -0.019*

(0.015) (0.011) (0.013) (0.011)
Sales -0.003 -0.005 0.004 -0.008

(0.027) (0.021) (0.023) (0.02)
Export share -0.003 -0.007 -0.011 -0.004

(0.007) (0.007) (0.012) (0.006)
Investment 0.004 0.006 -0.159 -0.01

(0.114) (0.098) (0.13) (0.14)
Observations 738 1,817 732 1,738
# treated plants 369 369 366 347
# control plants 369 1,448 366 1,391

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table 6: Robustness: di�erence-in-di�erence 5-10 GWh vs. 10-20 GWh

OUTCOME alphaLB std err.

Panel A: Electricity use
Electricity use 0.026* (0.016)
Electricity share 0.002 (0.003)
Own electricity generation 0.002 (0.007)

Panel B: Competitiveness indicators
Employment 0.006 (0.007)
Sales 0.001 (0.013)
Export share -0.001 (0.003)
Investment -0.131 (0.237)
Obervations 3,585
Constant Yes

Note: Regression results for the di�erence-in-di�erence model 3 com-
paring the group of eligible treatment plants (5-10 GWh) to the group
of control plants (10-20 GWh). Each row corresponds to a separate re-
gression of the corresponding outcome variable on a treatment indica-
tor (eligible for EEG exemption in 2013). Outcome variables expressed
in log-di�erences 2013-2011, except shares, investment, and own elec-
tricity (level-di�erences 2013-2011). Unit of observation: plant. Ro-
bust standard errors reported in parentheses. p < 0.1 (*), p < 0.05
(**), p < 0.01 (***).
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8 Appendix

8.1 Additional �gures and tables

Figure A.1: Average electricity prices and EEG levy in the industry
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Notes: Average electricity prices in German industry and share of EEG levy
over time.

Figure A.2: Overlap: electricity
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Notes: Density distribution of log electricity for exempt plants and non-
exempt plants, without adjustment (Panel a), with trimming to 1-10 GWh
(Panel b), and with trimming and matching (Panel c).
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Figure A.3: Overlap: propensity score
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Notes: Overlap of the propensity score following Speci�cation (2). Main esti-
mator: nearest neighbor matching without replacement.
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Table A.1: Robustness: electricity & gas

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity 0.042* 0.038* 0.03 0.042*

(0.025) (0.02) (0.023) (0.024)
Gas -0.051 -0.055 -0.081 -0.046

(0.066) (0.055) (0.058) (0.059)
Own electricity generation -0.026* -0.022* -0.026* -0.019

(0.014) (0.012) (0.013) (0.013)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.013* 0.011** 0.013* 0.009

(0.008) (0.005) (0.007) (0.007)
Gas share in total energy -0.016 -0.015* -0.027** -0.015*

(0.01) (0.008) (0.009) (0.008)
Oil share in total energy -0.006 0.002 0.008 0.003

(0.005) (0.005) (0.006) (0.006)
Total CO2 emissions 0.02 0.017 0.012 0.03

(0.024) (0.018) (0.02) (0.022)
Direct CO2 emissions -0.056 -0.057 -0.063 -0.031

(0.056) (0.043) (0.047) (0.047)

Panel C: Competitiveness indicators
Employment -0.02 -0.028** -0.021 -0.033**

(0.017) (0.013) (0.018) (0.015)
Sales -0.006 -0.001 -0.023 -0.021

(0.028) (0.024) (0.031) (0.022)
Export share -0.021 -0.008 -0.012 -0.004

(0.016) (0.01) (0.012) (0.007)
Investment -0.09 -0.041 -0.012 -0.043

(0.138) (0.121) (0.165) (0.155)
Observations 696 1756 694 1745
# treated plants 348 348 346 327
# control plants 348 1,408 348 1,418

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table A.2: Results 2013-2012: Short-run impact of realized price changes

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity 0.026 0.027** 0.05* 0.041**

(0.017) (0.014) (0.026) (0.017)
Gas -0.044 -0.039 -0.034 -0.043

(0.044) (0.044) (0.058) (0.041)
Own electricity generation -0.004 -0.009 -0.013* -0.017***

(0.014) (0.007) (0.007) (0.006)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.012* 0.011** 0.02** 0.014**

(0.007) (0.005) (0.008) (0.006)
Gas share in total energy -0.015** -0.009* -0.014* -0.011**

(0.008) (0.005) (0.007) (0.005)
Oil share in total energy 0.007 0 -0.005 -0.003

(0.006) (0.004) (0.003) (0.003)
Total CO2 emissions 0.02 0.013 0.026 0.021

(0.017) (0.013) (0.022) (0.015)
Direct CO2 emissions -0.036 -0.051 -0.059 -0.062

(0.035) (0.033) (0.038) (0.03)

Panel C: Competitiveness indicators
Employment -0.02** -0.011 -0.005 -0.004

(0.01) (0.009) (0.009) (0.011)
Sales -0.027 -0.026* -0.01 -0.01

(0.017) (0.015) (0.019) (0.015)
Export share 0.011 0.006 0.009 0.011**

(0.008) (0.006) (0.007) (0.005)
Investment 0.006 0.131 0.067 0.023

(0.093) (0.113) (0.17) (0.099)
Observations 1,060 2659 1,058 2674
# treated plants 530 530 529 505
# control plants 530 2,129 529 2,169

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table A.3: Robustness: 5-10 GWh plants

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity 0.028 0.055* 0.079** 0.047**

(0.031) (0.032) (0.034) (0.023)
Gas -0.184* -0.111 -0.085 -0.082

(0.101) (0.079) (0.093) (0.083)
Own electricity generation -0.012 -0.002 -0.02 0.007

(0.033) (0.016) (0.019) (0.018)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0 0.001 -0.003 0.001

(0.009) (0.007) (0.008) (0.007)
Gas share in total energy -0.007 -0.016 -0.02 -0.021**

(0.013) (0.01) (0.015) (0.01)
Oil share in total energy 0.001 0.01 0.009 0.011

(0.009) (0.008) (0.01) (0.009)
Total CO2 emissions 0.007 0.035 0.06 0.04*

(0.033) (0.031) (0.037) (0.023)
Direct CO2 emissions -0.062 -0.067 -0.005 -0.029

(0.094) (0.058) (0.067) (0.064)

Panel C: Competitiveness indicators
Employment 0.006 0.01 0.01 0.007

(0.019) (0.017) (0.019) (0.015)
Sales -0.027 -0.009 0.006 -0.014

(0.037) (0.029) (0.032) (0.028)
Export share 0.001 -0.011 0.001 -0.006

(0.016) (0.011) (0.015) (0.009)
Investment -0.197 -0.193 -0.449* -0.209

(0.19) (0.169) (0.272) (0.214)
Observations 506 827 498 885
# treated plants 253 253 249 240
# control plants 253 574 249 645

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table A.4: Robustness: 3-digit grouping (WZ3)

Speci�cation 1 Speci�cation 2
(1) (2) (3) (4)

Matching algorithm 1:1 1:20
caliper 1:1 1:20

caliper

Panel A: Electricity and gas use
Electricity 0.075*** 0.051*** 0.034 0.043*

(0.024) (0.018) (0.034) (0.024)
Gas -0.086 -0.057 -0.057 -0.072

(0.063) (0.054) (0.075) (0.067)
Own electricity generation -0.012 -0.01 -0.02 -0.036**

(0.012) (0.011) (0.016) (0.014)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.012 0.01* 0.013 0.006

(0.008) (0.006) (0.009) (0.007)
Gas share in total energy -0.021** -0.006 -0.001 -0.008

(0.01) (0.007) (0.011) (0.009)
Oil share in total energy 0.008 0 -0.002 0.005

(0.008) (0.005) (0.009) (0.007)
Total CO2 emissions 0.058** 0.031** 0.007 0.033*

(0.023) (0.015) (0.028) (0.018)
Direct CO2 emissions -0.013 -0.029 -0.105** 0.005

(0.049) (0.041) (0.048) (0.047)

Panel C: Competitiveness indicators
Employment -0.016 -0.028** -0.03* -0.031**

(0.014) (0.011) (0.015) (0.012)
Sales -0.015 -0.014 -0.032 -0.023

(0.022) (0.018) (0.024) (0.018)
Export share -0.002 -0.009 0.017** 0.002

(0.009) (0.007) (0.008) (0.005)
Investment -0.108 -0.06 0.116 -0.026

(0.108) (0.093) (0.158) (0.119)
Observations 1,016 2545 1,008 1866
# treated plants 508 508 504 369
# control plants 508 2,037 504 1,497

Notes: Main outcome variables de�ned as log di�erences 2013-2011, except fuel
shares, and investment (level di�erences). Own electricity is a dummy variable
indicating a plant with own electricity production. Unit of observation is plant-
year. Speci�cation (1) is based on propensity score de�nition in Table A.9, while
Speci�cation (2) limits matches to be within the same industry sub-sector (Table
A.10). Columns 1 and 4 employ nearest neighbor matching without replacement.
Columns 2 and 5 use nearest neighbor matching with caliper (set to .25 of the
standard deviation) and replacement, and Columns 3 and 6 use a 1:20 matching
algorithm with caliper and replacement. Heteroskedasticity-consistent analytical
standard errors (Abadie and Imbens 2006) reported in parenthesis. * p<.1 ,** p<.05,
and ***p<.01.
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Table A.5: Robustness: Propensity Score (minimal speci�cation)

(1) (2)

Matching algorithm 1:1
caliper

1:20
caliper

Panel A: Electricity and gas use
Electricity 0.063*** 0.062***

(0.02) (0.014)
Gas -0.064 -0.044

(0.067) (0.049)
Own electricity generation -0.018 -0.008

(0.014) (0.009)

Panel B: Fuel inputs & carbon emissions
Electricity share in total energy 0.013* 0.009*

(0.007) (0.005)
Gas share in total energy -0.007 -0.011*

(0.007) (0.005)
Oil share in total energy -0.003 0

(0.006) (0.005)
Total CO2 emissions 0.046** 0.046***

(0.018) (0.013)
Direct CO2 emissions -0.041 0.008

(0.052) (0.036)

Panel C: Competitiveness indicators
Employment -0.015 -0.008

(0.014) (0.011)
Sales -0.009 -0.034**

(0.024) (0.017)
Export share 0.007 -0.001

(0.006) (0.004)
Investment -0.068 -0.166

(0.157) (0.125)
Observations 1,040 4163
# treated plants 564 564
# control plants 476 3,599

Notes: Main outcome variables de�ned as log di�erences 2013-2011,
except fuel shares, and investment (level di�erences). Own electricity
is a dummy variable indicating a plant with own electricity produc-
tion. Unit of observation is plant-year. Propensity score (matching)
based on minimum speci�cation: plants matched strict within sub-
sector on electricity-to-sales ratio in the year 2011. Columns 1 em-
ploys nearest neighbor matching with caliper (set to .25 of the stan-
dard deviation) and replacement and Column 2 uses a 1:20 match-
ing algorithm with caliper and replacement. Heteroskedasticity-
consistent analytical standard errors (Abadie and Imbens 2006) re-
ported in parenthesis. * p<.1 ,** p<.05, and ***p<.01.
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Table A.6: Robustness: Inference Propensity Score (1)

(1) (2)
Unweighted Weighted

Panel A: Electricity
EEG exempt 0.075** 0.078**

(0.029) (0.029)
Constant -0.100*** -0.101***

(0.014) (0.010)
Match Group FE Y Y
Observations 1,016 1,016

Panel B: Gas
EEG exempt -0.066 -0.088

(0.106) (0.110)
Constant 0.120* 0.148***

(0.052) (0.033)
Match Group FE Y Y
Observations 716 716

Panel C: Total CO2
EEG exempt 0.058* 0.057*

(0.028) (0.029)
Constant -0.049*** -0.046***

(0.014) (0.010)
Match Group FE Y Y
Observations 1,016 1,016

Note: Linear regression of log electricity, gas, and CO2
emissions on treatment dummy (EEG exempt in 2013)
and constant. Each regression is based on nearest neigh-
bor matching without replacement and includes match-
ing group �xed e�ects. Weights in Column 2 based on
matching. Robust standard errors clustered at the match-
ing group reported in parentheses. p < 0.1 (*), p < 0.05
(**), p < 0.01 (***).
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8.2 Policy change as natural experiment

As a robustness check, we exploit the exogenous shift in the eligibility criteria from 10 GWh

to 1 GWh in a classic di�erence-in-di�erences (DiD) framework, which yields an intention-to-

treat (ITT) estimate and provides us with a lower bound estimator for the ATT. As the change in

cuto� is policy induced, the DiD approach exploits a source of variation that is unrelated to �rms’

selection into treatment. To increase the similarity of treated and control plants, we focus on the

group of plants with 5-10 GWh annual electricity consumption in 2011, ‘treated’, and those with

10-20 GWh electricity consumption in 2011, as ‘control’ plants. While the treated group became

newly eligible from 2013 onwards, the control group consists of similar plants that have been

eligible already before that year so that their eligibility status does not change.

We identify the ITT by estimating α̂ITT from the following DiD regression:

Yit = αITTZit + θi + γt + εijt, (3)

where Yit denotes the outcome variable for plant i belonging in year t. We additionally include

time �xed-e�ects, γt and group �xed-e�ects θj; εit represents an idiosyncratic error term. Iden-

ti�cation rests on the common trends assumption which posits that outcome trends are the same

for the group of newly eligible plants and the group of control plants.

Figure A.4 assess the common trends assumption graphically and �nds supporting evidence

as the trends for both groups of plants are very similar prior to 2011. We formally test for the

di�erences in pre-treatment growth rates in the two-years leading up to the policy change (2011-

2010 and 2010-2009) in Table A.8. The table con�rms the graphical evidence and shows that the

growth rates are very similar. In fact, we only �nd a statistically di�erence between the two

groups in employment growth two years prior to the treatment, but not thereafter.

Table 6 lists the ITT estimates for electricity use and competitiveness indicators, which cor-

respond closely to the results that we have discussed in the main text. We �nd that the EEG levy

exemption leads to an increase in electricity use of 2.6% in the year following the exemption. In

line with this result, we �nd that the ITT on the electricity share in total energy use is positive,

yet not statistically signi�cant. Finally, we �nd that no ITT estimate on one of our competi-

tiveness indicators – including employment, sales, export share, and investment – is statistically

signi�cant.
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Figure A.4: Common trends: di�erence-in-di�erence (2 groups)
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Notes: Graphical analysis of parallel pre-treatment trends for the group of
newly eligible plants for the EEG levy exemption (5-10 GWh in 2011, treated)
and control group (10-20 GWh electricity consumption in 2011). Individual
variables are normalized with respect to the year 2011. The vertical line in-
dicates the EEG reform in 2012. A formal test for mean-di�erences in pre-
treatment growth rates 2011-2010 and 2010-2009 is given in Table A.8.
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Table A.8: Balance of covariates: di�erence-in-di�erence (groups)

Treat Control T-test
VARIABLE mean mean t-statistic p-value
Di�erences: 2011-2010
Electricity .056 .059 0.76 0.95
Sales .113 .114 -0.08 0.933
Employment .038 .041 -0.54 0.586
Wage .033 .032 0.30 0.762
Export share .005 .003 0.90 0.369

Di�erences: 2010-2009
Electricity .115 .104 0.85 0.394
Sales .145 .151 -0.73 0.466
Employment -.011 -.000 -2.59 0.01**
Wage .057 .055 0.74 0.460
Export share .004 .007 -1.05 0.292

Note: Pre-treatment di�erences for group of newly eligible plants for
EEG levy exemption (5-10GWh in 2011, treated) and control group
(10-20 GWh in 2011). All variables are in logs, except for shares. T-
test for equality of growth rates 2011-10 and 2010-09. * p<.1 ,** p<.05,
and ***p<.01.
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8.3 Propensity score estimates

Table A.9: Propensity score: logit model, Speci�cation (1)

Exempt 2013 beta std err.
Electricity 2011 3.005*** (0.556)
Electricity 2010 .680** (0.319)
Electricity 2009 .445* (0.259)
Electricity 2008 .348* (0.211)
Sales -.548** (0.239)
Employment .638 (0.923)
Wage 4.197 (3.255)
Electricity × electricity -.448** (0.173)
Sales × sales .015 (0.042)
Employment × employment -.341** (0.111)
Wage × wage -.855* (0.480)
Export share -.323 (0.675)
Export share × export share -.267 (0.868)
Constant Y
Observations 9,064
Pseudo R2 .42
2-digit sector FE 17

Note: Main dependent variable: EEG exempt 2013. Logit regression.
Sample trimmed to plants with 1-10 GWh electricity consumption in
2011. All dependent variables refer to the base year, 2011. Unit of
observation: plant. All variables are in logs, except for shares. Re-
gression controls for manufacturing sub-sectors with 2-digit speci�c
�xed-e�ects. * p<0.1, **p<0.05, and ***p<0.01.
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Table A.10: Propensity score: logit model, Speci�cation (2)

Exempt 2013 Sub-sector 1 Sub-sector 2 Sub-sector 3 Sub-sector 4 Sub-sector 5
Electricity 2011 1.897** 3.141*** 1.959* 1.514 1.626***

(0.952) (0.693) (1.143) (1.426) (0.318)
Electricity 2010 0.15 0.282 1.287 0.698 0.817**

(1.187) (0.509) (1.107) (1.853) (0.351)
Electricity 2009 0.079 -0.128 -0.238 -0.376 1.359***

(1.306) (0.481) (0.769) (1.424) (0.433)
Electricity 2008 0.376 -0.144 0.358 1.33 0.317

(1.079) (0.226) (0.87) (0.835) (0.376)
Sales 0.377** -1.139*** -2.229*** -0.456* -1.38***

(0.164) (0.206) (0.349) (0.246) (0.153)
Employment -2.46*** -1.422*** -0.736** -2.542*** -2.063***

(0.209) (0.216) (0.341) (0.327) (0.24)
Observations 1,419 1,881 973 867 4,069
Pseudo R2 0.4 0.3 0.4 0.35 0.51

Note: Main dependent variable: EEG exempt 2013. Logit regression. Sample trimmed to
plants with 1-10 GWh electricity consumption in 2011. All dependent variables refer to the
base year, 2011. Unit of observation: plant. All variables are in logs, except for shares. Each
column refers to a separate logit estimation of the propensity score (matches forced to be
within same sub-sector). Sub-sectors de�ned according to the mean energy intensity (orig-
inal WZ 2008 de�nition in parenthesis) sector 1: food (WZ 10,11), sector 2: chemicals &
pharmaceuticals (WZ 19,20,21,22), sector 3: paper & cement (WZ 17,23), sector 4: metal,
electrical equipment, machinery and cars (WZ 24,25,26,27,28,29,30,33), and sector 5: tex-
tiles, leather, wood processing and miscellaneous (WZ 13,14,15,16,18,31,32). BBGG algorithm,
bootstrapped standard errors in parentheses. * p<0.1, **p<0.05, and ***p<0.01.
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