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Abstract 

Recent advances have led to the discovery of specific genetic variants that predict 
educational attainment. We study how these variants, summarized as a linear index—
known as a polygenic score—are associated with human capital accumulation and how 
they interact with parental education by using novel genetic data available in the National 
Child Development Study (NCDS) and in the Millennium Cohort Study. We present two 
main sets of results. First, we show that the polygenic score is highly predictive of child 
development, parental investments, educational attainment, and health and socioeconomic 
outcomes since childhood until adulthood; the predictive power of the polygenic score for 
child cognitive development persists in two cohorts born decades apart, also conditional 
on parental genes. Second, we find evidence that the genetic factors measured by this score 
interact strongly with parental education in affecting human capital in the offspring. In 
particular, by exploiting exogenous variation in education induced by two schooling 
reforms announced in the Education Acts 1944 and 1962, we find that increasing parental 
education raised offspring human capital only for children with high genetic endowments. 
Our findings uncover a potential mechanism through which the interplay of genes and 
environments amplifies inequalities in human capital across generations.  

 
1. Introduction 

What determines a person’s human capital? Decades of economic research have 
investigated this question, with recent work focusing on the prenatal period and the first years 
of life (see for example the review by Almond et al., 2018). A key factor is believed to be the 
human capital of one’s parents: in particular, children of more educated parents tend to have 
better outcomes along a number of dimensions. However, while some recent evidence has 
shown causal impacts of maternal schooling on child and adolescent cognitive, 
socioemotional, and health development (Currie and Moretti, 2003; Carneiro et al., 2013; 
Lundborg et al., 2014), other work has shown more limited support for intergenerational 
spillovers of education (Black et al., 2005). The research to date has been limited, however, in 
its ability to investigate the interplay between parental education and offspring genes in 
affecting human capital development. 

In this paper we leverage the new availability of genetic data in the 1958 and in the 2000 
British cohorts, together with recent advances in genetics which have led to the discovery of 
specific genetic variants that predict educational attainment (Lee et al., 2018), which we 
summarize as a linear index, known as a polygenic score (PGS, Dudbridge 2013) – henceforth 
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EA3. We present two main sets of results. First, we show that the polygenic score is highly 
predictive of child development, parental investments, educational attainment, and health and 
socioeconomic outcomes since childhood until adulthood. More specifically, in the 1958 
British cohort the polygenic score explains 7%-8% of the variation in test scores for 
mathematics and reading comprehension at ages 11 and 16, and between 6% and 10% of the 
variation in completed education; its predictive power is comparable to that of maternal 
education; additionally, individuals with a higher polygenic score enjoy greater parental 
investments and better socioemotional development in childhood, and higher socioeconomic 
status and improved health in adulthood. In the 2000 British cohort, the polygenic score 
explains 3-4%of the variation in child cognitive development at ages 3 and 5, and 6% of its 
variation at age 7. Second, we find evidence that the genetic factors measured by this score 
interact strongly with parental education in affecting human capital in the offspring. More 
specifically, by exploiting exogenous variation in parental education induced by two schooling 
reforms announced in the Education Acts 1944 and 1962, we find that increasing parental 
education raised offspring human capital only for children with high genetic endowments. Our 
findings uncover both a potential source of heterogeneity which might reconcile different 
results in the literature on the intergenerational effects of parental education, and a potential 
mechanism through which inequalities in human capital might be amplified across generations. 

The remainder of the paper is structured as follows. Section 2 presents the new genetic 
data available in the 1958 British birth cohort, and the computation of the polygenic score. 
Section 3 presents the results on the predictive power of the polygenic score for childhood 
and adulthood outcomes. Section 4 presents the analysis of the interaction between parental 
education and the polygenic score in the 1958 cohort. Section 5 presents the genetic data, the 
computation of the polygenic score and its predictive power in the 2000 British cohort. Section 
6 presents the analysis of the interaction between parental education and the polygenic score 
in the 2000 cohort. Section 7 provides some preliminary conclusions. 
 
2. Genetic data in the 1958 birth cohort 

The National Child Development Study is a longitudinal study of about 17,000 babies born 
in Great Britain in the week 3-9 March 1958. The study started as the “Perinatal Mortality 
Survey” and surveyed the economic and obstetric factors associated with stillbirth and infant 
mortality. Since the first wave, cohort members have been followed up in nine other occasions: 
at age 7 (1965), 11 (1969), 16 (1974), 23 (1981), 33 (1991), 42 (2000), 44/45 (2002/3), 50 (2008), 
and 55 (2013); an age-62 sweep was in the field in January 2020, and has recently been resumed 
after a suspension due to the coronavirus pandemic. 

Blood samples were taken during the 2002/3 Biomedical Sweep, when the cohort 
members were 44-45 years old. They were asked for consent to collect blood, store blood, 
extract DNA, and culture cells. The consent rate was very high: 90% of the cohort members 
who participated in the biomedical sweep consented, which increases to 96% among those for 
whom a blood sample was taken. Consent is not associated with gender, and it is inversely 
associated with social class (both at birth and 42), with cohort members of a higher social class 
less likely to provide consent. 



From the blood samples, DNA was extracted using six different arrays2 in different labs in 
different years, primarily to carry out the work of the Wellcome Trust Case Control 
Consortium (WTCCC), of which the NCDS constituted one of the two control cohorts (the 
other being the National Blood Service cohort). The WTCCC was a pioneeristic consortium 
funded by the Wellcome Trust with the primary purpose to accelerate efforts to identify 
genome sequence variants influencing major causes of human morbidity and mortality (such 
as type 1 and type 2 diabetes, breast cancer, hypertension, multiple sclerosis), through 
implementation and analysis of large-scale genome wide association studies.  

To use the DNA of the NCDS cohort members in a consistent way, we first had to 
harmonise and combine the data collected using different partially-overlapping arrays with 
different genome builds. For this, we performed four different steps. First, we performed 
Quality Control (QC) checks on each single dataset using validated procedures established 
within the UCLEB consortium (Shah et al., 2013). Two datasets (Affymetrix v6 and Affymetrix 
500K) were found to have low quality and were discarded, without significant sample loss, 
since the same blood samples were often assayed using more than one array. In a second step, 
the remaining four datasets (Infinium HumanHap 550K v3, Infinium HumanHap 550K v1.1, 
Illumina Human 660-Quad, Illumina 1.2M) were harmonized and merged, and further QC 
checks were carried out. The harmonised data has a sample of size n=6,382 and contains 
504,924 SNPs. Plotting the first two principal components of the NCDS genetic matrix against 
the HapMap III data confirms that the NCDS sample is of European ancestry. In a third step, 
the merged data was submitted to the Michigan Imputation Server for imputation using the 
HRC reference panel. The imputation obtained was of a satisfactory quality. In a fourth and 
last step, the SNPs with top imputation quality (R-square 0.8 or above) and MAF >0.01 were 
retained, for a total of 7,550,647 SNPs. The polygenic score was constructed using PRSice, 
with the first 20 principal components of the genetic matrix already included in the scoring.3 
We constructed two versions of the score, with and without pruning (Dudbridge and 
Newcombe, 2015), and we standardized them (Figure 1); we did not perform p-value 
thresholding. The correlation between the scores with and without pruning is 0.725 (Figure 2). 

 
           Figure 1: histogram of PGSs with and without pruning         Figure 2: scatterplot of PGSs with and without pruning    

 
2 Infinium HumanHap 550K v3 (2,592 samples and 561,303 SNPs), Infinium HumanHap 550K v1.1 (1,436 samples 
and 555,174 SNPs), Illumina Human 660-Quad (871 samples, 582,892 SNPs), Illumina 1.2M (2,922 samples and 
1,157,986 SNPs), Affymetrix v6 (2,997 samples and 934,967 SNPs) and Affymetrix 500K (1,502 samples and 490,032 
SNPs). 
3 We are very grateful to Ayse Okbay from the University of Amsterdam for having provided us with the appropriate 
GWAS summary statistics (i.e. excluding the NCDS sample from the GWAS). 



3. The predictive power of the polygenic score for life course outcomes 
In this section we examine the predictive power of the polygenic score for various 

outcomes, starting from educational attainment. Lee et al. (2018) showed that the mean 
prevalence of college completion ranged from 10% for individuals in the bottom quintile of 
the PGS in both the AddHealth and the Health and Retirement Study (HRS), up to 50% in 
the HRS and 60% in the AddHealth for individuals in the top quintile of the PGS. We replicate 
these patterns perfectly in the NCDS. Figure 3 shows that the proportion of cohort members 
achieving a university degree or higher qualification ranges from 0.09 at the bottom quintile of 
the PGS to 0.42 at the top quintile; along the same lines, the proportion of cohort members 
who stayed on in education after the minimum compulsory school leaving age (MSLA) ranges 
from 0.15 at the bottom quintile of the PGS to 0.52 at the top quintile. On the other hand, 
interestingly there is no association between the polygenic score for education and the mean 
prevalence of starting school full-time before 5 years of age, which is 0.52 on average.  

 
Figure 3 Education by PGS quintiles 

Lee et al. (2018) also showed that the polygenic score explains between 6% and 
12% of the variation in different measures of education (high school and college 
completion, and years of education) in both the HRS and the AddHealth. We replicate 
also these results in the 1958 cohort: Figure 4 shows that the PGS for education explains 
6%-7% of the variation in post-compulsory education, 8%-10% of the variation in A-level 
or higher education, and 8% of the variation in degree or higher education. Lastly, Lee et 
al. (2018) showed that the polygenic score explains 2%-4% of the variation in cognition in 
the HRS, and 7%-12% of the variation in academic achievement in the AddHealth. Again, 
we are able to replicate these findings in the NCDS: Figure 5 shows that the polygenic 
score explains 7%-8% of the variation in test scores for mathematics and reading 
comprehension at ages 11 and 16. Additionally, Figure A1 in the Appendix reveals that the 
predictive power of the polygenic score for the Math Test at 11 is comparable to the 
predictive power of maternal education, and that it is substantial even on the top of 
significant predictors such as parental age, father social class, mother education, birth 
weight and smoking in pregnancy. 

 



 
Figure 4 Predictive power of the PGS for Educational Outcomes 

 
Figure 5 Predictive power of the PGS for Cognitive Development 

Lastly, Figure 6 shows that the polygenic score for education is also predictive of socioemotional 
development (measured by the teacher-reported Bristol Social Adjustment Guide, BSAG; left 
panel) and parental investments (reading to the child and going out with the child, left panel) at 
age 11; and of health and socioeconomic outcomes since age 23 until age 55. This is the first 
evidence of the wide predictive power across the life course of the polygenic score for education 
in a UK population (see Belsky et al. 2016 for evidence based on a cohort from New Zealand).  
 

 
Figure 6 Predictive power of the PGS for Child (left) and Adult (right) outcomes 

Note: BSAG=Bristol Social Adjustment Guide (standardized factor). All outcomes in the right panel are 
standardized for ease of comparison. 



4. Maternal education, genes, and inequalities in offspring human capital 
After having shown in the previous section that the polygenic score for education is 

significantly associated with a variety of outcomes since childhood until adulthood, in this section 
we examine its interaction with maternal education. For identifying the causal impact of parental 
education on child outcomes, we use the reform brought about by the Education Act of 1944, 
which raised the minimum school leaving age from 14 to 15 in April 1947 (Oreopoulos, 2006; Clark 
and Royer, 2013; Lindeboom et al., 2009). We use regression discontinuity techniques with a fuzzy 
design, since the school leaving age does not deterministically depend on exposure to the reform; 
however, exposure to the reform depends on the year of birth. Specifically, the first cohort of 
parents which is affected by the reform is that born in 1934; hence, we restrict the NCDS sample 
to mothers born in a five-year window (1931-1932 and 1934-1935), and we exclude 1933 to avoid 
possible misclassification.4 In this subsample, the first stage is very strong, with mothers to the 
right of the cutoff ending up acquiring one year or more of education, as shown in Column 1 of 
Table 1. In columns 2 and 3 of Table 1 we then show that there is no association between being 
exposed to the reform and the child having a PGS above the median, or the mother’s father being 
of a high social class – attenuating the concerns that there might be compositional differences at 
the two sides of the cutoff. Lastly, in column 4 of Table 1 we construct a “placebo reform” 
indicator, which takes value one if the mother is born in 1936-1937 and 0 if born in 1933-1934 
(hence shifting the reform by two years): reassuringly, we find no association between this placebo 
reform and the age at which the mother left full-time education. 
 

Table 1: Education Act 1944 Reform and Mother Educational Attainment 

 
Note: Sample restricted to mothers born in 1931, 1932, 1934, 1935 in columns (1)-(3), and in 1933, 1934, 1936, 1937 in column 
(4). Child high EA3 PGS is a binary indicator taking value 1 if the EA3 PGS is above the median. “ROSLA” (Reform of School 
Leaving Age) is a binary indicator which takes value 1 if the mother is born 1934-1935, 0 if born 1931-1932. “Placebo ROSLA” is 
a binary indicator which takes value 1 if the mother is born 1936-1937, 0 if born 1933-1934. Models also include mother’s age, and 
binary indicators for the region of birth (there are 12 regions). Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1. 
 
We then proceed by estimating the reduced form impacts of the reform via a linear specification 
by Ordinary Least Squares, whereby we regress different indicators for child human capital on the 

 
4 We restrict this analysis to mothers since very few fathers were born in the relevant window. 

Outcome:
Age left FT 
Education

Child high EA3 
PGS

Mother's father 
is high Social 

Class
Age left FT 
Education

(1) (2) (3) (4)

ROSLA 0.900*** -0.001 0.052

(0.251) (0.043) (0.043)

Placebo ROSLA 0.090

(0.224)

Controls Yes Yes Yes Yes

Observations 1,234 1,378 1,378 1,059

R-squared 0.032 0.026 0.018 0.019



ROSLA binary indicator, controlling for maternal age at birth and region fixed effects. The main 
results are reported in Table 2. The top panel shows that there is no effect of parental education 
on three indicators of child human capital – whether the child started full-time school before age 
5, a composite indicator for child cognitive development at ages 7 and 11 and a composite measure 
of child educational attainment at age 16 – across the whole sample. However, when we split the 
sample by the median of the polygenic score, we find that the children of the mothers exposed to 
the reform are, on average, 21.5 p.p. more likely to start school earlier, and have roughly half a 
standard deviation higher cognitive development across childhood and adolescence; no effects are 
uncovered for children at genetic risk of low education. The bottom panel of Table 2 shows that 
no significant impact is detected when we use instead the placebo reform. 
 

Table 2: Reform and Child Human Capital – Main Effects, Heterogeneity by Genes & Placebo 

 
Note: Sample restricted to mothers born in 1931, 1932, 1934, 1935 in the top panel, and in 1933, 1934, 1936, 1937 in the bottom 
panel. Child Cognitive Development at ages 7 and 11 is a standardized Bartlett score from the factor analysis of the following seven 
tests: the Copy Design, Math and Reading Tests at age 7, and the British Ability Scales (Verbal and Non-Verbal), the Southgate 
Reading and the Math Test at age 11. Child Educational Attainment at age 16+ is a standardized Bartlett score from the factor 
analysis of reading and math tests at age 16, teacher’s assessment of the child being of A-level and above ability (across different 
domains), and whether the cohort member has achieved A-level or above education. Child low/high EA3 PGS is a binary indicator 
taking value 1 if the EA3 PGS is below/above the median. “ROSLA” is a binary indicator which takes value 1 if the mother is 
born 1934-1935, 0 if born 1931-1932. “Placebo ROSLA” is a binary indicator which takes value 1 if the mother is born 1936-1937, 
0 if born 1933-1934. Models also include mother’s age, and binary indicators for the region of birth (there are 12 regions). Robust 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 
While the results from the 1958 cohort are corroborated by the placebo reform check, they have 
a couple of key limitations. First, identification of the reform’s impacts relies on variation across 
cohorts, so its effect might be confounded by other influences which might have affected cohorts 
born in the same years. Second, while child genes are predetermined, they are not exogenous, so 
the interaction with the PGS might confound interactions with other correlated traits (for example, 
with parental cognitive ability or PGS). Recent work has shown the importance of controlling for 
parental genetic influences (even non-transmitted ones) not to over-estimate the importance of 
child genes (see for example Kong et al., 2018). For this reason, we validate our NCDS analysis 
using data from the MCS, which has collected DNA from both children and their parents. 
 
 
 

Outcome: Started FT school before age 5 Child Cognitive Development 
(Ages 7 and 11)

Child Educational Attainment 
(Age 16+)

Sample All Child low 
EA3 PGS

Child high 
EA3 PGS All Child low 

EA3 PGS
Child high 
EA3 PGS All Child low 

EA3 PGS
Child high 
EA3 PGS

ROSLA 0.102 -0.021 0.215* 0.179 -0.161 0.484** 0.285 0.038 0.524*
(0.081) (0.114) (0.117) (0.167) (0.233) (0.233) (0.189) (0.242) (0.277)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,441 750 691 1,301 676 625 1,030 525 505
R-squared 0.074 0.087 0.074 0.023 0.015 0.043 0.047 0.034 0.074

Placebo ROSLA 0.061 0.121 0.034 -0.177 -0.177 -0.183 0.109 0.097 0.081
(0.086) (0.117) (0.128) (0.190) (0.255) (0.280) (0.202) (0.263) (0.302)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,220 672 548 1,083 599 484 880 479 401
R-squared 0.109 0.107 0.134 0.010 0.014 0.019 0.026 0.027 0.043



5. Genetic data and polygenic scores in the Millennium Cohort Study 
The UK Millennium Cohort Study follows the lives of ~19,000 children born in the UK in 2000-
01. Seven sweeps carried out so far: 9 months, 3y, 5y, 7y, 11y, 14y, 17y. Rich information on child 
cognitive, behavioural and health development, parental investments and family characteristics; 
linkage with administrative records on health and educational attainment (National Pupil 
Database). Saliva samples from cohort members and their biological parents were collected at the 
age 14y sweep. DNA extraction, assay (using Illumina GSA), cleaning, QC, and imputation were 
conducted at the University of Bristol (see Fitzsimons et al. 2020 for details). The DNA data 
available on approximately 4,500 complete trios. We constructed the EA3 PGS for both parents 
and children using the same scoring procedure as for the NCDS (we plot the histograms in Figure 
7). Figures 8, 9 and 10 show the scatterplots with fitted regression lines of the PGSs of, 
respectively, the child-mother pair, the child-father pair, and the father-mother pair; the 
correlations of the PGSs for the first two pairs are 0.55 and 0.57 respectively, while the correlation 
between the mother and the father PGSs is 0.15—showing a modest degree of genetic assortative 
mating. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Table 3 we show the predictive power of the EA3 PGS for child cognitive development at ages 
3, 5 and 7. We construct indicators for child development via factor analysis with Bartlett scoring, 
using the following tests: the Bracken Colours, Shapes and Letters tests at age 3, the British Ability 
Scales Naming Vocabulary, Picture Similarity and Patterns Comprehension Ability Scores at age 
5;  and the BAS Word Reading and Patterns Comprehension Ability Scores and the NFER math 
scores at age 7. The results show that the EA3 PGS is strongly predictive of child cognitive 

Figure 7: Histograms of EA3 PGS for MCS trio Figure 8: Scatterplot of EA3 PGS for mother-child pair  

Figure 9: Scatterplot of EA3 PGS for father-child pair  Figure 10: Scatterplot of EA3 PGS for father-mother pair  



development: children with 1SD higher PGS have between 0.21 and 0.32 SD higher cognitive 
scores; the proportion of explained variation ranges from 4% at age 3 to 6% at age 7. Interestingly, 
these associations are stronger than those reported in Houmark et al. (2020), who use data from 
the Avon Longitudinal Study of Parents and Children (ALSPAC) – a cohort of children born in 
the Bristol area in 1990. Additionally, the associations between child genes and their cognitive 
development are still of sizable magnitude and significant after controlling for the parental PGSs, 
and also for parental education (Table 3), while in Houmark et al. (2020) they are reduced in 
magnitude and driven to insignificance when controlling for parental genes. This might be 
indicative of different channels through which genes might affect child development. 
 

Table 3: Genes and Child Development in the MCS 

 
Note: Results from ordinary least squares models, each column presents results for a separate regression. Child Cognitive 
Development is a standardized Bartlett score obtained from the factor analysis of: the Bracken Colours, Shapes and Letters test at 
age 3;  the British Ability Scales Naming Vocabulary, Picture Similarity and Patterns Comprehension Ability Scores at age 5;  the 
BAS Word Reading and Patterns Comprehension Ability Scores and the NFER math scores at age 7. Child/Father/Mother EA3 
PGS are standardized with mean 0 and SD 1. A-Level + is a binary indicator which takes value 1 if the father/mother obtained an 
educational qualification at A-Level or above. Sample only includes individuals with European ancestry. Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 
6. Paternal education, genes, and inequalities in offspring human capital 
For identifying the causal impact of parental education on child outcomes, we use the reform 

brought about by the Education Act 1962, which in Chapter 12 “School leaving dates in England 
and Wales” states that (i) those born from the beginning of September until the end of January 
have to stay at school until “the end of the appropriate spring term” (ii) those born on or after the 
beginning of February but before the end of the summer term have to stay at school “until the 
end of that summer term”. This reform affected the cohorts born after 1 September 1957, and has 
been rarely exploited in the literature (one exception is Del Bono and Galindo-Rueda, 2004). 
We select cohorts born 1958 to 1972 (as on 1 September 1972 the Minimum School Leaving Age 
was further increased from 15 to 16 years of age), over a 6-month window from November to 
April. Approximately 80% of fathers and 60% of mothers in our sample are selected; 
unfortunately, there is no first stage for the mothers, so we are left working with the sample of 
fathers. The treatment group is defined as those fathers born February-April (as they need to stay 
on in school until the end of the summer term), while the control group is comprised of those 
fathers who are born November-January (as they can leave school at the end of the spring term). 
 The first stage results are shown in Table 4. Columns 1 and 2 show that fathers exposed 
to the reform are 7.5 p.p. more likely to acquire A-level education or above (col. 1), a result which 

Outcome Child Cognitive Development Age 3 Child Cognitive Development Age 5 Child Cognitive Development Age 7

Child EA3 PGS 0.259*** 0.204*** 0.171*** 0.142*** 0.212*** 0.167*** 0.130*** 0.114*** 0.324*** 0.271*** 0.270*** 0.245***
(0.017) (0.023) (0.038) (0.037) (0.015) (0.019) (0.032) (0.031) (0.016) (0.021) (0.036) (0.036)

Mother EA3 PGS 0.080*** 0.045 -0.029 0.082*** 0.074*** 0.011 0.086*** 0.083*** 0.005
(0.022) (0.032) (0.033) (0.019) (0.027) (0.028) (0.021) (0.030) (0.030)

Father EA3 PGS 0.021 -0.033 0.006 -0.045 0.016 -0.051
(0.032) (0.033) (0.027) (0.028) (0.032) (0.032)

Child is a boy -0.318*** -0.134*** -0.067
(0.050) (0.041) (0.046)

Mother A-Level + 0.327*** 0.301*** 0.338***
(0.056) (0.045) (0.053)

Father A-Level + 0.367*** 0.307*** 0.420***
(0.055) (0.044) (0.051)

Observations 5,659 4,914 2,391 2,331 6,257 5,414 2,598 2,536 5,956 5,155 2,509 2,447
R-squared 0.040 0.041 0.027 0.088 0.033 0.036 0.028 0.080 0.064 0.065 0.071 0.128



holds when controlling for the paternal PGS (col. 2). Columns 3-5 show that exposure to the 
reform is not associated with any member of the trio (child, father, mother) having a high PGS  
 

Table 4: Reform and Father Educational Attainment 

 
Note: Sample restricted to cohorts born 1958-1973. Columns (1)-(6) includes fathers born November-April; column (7) includes 
fathers born February-July. A-Level or Above is a binary indicator which takes value 1 if the father obtained an educational 
qualification at A-Level or above. Child/Father/Mother high EA3 PGS are binary indicators taking value 1 if the EA3 PGS is 
above the median. “Father Born Feb-Apr” is a binary indicator which takes value 1 if born Feb-Apr, 0 if born Nov-Jan. Father 
EA3 PGS is standardized with mean 0 and SD 1. “Father Born May-July” is a binary indicator which takes value 1 if born May-
July, 0 if born Feb-April. Models also include binary indicators for the year of birth and the region. Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 Table 5: Reform and Child Human Capital – Controlling for Genes  

  
Note: Sample restricted to cohorts born 1958-1973 and to fathers born November-April in England and Wales. Child Cognitive 
Development is a standardized Bartlett score obtained from the factor analysis of the age 3 Bracken Colours, Shapes and Letters 
test, the age 5 British Ability Scales Naming Vocabulary, Picture Similarity and Patterns Comprehension Ability Scores, the age 7 
BAS Word Reading and Patterns Comprehension Ability Scores and the age 11 BAS Verbal Similarities Ability Scores. 
Child/Father/Mother EA3 PGS are standardized with mean 0 and SD 1. “Father Born Feb-Apr” is a binary indicator which takes 
value 1 if born Feb-Apr, 0 if born Nov-Jan. Models also include binary indicators for the year of birth and the region. Robust 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Outcome: A-Level or Above Child high 
EA3 PGS

Father 
high EA3 

PGS

Mother 
high EA3 

PGS

A-Level or 
Above

A-Level or 
Above

(1) (2) (3) (4) (5) (6) (7)

Father Born Feb-Apr 0.075** 0.081** 0.033 0.022 -0.012 0.019
(0.033) (0.032) (0.032) (0.033) (0.034) (0.058)

Father EA3 PGS 0.128***
(0.015)

Father Born May-July -0.045
(0.034)

Controls Yes Yes Yes Yes Yes Yes Yes

Sample (geography) England
+Wales

England
+Wales

England
+Wales

England
+Wales

England
+Wales Scotland + NI England

+Wales
Sample (birth months) Nov-Apr Nov-Apr Nov-Apr Nov-Apr Nov-Apr Nov-Apr Feb-July

Observations 944 928 993 938 860 310 956
R-squared 0.051 0.110 0.036 0.035 0.052 0.055 0.041

Outcome Child Cognitive Development

Father Born Feb-Apr 0.167*** 0.141** 0.183*** 0.164**
(0.064) (0.062) (0.070) (0.069)

Child EA3 PGS 0.253*** 0.197***
(0.032) (0.051)

Mother EA3 PGS 0.147*** 0.050
(0.036) (0.044)

Father EA3 PGS 0.105*** 0.009
(0.036) (0.044)

Controls Yes Yes Yes Yes
Observations 838 836 699 698
R-squared 0.045 0.112 0.090 0.108



(above the median of the sample distribution); hence, like done for the NCDS, we rule out 
compositional effects by genes. Columns 6 and 7 carry out placebo tests, using the smaller sample 
for Scotland and Northern Ireland (given that the reform was only implemented in England and 
Wales), and constructing a placebo reform by shifting its timing by 3 months (so that fathers born 
February-April are now in the control group and those born May-July are in the treated group), 
respectively; reassuringly, we detect no significant impacts in columns 6 and 7. 
The main results for the whole sample are displayed in Table 5: the children of fathers affected by 
the reform have higher cognitive development (a composite indicator across ages 3, 5, 7 and 11) 
by 0.14-0.18 SD, even conditional on child and parental genes. When we then split the sample at 
the median of the child PGS distribution, we see that – like for the NCDS – the effect of paternal 
education on child cognitive development is more than twice in magnitude and statistically 
significant only for the children with high genetic endowments (table 6). Lastly, a placebo test 
validates our results (Table 7).  
 

Table 6: Reform and Child Human Capital – Heterogeneity by Genes 

 
Note: Sample restricted to cohorts born 1958-1973 and to fathers born November-April in England and Wales. Child Cognitive 
Development is a standardized Bartlett score obtained from the factor analysis of the age 3 Bracken Colours, Shapes and Letters 
test,  the age 5 British Ability Scales Naming Vocabulary, Picture Similarity and Patterns Comprehension Ability Scores,  the age 7 
BAS Word Reading and Patterns Comprehension Ability Scores and the age 11 BAS Verbal Similarities Ability Scores. Child high 
EA3 PGS is a binary indicator taking value 1 if the EA3 PGS is above the median. “Father Born Feb-Apr” is a binary indicator 
which takes value 1 if born Feb-Apr, 0 if born Nov-Jan. Child/Father/Mother EA3 PGS are standardized with mean 0 and SD 1. 
Models also include binary indicators for the year of birth and the region. Robust standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. 

Table 7: Placebo – Heterogeneity by Genes 

 
Note: Sample restricted to cohorts born 1958-1973 and to fathers born February-July in England and Wales. Child Cognitive 
Development is a standardized Bartlett score obtained from the factor analysis of the age 3 Bracken Colours, Shapes and Letters 
test,  the age 5 British Ability Scales Naming Vocabulary, Picture Similarity and Patterns Comprehension Ability Scores,  the age 7 
BAS Word Reading and Patterns Comprehension Ability Scores and the age 11 BAS Verbal Similarities Ability Scores. Child high 
EA3 PGS is a binary indicator taking value 1 if the EA3 PGS is above the median. “Father Born May-July” is a binary indicator 
which takes value 1 if born May-July, 0 if born Feb-April. Models also include binary indicators for the year of birth and the region. 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Outcome Child Cognitive Development
Sample Child high EA3 PGS Child low EA3 PGS

Father Born Feb-Apr 0.179** 0.154* 0.219** 0.196** 0.274** 0.079 0.086 0.109 0.114 0.101
(0.085) (0.082) (0.094) (0.093) (0.106) (0.099) (0.097) (0.109) (0.108) (0.093)

Child EA3 PGS 0.261*** 0.219*** 0.189** 0.257*** 0.168 0.201***
(0.064) (0.081) (0.075) (0.084) (0.110) (0.068)

Mother EA3 PGS 0.107* 0.035 0.022 0.098* 0.058 0.084
(0.056) (0.064) (0.066) (0.058) (0.061) (0.059)

Father EA3 PGS 0.097* 0.033 -0.026 0.006 -0.035 -0.020
(0.057) (0.060) (0.095) (0.064) (0.069) (0.093)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 469 469 389 389 335 367 367 309 309 363
R-squared 0.075 0.106 0.113 0.129 0.168 0.090 0.114 0.098 0.105 0.117

Outcome Child Cognitive Development

Sample All
Child high EA3 

PGS
Child low EA3 

PGS
Father Born May-July -0.091 -0.155 -0.197

(0.112) (0.136) (0.200)

Control Yes Yes Yes
Observations 261 169 92
R-squared 0.061 0.097 0.316



7. Preliminary conclusions 
In this paper we have leveraged on the novel availability of genetic data in the 1958 and in the 

2000 British birth cohorts and in recent advances in genetics to study how specific genetic variants, 
summarized as a linear index—known as a polygenic score—are associated with human capital 
accumulation and how they interact with paternal education. We have presented two main sets of 
results. First, we have shown that the polygenic score is highly predictive of child development, 
parental investments, educational attainment, and health and socioeconomic outcomes since 
childhood until adulthood; the predictive power of the polygenic score for child cognitive 
development persists in two cohorts born decades apart, also conditional on parental genes. 
Second, we have found evidence that the genetic factors measured by this score interact strongly 
with parental education in affecting human capital in the offspring. In particular, by exploiting 
exogenous variation in education induced by two schooling reforms announced in the Education 
Acts 1944 and 1962, we have found that increasing parental education raised offspring human 
capital only for children with high genetic potential. Our findings have uncovered a potential 
mechanism through which the interplay of genes and environments amplifies inequalities in human 
capital across generations. 
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Appendix

 
Figure A1 Predictive Power of the Education Polygenic Score for the Math Test at Age 11 

Note: “Controls” include father and grandfather social class, maternal education, parental age, birth weight and 
smoking in pregnancy.  


