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Abstract

There is an emerging consensus that teachers impact multiple student outcomes, but
it remains unclear how to summarize these multiple dimensions of teacher effectiveness
into simple metrics that can be used for research or personnel decisions. Here, we
discuss the implications of estimating teacher effects in a multidimensional empirical
Bayes framework and illustrate how to appropriately use these noisy estimates to assess
the dimensionality and predictive power of the true teacher effects. Empirically, our
principal components analysis indicates that the multiple dimensions can be efficiently
summarized by a small number of measures; for example, one dimension explains over
half the variation in the teacher effects on all the dimensions we observe. Summary
measures based on the first principal component lead to similar rankings of teachers
as summary measures weighting short-term effects by their prediction of long-term
outcomes. We conclude by discussing the practical implications of using summary
measures of effectiveness and, specifically, how to ensure that the policy implementation
is fair when different sets of measures are observed for different teachers.
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I Introduction

Measuring teacher effects has been of longstanding importance in both research and policy.

Accurately measuring teachers’ impact, often referred to as their value-added, is critical,

as these measures are often tied to promotion and retention decisions, and value-added

measures are used to answer a wide range of research questions.1 A growing body of work

now documents that teacher effects extend beyond traditional measures of test score effects,

with teachers influencing outcomes such as attendance and student behavior (Gershenson

(2016); Jackson (2018); Kraft (2019); Liu and Loeb (2019); Petek and Pope (2018)). Fur-

thermore, teachers who are effective at increasing test scores are not necessarily effective at

improving socio-emotional skills, so traditional test score value-added does not necessarily

identify the “best” teachers.

While there is an emerging consensus that teacher effects are multidimensional, it is

not clear how to best measure teacher effectiveness or summarize the many dimensions of

effectiveness into simple metrics that can be used for personnel decisions. This is especially

challenging given that not all measures are observed for all teachers; for example, not all

teachers teach in grades with an end-of-year test. In this paper, we discuss the challenges and

implications of estimating teacher value-added in a multidimensional framework, develop

approaches for constructing summary measures of teacher effects, and present results on the

dimensionality of teacher effects and summary measures. We also propose a new way to use

value-added measures in practice which ensures that teachers are not unfairly advantaged

or disadvantaged based on which set of outcomes or measures are observed.

We consider two broad approaches for summarizing teacher effects when their effects

are multidimensional. These approaches seek to balance decisionmakers’ goals of identifying

teachers’ true effectiveness with practical evaluation limitations. First, we consider how to

optimally reduce the dimensions of short-term effectiveness on which teachers are evaluated

1For example, Dinerstein et al. (2021) use value-added estimates to measure human capital depreciation;
Opper (2019) uses value-added measures to estimate endogenous peer effects; and Jackson and Bruegmann
(2009) use value-added measures to estimate how teachers learn from each other.
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while minimizing information loss. For this, we use principal components analysis of teacher

effects on short-term outcomes to estimate dimensions of teacher effects and create summary

measures. Second, we consider a case where a decisionmaker wants to evaluate teachers

based on their long-term effects. For this, we examine how to weight short-term measures

of effectiveness to optimally predict long-term effectiveness.

While the two approaches are conceptually straightforward, implementing either one is

complicated by the fact that each dimension of teacher effectiveness is estimated with noise.

Furthermore, the different measures may have different amounts of noise, and both the error

with which each dimension of effectiveness is estimated and the true effects are correlated

across the dimensions. We therefore start with a discussion of the practical implications

of using a multidimensional empirical Bayes framework to estimate teacher effects. While

we are not the first to apply this framework for estimation of value-added models, there

are several important implications for estimation and inference that deserve discussion and

which help in the interpretation of our empirical results.

We discuss, for example, how the standard intuition that value-added measures are sim-

ply “shrunken” versions of the raw estimates breaks down in a multidimensional setting.

Multidimensional empirical Bayes estimates will incorporate information about the esti-

mates of all the other dimensions. This means that the best estimate of a teacher’s impact

on test scores, for example, will include information about the teacher’s estimated impact

on attendance. The magnitude and direction of the weights placed on the other dimensions,

such as attendance, depend on the relative covariances of the true measures versus the error

terms. Whether the test score empirical Bayes estimate is shrunk towards or away from the

attendance estimate depends on both the correlation of the true effects and the correlation

of their error terms. Thus, even if teachers who increase attendance also tend to increase

test scores, the multidimensional empirical Bayes estimates for test scores may put negative

weight on the teachers’ estimated effect on attendance if the error terms are also positively

correlated.

We then discuss how to use estimates from the multidimensional empirical Bayes frame-
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work to derive estimates of 1) the principal components, and 2) the relationship between the

short-term effects and long-term effects, which converge to the same parameters as those

generated from the true measures of teacher effectiveness. In this discussion, we explain

why doing principal components analysis on the empirical Bayes estimates is different (and

less preferred) than computing empirical Bayes estimates of the principal components. We

also show that multidimensional empirical Bayes estimates can be used as regressors to

uncover the true relationships between the measures and outcomes of interest, a fact that

is well-known in the single dimension case where the empirical Bayes is a shrunken version

of the noisy estimate.

We apply these techniques to estimate and summarize the effects of thousands of New

York City teachers. In doing so, we find three main empirical results. First, we show

that more than half of the variation in teacher effects on the outcomes we observe can be

captured with one dimension. Four dimensions capture nearly all the variation in teacher

effects on the six to eight outcomes we examine. While the first dimension is essentially an

average of all observed outcomes, the second dimension separates teacher effects on grades

from effects on test scores. The remaining two dimensions are more difficult to interpret,

although for elementary school teachers one of the dimensions appears to separate effects on

math achievement from those on English Language Arts (ELA) achievement. We also show

that the short-term measures can explain 27% to 48% of the variation in teacher effects on

their students’ probability of graduating high school on time.

Second, we examine three approaches for combining short-term measures of effectiveness

to create summary measures and show that teacher ratings are very similar across these

approaches. For this, we consider three ways to weight the short-term measures. These

weights are based on 1) the eigenvalue of the first principal component, 2) coefficients from

a regression of high school graduation rates on the four main principal components, and

3) coefficients from a regression of graduation rates on estimates of teacher effects on each

individual outcome. Each dimension of effectiveness (or student outcome) receives similar

weight across these three approaches. Weights, and resulting summary measures, are, how-
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ever, sensitive to properly accounting for noise in observed teacher measures; ignoring the

noise with which teacher teacher effects are estimated or the covariance of the measures of

teacher effects leads to noticeably different estimates.

Third, we show that teacher rankings across the three summary measures are very highly

correlated. They are also highly correlated with teacher rankings from traditional non-

test score measures of value-added. While test score value-added measures are positively

correlated with these other measures of teacher effects, there is noticeable information loss

when only relying on test scores. In addition, there is little overlap in the teachers who are at

the bottom 5% in terms of the summary measures and test score value-added.2 Thus, which

measures are used for evaluation can have important implications for individual teachers.

Finally, we discuss extensions that allow for computing value-added when different mea-

sures are observed for different teachers. In particular, we show how one can compute mea-

sures of teacher effectiveness on a set of dimensions even if the teacher is missing data for

those outcomes using information about the teacher’s estimated effects on other outcomes

and the estimated covariance of teacher effects across all dimensions. In practice this is

often necessary, as the likelihood that one can estimate teacher effects on all dimensions

diminishes as the number of dimensions increases. While this approach allows researchers

to generate value-added estimates on the full set of outcomes, using these outcomes for

policy without acknowledging their uncertainty will generally result in policies that un-

fairly advantage or disadvantage teachers depending on how many measures are observed.

We therefore conclude by illustrating that explicitly accounting for the uncertainty in the

value-added estimates enables one to guarantee that the resulting policy is fair.

This paper combines two important strands of the literature on teacher value-added.

The first focuses on how to use imprecise measures of teachers’ impacts on student test

scores to evaluate teachers. This perspective led to the development of one-dimensional

empirical Bayes estimation of teacher value-added (e.g., Kane and Staiger (2008); Chetty

et al. (2014a)) and the design of teacher evaluation systems that aim to optimally combine

2This is consistent with existing research, e.g., Jackson (2018) and Petek and Pope (2018).
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teacher value-added measures with other measures of teacher practice, such as principal

ratings (e.g., Mihaly et al. (2013); Bacher-Hicks et al. (2020)). This strand, however, focuses

exclusively on teachers’ ability to improve students’ test scores. More recent papers suggest

that the focus on test scores may be insufficient, showing that teachers impact non-test

score outcomes, that some teachers are better at improving non-test score outcomes than

test score outcomes (and vice versa), and that the teachers’ effect on non-test score outcomes

are more predictive of the teachers’ effect on students’ long-term outcomes than the teachers’

effect on test scores (e.g., Gershenson (2016); Jackson (2018); Kraft (2019); Liu and Loeb

(2019); Petek and Pope (2018)). Since they build on prior research, however, these papers

generally separate the outcomes into traditional test score value-added and other measures,

rather than focusing on how best to combine the various measures for evaluation or research.

While we are by no means the first to implement a multidimensional empirical Bayes

framework, we hope to provide readers with a better understanding of the practical impli-

cations of using such a model, regardless of whether it is used to estimate teacher quality

(e.g., Jackson (2018); Kraft (2019)), school quality (e.g., Beuermann and Jackson (2020);

Abdulkadiroglu et al. (2020); Angrist et al. (2020)), hospital quality (e.g., Hull (2020)), or

county effects (e.g., Chetty and Hendren (2018)). Much of the discussion about empirical

Bayes estimates centers on them being “shrunken” versions of the raw estimates. While

this is true in the single-dimension setting, in the multidimensional setting this intuition is

no longer sufficient. In writing the paper, the authors gained a much better understanding

of how the empirical Bayes estimates are constructed in a multidimensional setting and we

hope that in reading the paper, other researchers do as well.

The paper proceeds as follows: Section 2 presents the conceptual framework and data;

Section 3 describes the analytic approach; Section 4 presents the empirical Bayes estimates

and the results on how well the effects can be summarized with a lower dimensional vector;

Section 5 discusses the practical implications the results have for teacher evaluation; Section

6 focuses on the implementation challenges that occur when not all measures are observed

for all teachers; Section 7 concludes.
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II Conceptual Framework and Data

II.A Conceptual Framework

We start by assuming there are K observed student outcomes of interest. These outcomes

can include student test scores, as well as other important outcomes such as students’ at-

tendance, behavior, self-efficacy, graduation rates, post-secondary attainment, and earnings

(Bacher-Hicks et al. (2019, 2020); Chamberlain (2013); Chetty et al. (2014a,b); Gershenson

(2016); Gershenson et al. (2018); Jackson (2018); Kraft (2019); Ladd and Sorensen (2017)).

We denote the effect that teacher j would have on student i’s kth outcome in year t if she

taught him as Θk
j,t and the full vector of effects as Θj,t. Thus, if we randomly switched

student i from teacher j to teacher j′, we would expect his kth outcome to change by

Θk
j′,t −Θk

j,t.

While quite general, we note two assumptions implicit in this formulation. First, by not

indexing this effect by i, we assume teacher j has the same effect on all her potential students

(Delgado (2020); Aucejo et al. (2020)). Second, the specification treats Θj,t as fixed under

the status quo. In practice, a teacher’s effectiveness on each dimension is not an innate

characteristic, and will depend on the teacher’s pre-teaching training, the context in which

they teach (e.g. school climate, leadership, and on-the-job training), and both the explicit

and implicit incentives they face (Taylor and Tyler (2012); Aucejo et al. (Forthcoming);

Dee and Wyckoff (2015); Macartney (2016); Papay et al. (2020); Rockoff et al. (2012)).

We refer to Θk
j,t as the teacher’s effect on outcome k. If the true dimensionality of teacher

effectiveness is less than K, it is possible to summarize Θj,t by some lower dimensional

vector of teacher effectiveness. This would be the case if teachers’ effects can, for example,

be grouped into effects on students’ cognitive skills and effects on students’ non-cognitive

skills. How well Θj,t can be summarized by a lower dimensional vector is one of the empirical

questions we answer in this paper.

Next, suppose there is a principal who needs to make some personnel decisions in year

t− 1, such as whether to require teacher j to get professional development. Naturally, she
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wants to incorporate information about each teachers’ effect on the various outcomes into

her decision. Doing so is challenging, however, because she cannot observe Θj,t directly.

Instead, at best she observes a noisy measure of their effectiveness. We denote the kth

measure of measured teacher effectiveness of teacher j in year t− 1 as θki,t−1 and denote the

full vector of measured teacher effectiveness as θj,t−1. We discuss in the next section how

θj,t−1 is measured and how best to use a multidimensional empirical Bayes’ framework to

improve on the raw estimates of teacher effectiveness.

In addition, she does not observe noisy measures of effectiveness for some of the outcomes

about which she cares. For example, while she might care about teachers’ effects on high

school graduation, she will not observe these effects in a timely manner for any of her

teachers. Thus, in this paper, we also explore 1) how to combine the measures of short-

term effectiveness if the decision-maker cares only about long-term effectiveness and 2) how

much information is lost by not directly observing effects on the long-term outcome.

Finally, there is a third challenge in that not all measures of effectiveness are observed

for all teachers. For example, many teachers do not teach in tested grades and thus do

not have traditional test score value-added measures. In addition, if the principal wants

to incorporate multiple years of data into the decision, or use measures based on student

outcomes in future years, the amount of information available for each teacher will depend

on how long she has been teaching in the district. Since principals need to make personnel

decisions for all teachers, it is necessary to find a fair approach to evaluation, which does

not arbitrarily punish or reward teachers based on how many measures are observed. We

discuss this challenge and offer a potential solution in Section VI.

II.B Data and Setting

We use anonymized administrative data from the New York City Department of Education

(NYCDOE), which contain information on any student who attended grades 3-8 at a public

school in New York City from the 2004-2005 school year until the 2013-2014 school year.

We henceforth refer to school years using the spring year, e.g., the 2004-2005 school year
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as SY2005 or simply as 2005. The data contain yearly information about each student’s

grade-level, school attended, assigned math teacher, and assigned English teacher. They

also contain some student demographic information, including the student’s gender, whether

the student is classified as an English Language Learner (ELL), and whether the student

has been diagnosed with a learning disability.

We also observe students’ year-end math and English test scores, as well as the percent

of days they attend school. Because tests change each year, we follow convention by nor-

malizing these scores by subject, grade, and year to have a mean of zero and a standard

deviation of one. To minimize the importance of outliers, we measure attendance by taking

the log number of absences, adding one to the number of absences to ensure we can take the

log. We then multiply this by negative one so that positive values are preferred, as in the

other outcomes. In addition, we observe the numeric grades that middle school students

receive in all of their classes.

Since our focus is on teacher value-added, we drop students who are not matched to a

teacher in the data. In addition, we drop the students with all non-standard grade codes;

most of these indicate separate special education classrooms, which are often exempt from

the year-end tests, and it also removes students who are part of the Collaborative Teaching

track. Together, these restrictions remove roughly 10% of the total observations. We also

correct student-to-teacher matches that appear to be misclassifications. We re-code as

missing any elementary school teacher who is assigned to more than 50 students or fewer

than 5 students in a year. For middle school, we use an upper limit of 120 students a year.

This only affects about 1.5% of the student-year observations.

Finally, since we require previous test scores to compute value-added measures, we

cannot calculate value-added measures in the first year we observe data (SY2005), so this

year is omitted from the analysis. Thus, our main analytic sample consists of students who

attended and teachers who taught in public elementary and middle schools in New York

City during 2006 to 2014. Table 1 provides summary statistics of our sample, which show

that New York City is a very diverse district, with approximately 27% Black students, 38%
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Hispanic, and 18% Asian.

After restricting our sample, we observe approximately 20,000 teachers, about two-thirds

of whom are in middle school. On average, teachers are in our data for about three years;

the short time-span is largely due to limitations in the length of our panel, as the teachers

on average have been teaching in New York City for over nine years.

III Multidimensional Empirical Bayes Estimation

III.A Model Details and Intuition

This section describes a multidimensional empirical Bayes’ estimation strategy to estimate

teacher effects when effects are multidimensional. In the single dimension, it is identical

to prior models based on test score effectiveness (e.g., Kane and Staiger (2008)). The key

difference is that we allow for a more complex variance structure, which enables error terms

to be correlated across measures within a year. This leads to different variance estimates

than if value-added measures within years are assumed to be independent. After presenting

the framework and deriving the results, we briefly discuss computational considerations and

the resulting weights.

Multidimensional Empirical Bayes Framework: Similar to other value-added pa-

pers, we start with a simple model for the production of student outcomes and role of

teacher effects. We denote student i’s kth outcome in year t as yki,t and the full vector of

student i’s outcomes in year t as yi,t. We let Xi,t be a vector of p student covariates and take

the estimate β̂ as fixed. Like most of the value-added literature, we assume that student

outcomes can be expressed as a linear function of: their teacher’s effect on their outcome;

a vector of their covariates; a classroom-level shock shared by all students denoted as ν̃j,t;

and an individual level shock denoted as εi,t.

Thus, our statistical model of student outcomes is:

yi,t−1 = βXi,t−1 + Θj,t−1 + ν̃j,t−1 + εi,t−1 (1)
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Next, we model how Θj,t−1, teachers’ true effects in year t− 1, relate to Θj,t, teachers’

true effects in year t. For now, we do not incorporate drift in teacher effectiveness as it

complicates the model presentation. Instead, we assume that a teacher’s effect on their

students’ outcomes is a combination of the teacher’s persistent effectiveness and a year-

specific shock to their effectiveness, Θj,t−1 = Θj + ηj,t−1, for some persistent effect Θj and

a year specific shock ηj,t. As we show in Appendix C, extending the model to account for

drift does not change in the interpretation of our results. Determining whether or not to

account for drift does matter, however, if the principal aims to incorporate multiple years

of data into their year t predictions; we discuss this in Appendix F.

One benefit of assuming away drift is that we can define a new error term νj,t−1 =

ηj,t−1 + ν̃j,t−1. One can think of νj,t−1 as an error term that combines the classroom shock

that is not caused by the teacher (embedded in the ν̃j,t−1 term) with the classroom-level

shock that is caused by the teacher, but not related to a teacher’s persistent effectiveness

(embedded in the ηj,t−1 term).3 We will not attempt to separate those two components

of the error term in this paper, as it is not important for our research questions or the

principal’s decision discussed in Section II.A.4

The statistical model of student outcomes thus becomes:

yi,t−1 = βXi,t−1 + Θj + νj,t−1 + εi,t−1 (2)

Our key assumption is that the two error terms are independently distributed across

teachers and years, normally distributed, and have mean zero, so νj,t−1 ∼ N(0,Σν) and

εi,t−1 ∼ N(0,Σε). The assumption that the error terms are independently distributed

across years means that while value-added measures are noisy, they are also unbiased.

3For example, a dog barking outside the classroom during a test is a classroom-level shock not caused by
a teacher, and a teacher getting sick on the day of an important lesson is a shock caused by the teacher but
unrelated to persistent effectiveness.

4In contrast, you could imagine a principal who wants to reward some subset of teachers for their per-
formance in the previous year, rather than to predict teacher performance in the subsequent year. In this
case, separating the error terms would be important. As we discuss in Appendix C, separating them also is
important when one allows for teacher drift.
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Thus, we assume that teachers are not consistently assigned to students who do worse

(or better) than their covariates would suggest. This assumption is supported by several

papers (Chetty et al. (2014a); Bacher-Hicks et al. (2019); Petek and Pope (2018)), especially

when the measures are test scores. As we discuss below, assuming the error terms are

normal is less important, though relaxing this assumption means the estimates no longer

correspond to the mean of the Bayes posterior distribution. Finally, while we assume the

errors are independent across years, we do not assume that they are independent across

measures within a year. This distinguishes our model from others in the multidimensional

teacher effectiveness literature which independently calculate value-added measures on each

dimension (e.g., Jackson (2018); Petek and Pope (2018)).

We then define a teacher’s value-added in year t− 1 as:

θj,t−1 =
1

Nj

∑
∀i∈C(j,t−1)

yi,t−1 − β̂Xi,t−1 (3)

where C(j, t−1) is the set of students teacher j teaches in year t−1 and ||C(j, t−1)|| = Nj .

From this statistical model, we get that:

θj,t−1|Θj ∼ N
(

Θj ,Σν +
1

Nj
Σε

)
(4)

under the assumption that β̂ ≈ β. We further assume that teachers’ persistent effectiveness

is normally distributed with Θj ∼ N(0,Ω). Bayes’ Law then implies that:

Θj |θj,t−1 ∼ N
(

Ω∗jθj,t−1,Σ
∗
j

)
(5)
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where

Σj = Σν +
1

Nj
Σε

Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j

Σ∗j = (Σ−1
j + Ω−1)−1

While this provides the full posterior distribution under our normality assumptions,

we generally focus on the mean of the posterior E[Θj |θj,t−1] = Ω∗jθj,t−1. We denote these

“empirical Bayes estimates” as Θ̂j .

This empirical Bayes’ framework relies on the assumption that both the true teacher

effects and the error terms are normally distributed; however, the normality assumptions

are less important than one might expect. This is because the empirical Bayes estimates

are also equivalent to the best linear predictors of the true teacher effects given the previous

years’ estimated teacher effects, a fact that is true even if the error terms and/or true effects

are not normally distributed. Formally, suppose we aim to know what weights Ψk∗
j minimize

the mean-squared error of the predicted teacher effect on measure K given θj,t−1, or:5

Ψk∗
j = arg min

Ψk
E
[(

Θk
j −Ψkθj,t−1

)′
(Θk

j −Ψkθj,t−1

)]
(6)

It is clear from this specification, that Ψk∗
j are just the coefficients from an OLS regression

of Θk
j on θj,t−1. Thus, we get that:

Ψk∗
j = E

[(
(θ′j,t−1θj,t−1)−1θ′j,t−1Θk

j

)′]
(7)

which implies that Ψk∗
j =

(
(Ω+Σj)

−1Ωk
)′

, where Ωk is the kth column of covariance matrix

of Θj . Combining the K estimates of Ψk∗
j , we get that Φ∗ =

(
(Ω + Σj)

−1Ω
)′

. Although

this expression appears different, it turns out that (Σ−1
j + Ω−1)−1Σ−1

j =
(
(Ω + Σj)

−1Ω
)′

.

5The expectation here and in Equation (7) is a bit nuanced, as it is essentially is combining two conceptu-
ally different operations by both taking the expectation over the uncertain error terms as well as integrating
over the population of teacher effects which are (in theory) fixed for each individual.
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Thus, the weights on θj,t−1 when calculating the best linear predictions are precisely the

same weights as those computed for the empirical Bayes estimates.6 See Appendix B for

the proof that these two matrix expressions are equal.

While (Σ−1
j + Ω−1)−1Σ−1

j and
(
(Ω + Σj)

−1Ω
)′

are mathematically equivalent, there are

reasons that using
(
(Ω + Σj)

−1Ω
)′

to compute the estimates is preferable. Most notably,

writing Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j requires that Ω is invertible. This assumption is violated

if the set of measures can be summarized by a lower-dimension vector of true teacher

effectiveness, such as their impact on students’ cognitive and non-cognitive skills. Writing

Ω∗j as
(
(Ω + Σj)

−1Ω
)′

, in contrast, no longer requires that Ω is invertible, and instead only

that Ω+Σj is invertible. Note that even if Ω is theoretically invertible, it is possible that the

estimates of Ω̂ will be not be invertible due to measurement error. Thus, estimation of Ω∗j

may be impossible when defining Ω∗j = (Σ−1
j +Ω−1)−1Σ−1

j even if Ω is theoretically full rank.

In contrast, this is not problematic when using the formulation that Ω∗j =
(
(Ω + Σj)

−1Ω
)′

.

Understanding the Empirical Bayes Estimates: In the multidimensional setting,

the matrix Ω∗j contains the weights that are used to translate the various measures of

measured teacher quality, θj,t−1, into predictions of true teacher quality, Θj . In a single

dimensional setting, this simply involves shrinking the measure of teacher quality toward

the overall mean, where the shrinkage factor is based on the signal-to-noise ratio of the esti-

mates. In the multidimensional setting, however, the translation from estimated measures

to empirical Bayes estimates is more complicated. Most notably, unless both Σj and Ω are

diagonal matrices, the empirical Bayes’ estimate of one dimension will incorporate infor-

mation about the estimates of the other dimensions.7 For example, the empirical Bayes’

estimate of a teacher’s ability to improve students’ attendance would likely include infor-

mation on the estimated ability of the teacher to improve student test scores as well as the

estimated ability of the teacher to improve student attendance.

6This does not rule out the possibility that we can compute better non-linear predictors, even without
the full set of normality assumptions. See Gilraine et al. (2020), for example.

7Note this statement is not quite true, as it is possible that the weighted covariance of Σj is equal to the
weighted covariance of Ω in which case the two forces pushing us to weight the other dimensions cancel each
other out and the weights on the other dimensions is still zero. This is clear in the example below.
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To build intuition on how the empirical Bayes estimates incorporate information from

the various measures, we now walk through an example with two outcomes. To do so, we

let Ω =
( σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)
and Σj =

( σ2
Σ,1 ρΣ

ρΣ σ2
Σ,2

)
. Here ρΩ and ρΣ correspond to the covariance

between the two true measures of teacher effectiveness and two error terms, respectively,

rather than the correlation between the measures. If we denote Ω∗j =
( ω1,1 ω1,2
ω2,1 ω2,2

)
, we get:8

ω1,1 =
1

det(Ω + Σj)

[
σ2

Ω,1σ
2
Ω,2 + σ2

Ω,1σ
2
Σ,2 − ρ2

Ω − ρΩρΣ

]
(8)

ω1,2 =
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(9)

Thus, when calculating the empirical Bayes’ estimate of the first measure, the sign of

the weight placed on the second measure depends on the relative covariances of the true

measures versus the error term. This means the empirical Bayes’ estimate may put a

negative weight on the second measure even when the two true measures are positively

correlated if the error terms are even more positively correlated than the true measures.9

To understand why these negative weights may occur, it is important to recognize that

the second measure of teacher effectiveness provides information on both the true teacher

effects and the unobserved classroom quality, i.e., the error term. The estimate of the second

measure of teacher effectiveness may be large either because: a) the teacher increased her

students’ second outcome or b) the teacher got a good cohort of students who would have

outperformed expectations regardless of their teacher. In case a) we should increase our

estimate of the teacher’s effect on the students’ first measure, since the true measures being

positively correlated imply that teacher who is good at increasing one outcome is also likely

to be good at increasing the other outcome. On the other hand, in case b) we should decrease

our estimate of her effect on the students’ first measure, since the positive correlation of

the error terms implies the class would likely outperform expectations on all outcomes even

8See Appendix B for proof.
9While we use the term “correlated” here, Equation (18) makes clear that the comparison of interest

is actually a comparison of the weighted difference between the covariances rather than an unweighted
comparison of the correlations.
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with an average teacher.10 The relative variance and covariances of the true effects versus

the error terms inform us whether a) or b) is the more likely explanation, and thus whether

we should increase or decrease our estimate of the teacher’s effect on her students’ first

measure after observing a high value of the second measure.

III.B Summarizing Teacher Effectiveness

The conceptual framework and estimation details lay out an approach for estimating teacher

effectiveness on all K measures. That is, the empirical Bayes estimates, Θ̂j , are the best

predictors of the true teacher effects, Θj , given the raw teacher residuals, θj,t−1. While

these estimates may be the best predictors of true teacher effectiveness, that still leaves

us with K measures of teacher quality when principals and researchers may want or need

to summarize teacher effectiveness using fewer dimensions. We next discuss three possible

approaches to efficiently summarize Θj and the complications in their implementation due

to the fact that we do not observe Θj directly.

Principal Component Analysis: One natural approach to reduce the number of

measures is principal components analysis (PCA), which is commonly used to reduce the

dimensionality of a dataset in a way that minimizes information loss. We aim to reduce the

vector Θj of teacher j’s K measures of effectiveness into a smaller vector of H measures,

while losing the minimum amount of information about teacher j’s effectiveness. Restricting

our attention to linear transformations, we can express this transformation as a K × H

matrix w, where the H measures of teacher effectiveness are w′Θj .
11

To formally define “information loss” we can reverse this transformation by taking the

smaller vector of H measures, i.e., w′Θj , and attempting to reconstruct the initial K mea-

sures. If we focus only on linear transformations, we can write this as w̃(w′Θj) for a K×H

10This analysis assumes that the ’s true impact on the two measures is positively correlated, as is the error
term for the two measures; in other words, it assumes both ρΩ and ρΣ are positive, which is what the data
suggest.

11As is clear from the proof, restricting ourselves to a linear transformation from Θj is not actually a
restriction. Stated differently, the best rank-H approximation of Θ consists of a linear transformation that
transforms the N ×K data matrix to an N ×H data matrix and then the “reversal,” defined below, of this
transformation to reconstruct a rank-H N ×K data matrix.
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matrix w̃. Since the initial linear transformation w maps a K dimensional space to an H

dimensional space, it is impossible to perfectly reverse the transformation. One natural

approach is to use the transpose of the initial matrix, i.e., w̃ = w. If the initial transfor-

mation, for example, took an unweighted average of the K measures, then the transpose

would map the average back to the K measures by setting each measure as 1
K times the

average. Absent any additional information, this approach seems reasonable and there is

indeed a mathematical justification for why that is the best approach.12

We can then define information loss as the difference between the true teacher effects on

all K dimensions and the reconstructed teacher effects on the K dimensions, or
∑
∀k(Θ

k
j −

(ww′Θj)
k)2.13 Then, we can define the optimal weighting matrix ω∗ as that which, given

all j teachers, minimizes the information loss:

ω∗ = arg min
w

∑
∀j

∑
∀k

(Θk
j − (ww′Θj)

k)2 (10)

While that seems like a challenging optimization problem, the first H components of

a principal component analysis give the rows of ω∗. The intuition behind why this is

true stems from the fact that the first component is the vector of weights that maximizes

the variance of the resulting vector of data, which is essentially the same as minimizing

the amount of remaining variance.14 Since the remaining variance is the object we try to

minimize in Equation (10), the first principal component is the optimal way to reduce the

dimension of the data into a single dimension.15

12Formally, the transpose is connected to the inverse as follows: if the initial transformation is orthogonal
and does not actually reduce the dimension, i.e., H = K, then the inverse of the initial transformation is
the transpose, i.e., ww′ = I where I is the identity matrix. If H < K, then w is the Moore-Penrose inverse
of w′. Thus, w is the matrix such that (w′w)w′Θj = w′Θj for every Θj .

13We include ww′Θj in parenthesis to emphasize that we apply ww′ to the full vector Θj before taking
the kth measure.

14Formally defining the “amount of remaining variance” is a bit challenging, since the data has dimension
K and the loadings that result from the first component have a single dimension. Without quite stating so
explicitly, however, that is essentially what we discussed in the second paragraph of this section.

15For those interested in the technical details, the proof is as follows. An equivalent way to write Equation
(10) is ω∗ = arg minw ||Θ − Θww′||F , where ||.||F is the Frobenius norm. It is well-known that the best
rank-H approximation to Θ, when using the Frobenius norm, is to conduct a singular value decomposition
(SVD) on Θ and then use the H largest singular values and their corresponding singular vectors to construct
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The challenge here, and in many applied settings, is that we do not observe the “true”

measures that we wish to use PCA to summarize. Rather, we have noisy estimates of

the true measures and need to determine how to account for this noise in our principal

components analysis. In particular, here we aim to summarize Θ, but we only observe the

value-added estimates, i.e., the θj,t−1’s, and the empirical Bayes estimates, i.e., Θ̂.

We overcome this challenge by using the fact that the principal components correspond

to the eigenvectors of the covariance matrix, Ω. More specifically, Ω can be factorized

into WΛW−1, where W is the matrix of right eigenvectors and Λ is a diagonal matrix of

eigenvalues. The columns of W are then the principal components, ordered in importance

by the value of the corresponding eigenvalue, with the amount of variation explained by

a component being equal to the value of its corresponding eigenvalue divided by the sum

of the eigenvalues. Thus, as long as we can consistently estimate Ω, we can estimate the

principal components of Θ. Importantly, as we discuss below, we can estimate Ω even

though do not observe Θ directly.

In short, by using just the covariance matrix, we can estimate the H principal com-

ponents with the largest eigenvalues to obtain the matrix of weights ω∗ that solves the

optimization problem defined in Equation (10). Applying the estimate ω∗ to the matrix

Θ gives the score matrix Θω∗, which is the best way to summarize Θ while using only H

measures. Of course, while we can estimate ω∗ without observing Θ, we cannot compute

Θω∗ without observing Θ. Thus, we also need to compute the empirical Bayes’ estimates

of Θω∗ (in the same way we computed the empirical Bayes estimates of Θ). We denote this

as Θ̂ω∗, where Θ̂ are the empirical Bayes estimates of Θ.16

Finally, it is worth noting that the empirical Bayes’ estimates of the score matrix, i.e.,

Θ̂ω∗, do not generally give the same results as conducting a PCA on the empirical Bayes’

a rank-H matrix. Let the SVD on Θ be written as UΣV ′, as is convention. Since V are the principal
components, it then follows that Θww′ = UΣV ′VHV

′
H when w consists of the first H principal components,

denoted as VH . Since the components are orthogonal, V ′VHV
′
H = V ′H and so ΘVHV

′
H = UΣV ′H = UHΣHV

′
H .

Thus, ΘVHV
′
H the best rank-H approximation to Θ and so VH is clearly the best choice of w.

16The fact that the empirical Bayes’ estimates of ω∗Θ are ω∗Θ̂ follows from the fact that if a m×1 vector
x is distributed normally N(µ,Σ), then w′x ∼ N(w′µ,w′Σw) for any m× 1 vector of weights w.
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estimates directly, i.e., conducting a PCA on Θ̂.17 While subtle, we can think of this

difference as the difference between “the best estimates of the best summary of Θ”, rather

than “the best summary of the best estimates of Θ.”

Relationship of Short-Term Measures to Long-Term Outcomes: Another nat-

ural approach is to view the short-term effectiveness measures as proxies, or statistical

surrogates, for the effect the teacher has on their students’ long-term outcomes, such as

high school graduation or lifetime earnings (Petek and Pope (2018); Chetty et al. (2014b)).

When the short-term measures are viewed as surrogates, we care about the predicted effect

of the teacher on the long-term outcome given the vector of the teacher’s short-term effects,

rather than the full vector of teacher effects. This also reduces the dimensions of teacher

effectiveness from the number of short-term outcomes to the number of long-term outcomes.

Formally, let Θ̃j be the effect of teacher j on the long-run outcome of interest and θ̃j

to be the estimate of the teachers’ impact on this outcome. For simplicity, we will assume

there is a single long-term outcome of interest.18 We then define:

ω∗ = arg min
ω

1

J

∑
∀j

(Θ̃j − ω′Θj)
2 (11)

which means that ω∗ = (Θ′Θ)−1Θ′Θ̃, where Θ is a J ×K matrix where the jth row is Θ′j

and Θ̃ is a J × 1 vector where the jth row is Θ̃j .

One natural approach is to estimate ω∗ by replacing Θ with Θ̂, i.e., the matrix of

empirical Bayes estimates, and Θ̃j with θ̃j , i.e., the true long-term effect with the estimated

long-term effect, to get ω̂∗ = (Θ̂′Θ̂)−1Θ̂′θ̃. It is well known that ω∗ = ω̂∗ in settings where

Θj is one-dimensional, e.g., Jacob and Lefgren (2008). Thus, in the one-dimensional setting,

one can use the empirical Bayes estimates as covariates and interpret the coefficient as if the

true teacher effect was the covariate. It is not, however, obvious from Jacob and Lefgren’s

17That they give different results can be most clearly seen in the fact that the covariance matrix of
empirical Bayes estimates is Ω(Ω + Σj)

−1Ω rather than Ω. An empirical examination of the differences is in
Table A.1.

18We could extend the results to when there are multiple cases, but that would require us to determine
how the various long-term measures should be weighted.
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(2008) proof in the single dimension that this extends to the multidimensional framework

because the empirical Bayes estimates for each dimension consist of linear combinations of

all the dimensions, rather than simply being the shrunken version of the estimates (which

the Jacob and Lefgren (2008) proof assumes). In Appendix B we prove that the result

extends to the multidimensional case and that ω∗ = ω̂∗ even in cases where where Θj

is multidimensional.19 Thus, as before one can use the multidimensional empirical Bayes

estimates as covariates to uncover the relationship between the dependent variable and true

teacher effects.

The key idea behind the proof is that using the empirical Bayes estimates as regressors

is essentially the second-stage of a 2SLS regression, in which the θj,t−1 serve as instruments

for Θj . The idea is therefore essentially the same as using IV to adjust for measurement

error, when presented with multiple noisy measures of the same underlying variable.20 One

subtle difference is that in our context the coefficients from the “first stage” differ depending

on the number of students the teacher has, which is why we present the formal proof in

the appendix. This can be seen most clearly when one views Ω∗j as the coefficients from a

regression of Θj on θj,t−1, which we discuss above. This means that Θ̂j are the predicted

values from this regression, which can then be plugged in to the second-stage regression.

One subtlety of the proof is that it relies on the assumption that the same set of measures

are used to estimate the value-added as appear in the subsequent regression.21 For example,

suppose that we observe math and ELA test scores and use these two measures to estimate

value-added using the multidimensional empirical Bayes’ approach. Then, suppose we run

three regressions: one that only includes the math value-added as a regressor; one that

19Note that the proof also assumes that θ̃j is equal to the true effect plus an error term and that the error
term is uncorrelated with Θ̂j . The assumption that the error term is uncorrelated with Θ̂j is likely wrong
if the same cohort is used to estimate θ̂j as is used to estimate Θ̂j . When using different cohorts, however,
the assumption is similar to the one that underpins the value-added framework in Section III.A.

20One important implication of this is that it suggests that it would be possible to leverage results from
the research on errors-in-variables if one was interested in estimating non-linear relationships between the
true teacher effects and an outcome of interest (e.g., Amemiya (1985); Hausman et al. (1991); Hong and
Tamer (2003); Lewbel (1998); Hu and Schennach (2008)).

21It is also worth acknowledging explicitly that the proof also assumes that no additional covariates are
included in the regression.
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only includes ELA value-added as a regressor; and one that includes both. The proof in

Appendix B shows that the estimated coefficients in the final regression, which includes both

regressors, would converge to the same coefficients as would be obtained if the teachers’ true

value-added on math and ELA were observed and used as covariates. In contrast, it is not

necessarily the case that the estimated coefficients from the first two regressions would

converge to the same coefficients as those from regressions based on the true value-added

measures. This is because both measures were used to compute the teachers’ value-added

measures, but only one measure appeared in the resulting regression. Similarly, if the value-

added measures were independently estimated using a single dimension empirical Bayes’

framework, the coefficients on the first two regressions would be correct, in the sense that

they would converge to the same coefficients as if the true measures were observed, but the

coefficients from the last regression would not be correct. Thus, if researchers plan on using

the value-added estimates as regressors in multiple regressions, they should estimate different

value-added models depending on the set of measures they plan to use in the regressions.

In addition to estimating ω∗, a natural question is whether the set of teachers’ short-

term measures are sufficient to explain most of the variation in the teachers’ long-term

effect. Again, this would be straightforward if the true effect of the teachers were observed,

on both the short-term and long-term outcomes. In that case, one would simply use the R2

measure from a regression of the Θ̃j on Θj . Since we have noisy measures of teacher effects,

we instead use the year-to-year covariance of the estimated long-term effect to estimate the

true variance of the long-term effect.22 The fact that we do not directly observe the short-

term measures also complicates our analysis, since the variance explained by the value-added

estimates also differs from the (hypothetical) variance explained by the true-measures.23

22This is similar to what we did for the principal components analysis. As before, the assumption required
for this to work is that teachers are not consistently assigned students who do better or worse on their long-
term outcomes than would be expected based on their prior test scores, demographics, etc. If there is sorting
on the long-term measures - a very real possibility - the true variance of the long-term effect would be biased
upward. As is clear below, this would bias downward our estimates of how much of the long-term effect
variation the short-term measures can explain.

23The fact that we do not directly observe the short-term measures also complicates our analysis because
even if teachers’ true short-term measures could explain all of the variation in teachers’ long-term effects,
the teachers’ estimated short-term measures may not explain most of the variation. The percent of the
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Denoting estimated variance as σ̂2
LT , the percent of the long-term variance explained

by the true short-term measures, is ω∗
′
Ωω∗

σ̂2
LT

, where ω∗
′

are the coefficient estimates. This

formula stems from two results. First, for any weights ω, the variance of ω′Θj is ω′Ωω, since

the variance of Θj is Ω. Second, the weights on the short-term measures that best explain

the long-term measure are ω∗, which stems both from the definition of a regression and the

result that the coefficients from a regression using the value-added estimates as covariates

can, loosely speaking, also be thought of as the coefficients from a regression using the true

effects as covariates.

Combining the Approaches: In the previous discussion, we implicitly assumed that

ω∗ is well-defined. This in turn assumes Θ is full rank and not able to be summarized by a

smaller dimension of teacher effects. Even if Θ is full rank, if some of K measures of teacher

effectiveness are highly correlated, the estimates of ω̂∗ would be quite imprecise given that

Ω′Ω would then be nearly invertible.

A natural solution is to combine the two approaches to dimensionality reduction. In

this, we first conduct principal components analysis to reduce the K dimensions into H

components. We then include the empirical Bayes estimates of these H dimensions as

covariates in a regression with the long-run outcome of interest as the dependent variable.

III.C Estimation Details

We estimate teacher effects and the matrices described above using data from 3rd to 8th

grade students in New York City. Estimation involves the following five steps. Appendix B

contains the proof that this approach provides consistent estimates of the relevant matrices.

1. Estimate β̂ by fitting the OLS regressions at the student level with teacher

fixed effects. yi,t = βXi,t + νi where νi is a teacher-fixed effect. Our vector of

covariates, xi,t consists of indicators for gender, race, year, free and reduced-price lunch

long-term variance explained by the estimated short-term measures is quite similar to the result below:
ω∗
′
(Ω(Ω+Σj)−1Ω)ω∗

σ̂2
LT

. The difference reflects the fact that the variance of the empirical Bayes’ estimates is

Ω(Ω + Σj)
−1Ω, while the variance of the true measures is simply Ω.
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status, English language learner status, and cubic functions of previous outcomes.

2. Estimate Σε using the estimate of the error term from step 1.

Σ̂ε =
1

N

∑
∀i
êi,tê

′
i,t (12)

where êi,t = yi,t − β̂Xi,t + ζ̂j .

3. Calculate θj,t using the estimates of β̂ from step 1.

θj,t−1 =
1

Nj

∑
∀i∈C(j,t−1)

yi,t−1 − β̂Xi,t−1 (13)

where C(j, t−1) is the set of teacher j’s students in year t−1 and Nj = ||C(j, t−1)||.

4. We estimate Ω using the fact that E[θj,tθ
′
j,t−1] = Ω. We can set:

Ω̂ =
1

J

∑
θj,tθ

′
j,t−1 (14)

if there are J teachers. We use the covariance between teacher j’s effects in time t

and t− 1 to avoid bias related to correlated errors across measures within a year.

5. Back out Σν using the fact that E[θj,tθ
′
j,t] = Ω+Σν+ 1

Nj
Σε. We therefore estimate

Σν as:

Σ̂ν =
1

J

∑
θj,tθ

′
j,t − Ω̂− 1

Nj
Σ̂ε (15)

where J is the number of teacher-years and Nj is the number of students assigned to

teacher j.

Given these estimates, we can also compute the full error covariance matrix, i.e., Σ̂j =

Σ̂ν + 1
Nj

Σ̂ε, the optimal empirical Bayes weight matrix, i.e., Ω̂∗j = ((Σ̂j + Ω̂)−1Ω̂−1)′, and

the empirical Bayes estimates for each teacher, i.e., Θ̂j = Ω̂∗jθj,t−1.
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IV Empirical Bayes Estimates of Teacher Effectiveness and

Dimensionality Results

This section describes our teacher effect estimates and the degree to which these can be

summarized by a lower dimension. We first focus on elementary school teachers and then

on middle school teachers. In doing so, we focus on the dimensionality of teachers’ true

effects, rather than the estimated effects. While we do not observe these directly, we can use

the covariance matrix of teacher effects to understand how they relate to one another. As

discussed above, this enables us to describe the underlying dimensions of teacher effects and,

theoretically, how a principal who cares about teacher effects on long-term outcomes would

want to weight measures of short-term effectiveness if she directly observed the teachers’

true short-term impacts. In Appendix E, we discuss how to use these weights with observed

measures of teacher effects, which are the weights a principal or researcher would need to

use in practice.

IV.A Elementary School

We look at eight outcomes over which elementary school teachers’ value-added can be

constructed. These include math test scores, ELA test scores, future math and ELA test

scores, attendance, future attendance, future math grades and future ELA grades.

Figure 1 summarizes the empirical Bayes estimates for each of these outcomes. Here, we

have standardized the outcomes at the student level, rather than the value-added measures

themselves. Thus, a teacher who has a value-added estimate of 0.25 on some measure

increases her students’ outcomes by 0.25 student standard deviations on that measure. For

most outcomes, there is meaningful variation in teacher effects. The main exception is

attendance, for which there is very little variation in the empirical Bayes estimates.24

From the empirical Bayes estimates alone, it is impossible to know how much varia-

24It is certainly possible that this is due to attendance being loosely tracked in the administrative data
during our time span. That explanation would not, however, explain why there is seemingly variation in
future attendance.
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tion actually exists in teacher effectiveness. For example, it is unclear whether the limited

variation in attendance value-added is because teachers do not affect student attendance

or because measurement error means the empirical Bayes estimates are shrunk more for

attendance than for other measures. To help shine light on this, Table 2 shows the es-

timated standard deviations of the true teacher effects rather than the empirical Bayes

estimates. Note that although we do not observe the true teacher effects directly, their

standard deviation is implied by Ω, which we can consistently estimate.

The results in Table 2 suggest there is little variation in how teachers impact student

attendance (in both elementary and middle school). While there is a reasonable amount of

variation across teachers in their average student attendance residuals (column (3) of Table

2), teachers with positive average student attendance residuals in one year are no more

likely to have positive attendance residuals in the next year than a teacher with negative

attendance residuals in the first year. This does not rule out the possibility that teachers

have a big impact on their students’ attendance; however, it suggests that their effectiveness

on this metric varies more from one year to the next than other measures. This means that

knowing a teacher’s effect on student attendance in year t−1 is less helpful when predicting

their overall effectiveness in year t than knowing their effect on other outcomes in year t−1.

Table 3 shows the correlation of teachers’ true effects across our eight outcomes. Al-

though we cannot directly observe true effects, we can estimate the correlations as implied

from our estimate of Ω. Effects on math and ELA tests are very highly correlated, with a

coefficient of 0.72. Teacher effects on current tests are also moderately correlated with their

effects on future tests, with coefficients between 0.33 and 0.55. Teacher effects on current

test scores, however, are less correlated with effects on attendance and grades.

IV.A.1 Dimensions of Effectiveness

Next, we use principal components analysis to assess the dimensionality of teacher effects for

elementary school. Panel (A) of Figure 3 shows the proportion of variance explained by each

of the principal components (the values are reported in Table A.1). The first component
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explains 49% of the variation, and the first four components collectively explain over 91% of

the variance. These results indicate that our initial eight dimensions of effectiveness can be

reduced to a smaller set of dimensions without losing much information. We focus on the

first four components since together they explain over 90% of the variance and individually

explain at least 5% of the variance.25

Table 4 and Figure 4 show the composition of the four main principal components in

terms of the eight original outcomes. The first component is roughly a weighted average

of all outcomes except for current attendance, which it does not weight at all. The second

component primarily differentiates between teacher effects on current test scores, which

are weighted positively, and their effects on future grades, which are weighted negatively.

The third dimension roughly separates current effects on tests scores from future test score

effects. The fourth component negatively weights ELA test scores effects and positively

weights effects on math tests scores and future attendance. Attendance receives very little

weight in all of these components.

IV.A.2 Long Term Predictions of Value-Added Dimensions

Next, we look at how these principal components, as well as our eight empirical Bayes

estimates of effectiveness, relate to teachers’ long-term effects on high school graduation.26

In other words, we use the short-term measures as statistical surrogates for the long-term

outcome of interest (Prentice (1989); Athey et al. (2019); Begg and Leung (2000)). To do

so, we estimate each teacher’s long-term impact on high school graduation for the students

they taught in year t and regress that on the multidimensional empirical Bayes estimates

of their short-term impact on students’ outcomes (constructed using the students taught in

25The columns of Table A.1 highlight the importance of our methods in conducting principal compo-
nents analysis. If we had instead conducted PCA on the empirical Bayes estimates we would overstate the
importance of the first two components and understate the importance of the third through eighth ones.
Conversely, if we had used the raw measures of teacher residuals we would have understated the variance
explained by the first three components and overstated it for the 5th through 8th components. This stems
in large part from the fact that the error terms for each outcome are less correlated within teachers than
are teachers’ true effects.

26In the Appendix, we also look at long-term effects on earning a Regents diploma and advanced Regents
diploma.
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year t− 1). This ensures that the error term of the outcome is uncorrelated with the error

of the empirical Bayes estimates.

These estimates are useful for thinking about how to weight the dimensions of teacher

effects when constructing a summary measure if the evaluator primarily cares about the

long-term effect of the teacher. Here, we use standardized measures of teacher effects, so

the coefficients indicate the effect of a one standard deviation better teacher on dimension

K, conditional on her effect on the other dimensions. While these results can in theory be

used to assess the predictive power of individual measures of effectiveness, we encourage

readers to instead think of them simply as indicative of a way to weight the short-term

measures of effectiveness to create a summary measure. This is because the coefficients

need to be interpreted as holding all other covariates fixed; for example, what is the impact

of a teacher with a slightly higher impact on students’ ELA scores while holding fixed their

effect on students’ math scores, future ELA and math scores, attendance, and future grades.

This makes the interpretation complex and means the individual coefficients are estimated

without much precision.

Column (1) of Table 5 shows that the first component of teacher effectiveness is also

the most predictive of high school graduation. Thus, if the goal is to identify teachers’

whose effects are most related to high school graduation, the first component should receive

the most weight. The second component also receives significant weight. These coefficients

indicate that a one standard deviation improvement in teacher effectiveness in terms of

component one leads to a 2.6 percentage point increase in graduation rates, conditional

on effectiveness on the other components, and a one standard deviation improvement in

teacher effectiveness in terms of component two leads to a 1.3 percentage point decrease

in graduation rates. Note that since the second component mostly distinguishes between

current test scores and future grades, the negative coefficient reflects the fact that future

grades are deemed more important than current test scores and that the component (arbi-

trarily) gave positive weight to current test scores and negative weight to future grades. So

“improvement” in component two means larger impact on future grades and smaller impact
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on current test scores. The third component is not predictive of high school graduation and,

while marginally statistically significant, the fourth component is only weakly related. The

results are similar when predicting receipt of a Regents diploma (Table A.3). For advanced

Regents diplomas, the third component is also a significant predictor.

Panel (B) of Table 5 shows the relationships between the individual empirical Bayes

estimates and long-term outcomes, conditional on the other effectiveness measures. Here,

future attendance and future math grades are most predictive of high school graduation.

These coefficients, however, do not indicate the individual predictive power of effectiveness

measures. Rather, they are the association between dimension K of effectiveness and high

school graduation conditional on the other k − 1 measures of effectiveness.27 Thus, these

coefficients can be thought of as weights one may want to place on individual measures of

effectiveness if the goal is to identify teachers effective at improving high school graduation.

Finally, the bottom row of Table 5 reports that although the short-term measures can

explain a non-trivial fraction of the long-term teacher effectiveness, nearly three-quarters

of the total variation in long-term elementary school teacher effectiveness is unexplained by

their effectiveness on current and future test scores, attendance, and grades.

IV.B Middle School

Next, we repeat the above analyses but for middle school teachers, who teach grades 6

and 7.28 Most middle school teachers in our sample do not teach both math and English,

so we focus on subject-specific outcomes. This gives us six potential outcomes over which

we can construct teacher value-added: test scores in subject taught, future test scores,

attendance, future attendance, future grades in subject, and future grades in other subjects.

Figure 2 shows the distribution of the empirical Bayes estimates for middle school teachers.

27The empirical Bayes methods we discussed earlier are meant to be used in settings like this where all
empirical Bayes estimates are collectively used in a regression. If we instead wanted to regress high school
graduation on one measure of effectiveness, we should construct different empirical Bayes measures using
the one-dimensional setup as in Kane & Staiger (2008).

28We omit 8th grade teachers, since we do not have future test scores, attendance, or grades for their
students.
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Once again, there is little variation in teacher effects on current attendance, but much

larger variation in their effects on test scores and grades. Panel (B) of Table 3 shows the

correlations of the empirical Bayes estimates. Teacher effects on current and future test

scores are very highly correlated, with a coefficient of 0.89. Test score effects are positively

correlated with effects on future grades but barely correlated with effects on attendance.

Thus, teachers who improve student attendance are often not the same as those who improve

test scores and grades.

IV.B.1 Dimensions of Teacher Effectiveness

Panel (B) of Figure 3 shows the principal components analysis for middle school teachers.

Here, component one explains 68% of the variation, component two explains 16%, and the

first four components collectively explain 99% of the variation in the six outcomes. Thus,

we can use a lower-dimensional measure of effectiveness than the six dimensions we started

with without losing much information. As before, we focus on the first four components as

they each explain at least 5% of the variation.

Panel (B) of Table 4 describes how each of the six outcomes are weighted in each of the

four main principal components. This can also be seen graphically in panel (B) of Figure 4.

The first component is primarily based on teacher effects on future grades, though effects

on test scores receive some positive weight. Component two separates teacher effects on

test scores from effects on attendance and grades. Component three heavily weights effects

on future attendance, while component four appears to differentiate between future grades

on the same subject and future grades on different subjects. Effects on current attendance

barely contribute to any of the four main components.

IV.B.2 Long-Term Predictions of Value-Added Dimensions

Next, Table 5 shows how related these short-term measures of effectiveness are to teachers’

longer-term effects on high school graduation. This is useful for thinking about how much

weight to put on the PCA components or individual measures of effectiveness if we care
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about identifying middle school teachers who improve high school graduation.

Column 4 of Table 5 shows that components one and two are significantly and positively

related to graduation. Component one is the most positively related to high school gradua-

tion, with a one standard deviation improvement in teacher effectiveness on this dimension,

conditional on the other components, increasing graduation by 2.1 percentage points.29 For

the individual empirical Bayes estimates, teacher effects on future grades in other subjects

(i.e., subjects outside that taught by teacher j) are most related to high school graduation.

The coefficients on attendance and future attendance are also both statistically significant,

though they are of opposite signs. This highlights the difficulty in interpreting the coeffi-

cients, as one might wonder what it means for a teacher to improve current attendance and

then lower future attendance. Since these coefficients represent the predictive power of the

individual dimension conditional on all the other measures of effectiveness, they are most

useful for thinking about ways to weight components when creating summary measures,

rather than for analyzing the predictive power of individual dimensions.

As shown in the bottom row of Table 5, the short-term measures can explain a larger

fraction of variation in long-term effectiveness for middle school teachers than for elementary

school teachers. Specifically, for middle school teachers the about one-half of the variation

in long-term effectiveness can be explained by their effectiveness on current and future test

scores, attendance, and grades.

V Implications for Teacher Evaluation

In practice, the goal of school principals and policymakers is often to identify the most

(or least) effective teachers. The results from the previous section can be used to create

weighted summary measures of teacher effects. We focus on summary measures based on

the following three types of weights.

1. First Eigenvalue: Use the vector of weights from first principal component.

29The results are similar when looking at Regents diplomas and advanced Regents diplomas (Table A.3).
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2. PCA Regression: Use the coefficients from a regression of high school graduation rates

on empirical Bayes estimates of the first four principal components.

3. Regression: Use the coefficients from a regression of high school graduation rates on

empirical Bayes estimates of the K outcomes.

Table 6 and Figure 5 summarize how the three summary measures are constructed based

on these weights and observed outcomes. Columns one to three contain the unstandardized

weights applied to each measure of teacher effectiveness, while the weights in columns

four to six are standardized according to the variance in teacher effects on the relevant

outcome. Thus, columns one to three give the weights that should actually be used on

the raw outcomes (i.e. ω′Ω∗j ), while columns four to six illustrates how important each of

the raw outcomes are in determining the summative measure. Appendix E describes the

construction of these weighted summary measures in more detail.

While the weights placed on individual measures clearly vary across these three ap-

proaches, it is not clear how much the set of most (or least) effective teachers identified

differs across these approaches. The first three columns of Table 7 show that teachers rat-

ings are highly correlated across the three weighting approaches, both in elementary and

middle school. The correlations range from 0.90 for the eigenvalue weights and regression

weights in elementary school, to 0.99 for the eigenvalue and regression weights in middle

school. Figures 6 and 7 show the correlations between teachers’ ranks across each of these

weighting schemes. Overall, these results indicate that a teacher’s relative rank is not very

sensitive to the exact weighting approach selected (among the three we examine).

Next, we look more generally at the value of these summary measures relative to the

simpler single-dimension value-added measures typically used in evaluations. First, we

compute test and non-test value-added measures, in both the single and multi-dimensional

framework. The non-test measures are averages of teacher effects on future grades, cur-

rent attendance, and future attendance. For elementary school, test value-added takes the

teacher’s average effect on math and English tests, focusing only on the year the teacher
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has the student in her class. Columns (4) to (7) of Table 7 show the correlation between

our summary measures of effectiveness and empirical Bayes estimates of effectiveness based

on test and non-test score outcomes.

In general, the non-test empirical Bayes estimates are highly correlated with the sum-

mary measures of effectiveness. The test-based measures are only moderately correlated

with the summary measures, and much less correlated than the non-test measures. For

example, among elementary school teachers, ratings based on the regression weights have a

correlation of 0.91 with single dimension non-test value-added and 0.33 for single dimension

test value-added. The differences are slightly smaller for the other summary measures and

middle school, but the patterns are similar. Figures 6 and 7 also show these correlations,

and make it clear that the non-test value-added measures are very close to the summary

measures, while test-based value-added is much less correlated.

Overall, these results indicate that some simple approaches, such as average measures

based on non-test outcomes, perform quite well. However, they also highlight some weak-

nesses to just relying on test score value-added. Tables 8 and 9 show the practical impli-

cations of evaluating teachers on various summary measures. Panel A shows the expected

changes, in terms of high school graduation, test scores, and non-test outcomes, if the

bottom 5% of teachers are replaced with an average teacher in terms of the relevant metric.

Replacing the bottom five percent of elementary school teachers based on the summary

measures is associated with approximately 14pp higher high school graduation rates, relative

to 8pp if decisions are based on test score value-added and 11pp for non-test value-added.

If the goal is to improve test scores, test score value-added will have the largest impact, and

the first-eigenvalue summary measure preforms better than the other summary measures

and the non-test measure. Decisions based on the summary measures are also projected to

improve non-test outcomes more than those based on test score value-added.

For middle school (Table 9), the differences are smaller. Replacing the bottom 5% in

terms of test score value-added is projected to increase high school graduation by 7.8pp

relative to 6.7 to 6.9 pp for decisions based on the summary measures. For non-test score
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outcomes, the expected gains from replacing the bottom 5% are about 6 times larger if

decisions are not based on test score value-added.

Panel (B) in Tables 8 and 9 shows the overlap in teachers who are in the bottom 5%

on each of the metrics. In general, which measure is used for evaluation will have different

implications for individual teachers. In elementary school, there is relatively little overlap

between who is in the bottom 5% on the summary measures and who is in the bottom

for test score and non-test value-added. For example, among elementary school teachers

in the bottom 5% on test score value-added, only 16% are in the bottom 5% for non-test

value-added and 37% are in the bottom 5% for the eigenvalue summary measure. Among

middle school teachers, there is relatively high overlap (77-83%) in terms of the bottom

5% for the summary measures and the non-test outcomes, but less overlap with test score

value-added.

Thus, while different measures of teacher effectiveness are highly correlated, which mea-

sure is used for evaluation purposes can have important consequences for long-term out-

comes and for which teachers are affected by personnel decisions.

It is worth emphasizing, however, that the results here are all in a context in which no in-

centives are attached to attendance and grades. One natural concern is that that grades and

attendance measures are more gameable than test scores, since they are generally recorded

directly by the teacher. Although using future attendance and grades might alleviate that

issue to some extent, doing so may complicate the intra-school dynamics since it would im-

ply that a 4th grade teacher’s evaluation would depend on the 5th grade teacher’s subjective

evaluation of their students. This may have unintended consequences and we believe that

districts would, understandably, be hesitant to introduce a high-stakes evaluation that relies

on students’ grades. Even setting these issues aside, relying on future measures requires

the principal to wait additional years before being able to measure teacher effectiveness,

delaying feedback and reducing the amount of information available at the time decisions

are made. In addition, school districts may not have access to all of measures we con-

sider “non-test score measures” or, alternatively, may have access to additional measures.
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Despite these challenges, the results described above suggest that test scores alone do not

sufficiently summarize teacher effectiveness. Thus, developing non-gameable measures that

adequately summarize teacher effectiveness would be quite valuable and is an important

next step in the research on teacher evaluation.

VI Teachers with Missing Outcomes

In order to present a clear picture of the multidimensionality of teacher effects, we have

made some simplifications. For example, we only incorporate a single year into the em-

pirical Bayes estimates; in practice, most evaluation policies incorporate measures from

multiple years. Doing so, however, is relatively straightforward and Appendix F discusses

this extension.We have also assumed that we observe noisy measures of teacher effective-

ness for all of the outcomes we aim to predict. This would not be true if, for example, one

wants to estimate effectiveness for teachers in both tested and non-tested subjects/grades,

in which case teachers in non-tested subjects/grades would be missing test score measures.

We now walk through how to estimate teacher effects when different teachers have differ-

ent sets of observed measures. We first discuss how to construct empirical Bayes estimates

when researchers do not observe noisy measures of all outcomes. Then we discuss the policy

implications of having the set of available measures vary across teachers and how to ensure

policies do not advantage or disadvantage workers based on which measures are observed.

VI.A Multidimensional Empirical Bayes Estimates with Missing Data

We can compute the posterior empirical Bayes distribution of a teacher’s effect on some set

of measures when we observe a different set using an approach that is equivalent to how, in

section III, we used the estimates of a teacher’s effect on her students’ short-term outcomes

to compute the empirical Bayes estimate of her effect on graduation. Below, we describe

how to compute the multidimensional empirical Bayes estimates of a vector of outcomes

when only a subset of noisy measures are observed.
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First, we partition the full set of measures θj,t−1 into unobserved measures, denoted

θ1,j,t−1, and observed measures, denoted θ2,j,t−1. Similarly, we define Θ1,j to be the true

effects on the unobserved measures and Θ2,j to be the true effects on the observed measures.

We order the measures such that:

θj,t−1 =

θ1,j,t−1

θ2,j,t−1

 and Θj =

Θ1,j

Θ2,j


but this ordering is without loss of generality and only for notational convenience.30 We

can similarly partition the covariance matrix of the true outcomes as: Ω =

Ω1,1 Ω1,2

Ω2,1 Ω2,2


and the covariance matrix of the error terms as Σj =

Σ1,1,j Σ1,2,j

Σ2,1,j Σ2,2,j

.

The aim of this section is to compute how the true teacher effects are distributed condi-

tional on the observed noisy measures, i.e., to compute the distribution of Θj |θ2,j,t−1. Given

our partitions, it is relatively straightforward to derive that:

Θj |θ2,j,t−1 ∼ N
(
µj , Vj

)
(16)

where:

µj =

Ω1,2

Ω2,2

(Ω2,2 + Σj,2,2

)−1
θ2,j,t−1 and Vj = CBC ′ +D

where

B =
(
Ω−1

2,2 + Σ−1
j,2,2

)−1
C =

Ω1,2Ω−1
2,2

I

 D =

Ω1,1 − Ω1,2Ω−1
2,2Ω2,1 0

0 0


and I is the identity matrix where the number of rows equals the number of observed

30In our implementation, we initially permute the measures to be in this form, use these equations to
estimate the posterior mean and covariance, and then permute again to return the measures to their original
ordering.

35



Mulhern and Opper

measures.

We leave the derivation of this expression to Appendix F and focus here on the intuition

behind the approach and the assumptions required. First, it is worth briefly contrasting this

with a natural alternative, in which one first imputes values for the unobserved measures.

After doing the imputation, no measures are missing and so one could use the main approach

defined in Section III to compute the empirical Bayes estimates and/or to summarize teacher

effectiveness. While intuitive, this imputation approach errs in that it treats the imputed

values as additional data to condition on rather than estimates imputed from the other

observations. As we show in Appendix G, under two natural imputation approaches this

leads to too much shrinkage in the resulting empirical Bayes estimates.

Second, there is an important assumption implicit in this approach, which is that after

conditioning on θ2,j,t−1, the fact that we are missing θ1,j,t−1 tells us nothing about the

underlying value of Θ1,j . This assumption would be violated if, for example, teachers are

placed according to their comparative advantage. In that case, the fact that a teacher

is slotted to teach a subject/grade without test scores is informative about her relative

ability of improving students’ test scores versus improving students’ other outcomes. This

assumption underlies the implicit assumption that we know Ω or at least can estimate

Ω precisely. Generally, we rely on individuals for whom we observe estimated effects on

multiple outcomes to estimate the relationship between true teacher effects on each outcome

(Ω). Thus, the key assumption here is that the relationship between the teacher effects on

different outcomes is the same for teachers for whom all measures are observed as it is for

the teachers for whom we only observe a subset of outcomes.

VI.B Fairness in Personnel Policy with Missing Data

We next turn our attention to the practical matter of how to use the empirical Bayes

estimates from above to conduct teacher personnel policy in a context where not all measures

are observed for all teachers. Importantly, we want to ensure that the policy does not

advantage or disadvantage workers depending on which measures are observed.

36



Mulhern and Opper

For our exploration of this question, we take as given the ideal policy that a principal

would choose if she observed the teachers’ true effectiveness on all dimensions. This policy

can be thought of as a function that maps a teacher’s true effectiveness to a real number that

corresponds to some decision. We will denote this function as d(Θj), with d representing the

fact that it corresponds to a principal’s decision. Examples include cases where the output

is constrained to be a) either zero or one, depending on whether the teacher is retained or

fired, b) one of a handful of values depending on the teacher’s proficiency status, or c) the

dollar amount of the bonus each teacher receives.

The challenge is that d(Θj) is not implementable since Θj is not directly observed.

This is because the observed measures contain noise and because we only observe a subset

of the measures for each individual, with the the subset of observed measures varying

across individuals. As a possible solution, note that the approach defined in Section VI.A

constructs the best estimate of the teachers’ true effects on all of the the student outcomes,

even the ones that researchers do not observe. A natural approach is therefore to use the

resulting value-added measures in the function d. Formally, this would consist of the policy

being d(Θ̂j), where Θ̂j =

Ω1,2

Ω2,2

(Ω2,2 + Σj,2,2

)−1
θ2,j,t−1.

For example, consider the case where the bottom 5% of teachers are removed from their

jobs (which is a typical benchmark for policy exercises related to value-added and personnel

policies).31 If true effectiveness was observed, the policy would order teachers by ω′Θj and

replace teachers in the bottom 5% of this ordering, i.e., replacing the bottom 5% of teachers

as ranked by their true effectiveness. Since Θj is not observed, the policy instead orders

teachers by ω′Θ̂j and replaces teachers in the bottom 5% of this ordering, i.e., replacing the

bottom 5% of teachers as ranked by the empirical Bayes estimates of their effectiveness.

While intuitive, this policy is not fair, in the sense that it systematically advantages/

disadvantages individuals depending on which measures are observed. To see this empiri-

cally, we conducted a simulation in which we dropped each measure for each teacher, with

31Here we focus on summary measures based on the weights implied by the first eigenvalue, as discussed
in Section IV.
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25% probability. This led to variation across teachers in the number of measures observed

that is independent from the teacher’s true ability. However, the dark grey bars in Figure 8

show that the probability a teacher’s value-added score, i.e., their ω′Θ̂j , is in the bottom 5%

of the distribution depends in large part on how many measures were randomly dropped.

In particular, the more measures that are observed the more likely it is that the teachers’

value of ω′Θ̂j is in the bottom 5% of the distribution.

The issue is that by substituting Θ̂j for Θj , the policy essentially treats the estimated

value-added scores as the teachers’ true effects. This means the policy ignores differences

across teachers in the uncertainty of these estimates. In the context of empirical Bayes

estimates, teacher effects with more uncertainty are more “shrunken” towards the overall

mean (of zero). Since shrinking the estimates toward zero makes it less likely to be in the

bottom 5%, this means the policy generally rewards teachers for whom we only observe a

few measures, i.e., whose true effects are more uncertain, and punishes teachers for whom

we observe more measures, i.e., whose true effects are more certain. Note that this issue

also arises when multiple years of data are included in the evaluation and a similar result

shows that teachers in the data for more years are more likely to fall in the bottom 5%.

Incorporating information about the posterior variance, in addition to the posterior

mean, can help ensure the ranking of teachers, and the resulting policy decisions, are not

affected by how many measures are observed. Specifically, we propose a new way to imple-

ment the ideal policy. Suppose that the policy can be defined by a function d(Θj), which

maps the teachers’ true effectiveness to a real number that reflects the policy.32 For exam-

ple, d(Θj) be defined as one if the teacher is retained and zero otherwise or correspond to

the amount of bonus they receive. Instead of substituting Θ̂j into d, we propose computing

the expected value of d(Θj) using the posterior distribution of Θj . That is, we define the

32Throughout, we will assume that d(Θj) a random variable, i.e., a well-behaved function for which we
can compute its expectation.
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new policy’s value as:

EΘj [d(Θj)|θj,t−1] ≡
∫
d(Θj)f(Θj |θj,t−1)dΘj

where f(Θj |θj,t−1) is the posterior distribution of Θj conditional on θj,t−1. The proposed

policy is then a function of θj,t−1, the observed measures, so we denote this policy as P(θ),

ignoring the j, t− 1 subscripts to limit notation.33

Unlike the policy of d(Θ̂j), P(θ) incorporates information about the entire posterior dis-

tribution of Θj , rather than just the posterior mean. This helps ensure that the policy does

not discriminate towards individuals depending on which measures are observed. Formally,

we have the following theorem, which follows from the law of iterated expectations:34

Theorem 1. Let θ0 to be the observed measures for some teacher and θ1 to be any subset

of the unobserved measures for the same teacher. Further, let d(Θj) be any policy that a

principal would like to implement if Θj were fully observed and define P(θ) = EΘj [d(Θj)|θ].

Then, for any θ0:

P(θ0) = Eθ1
[
P(θ1, θ0)

∣∣∣ θ0

]
Observing additional measures will generally impact the likelihood that a teacher is

retained, i.e., P(θ1, θ0) 6= P(θ0). The theorem says, however, that under this policy ap-

proach, the changes will not consistently skew either positive or negative, regardless of

what measures are observed and their values. One implication of this fairness condition is

that, absent teachers having private information about their own ability, every teacher is

indifferent about whether more measures are added.35

Note also that Theorem 1 uses a strong definition of fairness. We could consider a

33Technically, it is also a function of the number of students taught by the teacher, since that also
determines the posterior distribution. We will ignore that dependence in the function to keep the notation
simple. Note also that the domain of this function is complex, since the number and type of observed
measures in θ will differ across different individuals.

34The full proof is in Appendix B.
35More formally, this assumes that the teachers own beliefs about the θ1 they would get, conditional on

θ0, is the same as the computed marginal distribution, i.e., f(θ1|θ0). It also assumes that teachers are risk
neutral regarding the values of d.
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weaker definition of fairness that only requires that Eθ1,θ0
[
P(θ1, θ0)

]
= Eθ0

[
P(θ0)

]
for all

subsets of measures. This states that before any of the measures are observed, the subset

of measures that will eventually be observed will not impact the expectation of the policy.

The definition of fairness we use implies this condition, but not vice versa.

To see the theoretical result empirically, we return to the simulation example discussed

above where the bottom 5% of teachers are removed from the school and we randomly

removed measures from some teachers. In contrast to the dark grey bars, the light grey

bars in Figure 8 show that the policy defined by P(θ) = EΘj [d(Θj)|θ] ensures that the

probability a teacher is retained is the same regardless of how many measures are observed.

While the results in Figure 8 seem promising, there are a handful of caveats we want

to emphasize. First, in the empirical example the policy results in a probability that each

teacher is retained, rather than a binary answer of “retain” or “remove.” Actually imple-

menting such a probabilistic policy is unlikely and its implementation would be fraught

with logistical, ethical, and political challenges. Second, the “fairness constraint,” i.e., the

requirement P(θ0) = Eθ1
[
P(θ1, θ0)

∣∣∣ θ0

]
for all θ0, is not without cost. For example, the

expected value-added increase is larger for a policy that removes the teachers in the bottom

5% of the measured value-added distribution than a policy that removes teachers with a

likelihood proportional to the probability of their true effectiveness being in the bottom

5%. A further exploration of the trade-off between efficiency and fairness under a variety

of objectives would be an interesting avenue of further research.

Finally, we note that our assumption that both the error terms and true effects are

normally distributed is important here, in contrast to the assumption about the normality

of the value-added estimates themselves.36 When the policy aims to remove the bottom 5%

of teachers, the value of E[d(Θj)|θ] depends greatly on the tails of the posterior distribution.

If the parametric assumptions are wrong, the policy is no longer fair.37

36The value-added estimates can be thought of as the mean of the posterior distribution under the as-
sumption of normality or as the best linear predictor of the teachers’ true effects under weaker assumptions.

37This shows up in the fact that the expectation in Eθ1
[
P](θ1, θ0)|θ0] is defined using the true distribution

of θ1 conditional on θ0, while the expectation in EΘj [d(Θj)|θ] uses the estimated posterior distribution.
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VII Conclusion

Accurately measuring the multiple dimensions of teacher effectiveness is important given

growing evidence that teacher effects are multidimensional and the use of value-added in

personnel decisions. Furthermore, it is important to figure out how to efficiently combine

multiple measures of effectiveness into summary measures that can be used for policy and

personnel decisions. Creating summary measures of effectiveness is, however, complicated

by the fact that teacher effects are measured with noise, some outcomes are unobserved,

and the error with which teacher effects are measured is correlated across outcomes.

This paper walks through the process and implications of estimating teacher value-added

in a multidimensional framework. We show that, in a multidimensional setting, empirical

Bayes estimates are not simply shrunken estimates of the raw versions, since they incorpo-

rate information about effectiveness on other dimensions. In addition, the multidimensional

setting has implications for conducting principal components analysis and using the empiri-

cal Bayes estimates as covariates. The methods used to compute empirical Bayes estimates

also influences estimates of the dimensionality of teacher effects and rankings of teachers.

Using data on New York City elementary and middle school teachers, we show that much

of the variation in teacher effects, and their impacts on long-term outcomes, can be explained

in a single dimension of effectiveness. We explore three approaches for summarizing teacher

effectiveness, and all three measures lead to similar rankings of teachers. However, these

summary measures are only moderately correlated with traditional test score value-added,

and there is little overlap between teachers who are at the bottom 5% in terms of the

summary measures and test score value-added.

We conclude with a discussion of how to use one of the summary measures when not

all components of the measure are observed for all teachers. We show that, as long as the

full variance/covariance matrix of the teacher’s true effects can be estimated, the multidi-

mensional empirical Bayes approach can easily be extended to cases where not all measures

are observed. However, we illustrate that using the resulting value-added measures without
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accounting for their uncertainty advantages or disadvantages individuals depending on how

many of their measures are observed. We then show that using information from the full

posterior distribution ensures that the resulting policy is fair.

Although our focus has been on the teacher setting, there are numerous other examples

where researchers or policymakers want to efficiently summarize noisily estimated multi-

dimensional effects. These include measuring hospital or physician effectiveness, employee

productivity, and location-specific effects. All of these contexts, including the teacher set-

ting, have complications that can make policy implementation complex. It is beyond the

scope of this paper to examine, for example, how changing value-added measures may

impact teacher incentives and effectiveness. We also assume that effects were consistent

across individuals, that none of the measures were biased, and that all measures were

continuous and normally distributed. Many of these complications have been studied in

single-dimensional settings, e.g., Dinerstein and Opper (2020); Hull (2020); Delgado (2020);

Angrist et al. (2017); Gilraine et al. (2020). A natural extension is therefore to combine our

results on how to fairly measure and summarize noisily estimated multidimensional effects

with approaches for dealing with these complications. In doing so, we can implement more

efficient and fair personnel policy across a range of contexts.
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VIII Tables and Figures

Table 1: Summary Statistics

Elementary School Middle School
Mean SD Mean SD

(A) Student Demographics

Asian 0.18 0.38 0.17 0.38
Black 0.26 0.44 0.28 0.45
Hispanic 0.39 0.49 0.38 0.49
White 0.16 0.37 0.15 0.36
Male 0.49 0.50 0.49 0.50
English Language Learner 0.12 0.32 0.10 0.30
Free or Reduced Price Lunch 0.79 0.40 0.80 0.40

(B) Student Achievement

Math Test Score 0.01 1.00 0.00 1.00
English Test Score -0.00 1.00 0.02 1.00
Ln(Days Absent + 1) 1.94 0.95 2.07 0.99
Math Grade 79.66 11.30 80.46 12.02
English Grade 78.63 10.59 79.14 11.32

(C) Teachers

Years Teaching at Current School 7.14 5.87 5.57 5.33
Years Teaching in the District 9.35 6.78 7.85 6.60
Male 0.14 0.34 0.24 0.43

(D) Counts

Teachers 7061 0 13912 0
Teacher-Years 20683 0 48617 0
Teacher-Subject-Years 20868 0 52312 0
Students 183165 0 617563 0
Student-Years 477286 0 1482360 0
Student-Subject-Years 477286 0 2692055 0

Notes: Column 1 shows the mean for elementary school teachers and students. Column 2 shows the standard deviation
for elementary school teachers and students. Column 3 shows the mean for middle school teachers and students. Column
4 shows the standard deviation for middle school teachers and students. Elementary school is defined as 5th grade and
middle school is defined as 6th - 7th grade. The means and standard deviations are weighted by the frequency with
which students and teachers appear in the sample. Test scores are standardized at the student level prior to restricting
the sample. The sample is restricted to teachers with at least ten (tested) students. Data includes students and teachers
from the 2005-06 school year through the 2013-14 school year.
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Table 2: Standard Deviations of Teacher Effects

True Empirical Raw
Measures Bayes Measures

(1) (2) (3)

(A) Elementary School

Math Test 0.205 0.144 0.294
ELA Test 0.162 0.107 0.260
Future Math Test 0.188 0.129 0.263
Future ELA Test 0.153 0.101 0.240
Attendance 0.011 0.005 0.037
Future Attendance 0.122 0.074 0.218
Future Grades Math 0.200 0.120 0.383
Future ELA Grades 0.199 0.109 0.345

(B) Middle School

Test Scores 0.165 0.117 0.232
Future Test Scores 0.177 0.122 0.308
Attendance 0.013 0.008 0.033
Future Attendance 0.164 0.097 0.299
Future Grades in Subject 0.263 0.144 0.472
Future Grades Other Subjects 0.348 0.223 0.514

Notes: Column 1 reports the standard deviation of true teacher effects based on the covariance matrix Ω∗. Column 2
reports the standard deviation of the empirical Bayes estimates of teacher effects. These estimates understate the true
standard deviation of teacher effects. Column 3 reports the standard deviation of the raw estimates of teacher effects
(i.e. their average student residuals). These estimates overstate the true standard deviation of teacher effects. Panel
(A) is for elementary school, defined as 5th grade. Panel (B) is based on middle school, defined as grades 6th-7th.
For middle school, test score and grade value-added are only for the one subject a teacher teaches. Elementary school
teachers teach both math and English. The units for all measures are the standard deviations of student outcomes.
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Table 3: Correlation of Teacher Effects on Various Outcomes

(A) Elementary School

Math ELA Future Future Future Future
Test Test Math ELA Future Math ELA

Scores Scores Test Test Attendance Attendance Grades Grades
(1) (2) (3) (4) (5) (6) (7) (8)

Math Test 1.000 0.715 0.392 0.333 0.061 0.065 0.085 0.168
ELA Test 0.715 1.000 0.339 0.549 0.039 0.195 0.091 0.198
Future Math Test 0.392 0.339 1.000 0.809 -0.132 0.357 0.388 0.460
Future ELA Test 0.333 0.549 0.809 1.000 -0.126 0.364 0.405 0.439
Attendance 0.061 0.039 -0.132 -0.126 1.000 0.085 -0.061 -0.059
Future Attendance 0.065 0.195 0.357 0.364 0.085 1.000 0.305 0.316
Future Grades Math 0.085 0.091 0.388 0.405 -0.061 0.305 1.000 0.816
Future ELA Grades 0.168 0.198 0.460 0.439 -0.059 0.316 0.816 1.000

(B) Middle School

Future Future Future
Test Test Future Grades Grades in

Scores Scores Attendance Attendance in Subject Other Subjects
(1) (2) (3) (4) (5) (6)

Test Scores 1.000 0.887 0.051 0.258 0.258 0.313
Future Test Scores 0.887 1.000 0.117 0.379 0.370 0.459
Attendance 0.051 0.117 1.000 0.397 0.142 0.201
Future Attendance 0.258 0.379 0.397 1.000 0.322 0.397
Future Grades in Subject 0.258 0.370 0.142 0.322 1.000 0.779
Future Grades Other Subjects 0.313 0.459 0.201 0.397 0.779 1.000

Notes: These are estimates of the true correlations between teachers’ effects on each of the main outcomes. These
estimates are based on the covariance matrix Ω∗. All measures are coded so that better teachers should improve the
relevant outcome. (In particular, teacher effects on attendance is -1 * ln(Days Absent + 1).) In panel (A), Elementary
school is defined as 5th grade and teachers teach both math and ELA. In panel (B), Middle school is defined as 6th-7th
grade and test scores are for the subject the teacher teaches.
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Table 4: Composition of Principal Components

Component Component Component Component
1 2 3 4

(A) Elementary School

Math Test 0.346 0.627 -0.428 -0.291
ELA Test 0.283 0.443 -0.172 0.513
Future Math Test 0.454 0.089 0.612 -0.404
Future ELA Test 0.369 0.092 0.442 0.137
Attendance -0.002 0.003 -0.009 0.012
Future Attendance 0.161 -0.063 0.199 0.685
Future Grades Math 0.446 -0.482 -0.302 -0.029
Future ELA Grades 0.482 -0.397 -0.294 -0.019

(B) Middle School

Test Scores 0.170 0.656 -0.235 -0.009
Future Test Scores 0.239 0.649 -0.122 -0.011
Attendance 0.007 0.002 0.031 0.009
Future Attendance 0.179 0.190 0.869 0.411
Future Grades in Subject 0.534 -0.262 -0.386 0.705
Future Grades Other Subjects 0.772 -0.208 0.155 -0.578

Notes: This table reports the results of principal components analysis. The estimates indicate the composition of each
of the first four components, estimated separately for elementary and middle school. Elementary school is defined as
5th grade and middle school is 6th-7th grade. For middle school, test scores and grades are for the one subject taught
by the relevant teacher. Elementary school teachers teach both math and English, so additional outcomes are used for
these teachers.
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Table 5: Regression Results: Predictors of High School Graduation

Elementary School Middle School

Principal Individual Principal Individual
Components Measures Components Measures

(1) (2) (3) (4)

(A) Principal Components

First Component 0.026∗∗∗ 0.021∗∗∗

(0.003) (0.001)
Second Component -0.013∗∗∗ 0.005∗∗∗

(0.003) (0.001)
Third Component 0.001 0.000

(0.003) (0.001)
Fourth Component 0.004∗ -0.002∗∗

(0.002) (0.001)

(B) Individual Measures

Math Test 0.003
(0.007)

ELA Test 0.000
(0.008)

Test Score 0.002
(0.006)

Future Math Test 0.006
(0.009)

Future ELA Test -0.002
(0.010)

Future Test Score 0.006
(0.007)

Attendance -0.006∗ -0.008∗∗∗

(0.004) (0.001)
Future Attendance 0.012∗∗∗ 0.005∗∗∗

(0.004) (0.002)
Future Grade 0.017∗ -0.001

(0.009) (0.003)
Future Grade Other Subjects 0.001 0.018∗∗∗

(0.009) (0.003)

N 2,918 2,918 14,128 14,128
Fraction Variance Explained 0.2355 0.2743 0.4138 0.4786

Notes: (* p<.10 ** p<.05 *** p<.01). Each observation is a teacher-subject-year. Columns 1 and 3 use the em-
pirical Bayes estimates of the components that result from conducting PCA on the true measures of teacher effects.
Columns 2 and 4 are based on the empirical Bayes estimates of effectiveness in terms of individual outcomes. Mea-
sures are standardized so that the coefficient represents the effect of a one standard deviation better teacher (in
terms of that measure). The coefficients are from a regression of teacher effects on high school graduation for cohort
+1onteachereffectsonshort−termoutcomesforcohort. We can only estimate teacher effects on high school graduation
for 5th grade teachers in 2006 and 2007, and for middle school teachers in 2006-2010. Standard errors are clustered at
the teacher-level. The last row reports the fraction of variance in teacher’s effectiveness at increasing their students’
high school graduation that is explained by the set of variables in each regression.
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Table 6: Composition of Weights

Unstandardized Weights Standardized Weights
First PCA First PCA

Eigenvalue Regression Regression Eigenvalue Regression Regression
(1) (2) (3) (4) (5) (6)

(A) Elementary School

Math Test 14.290 -11.670 0.142 13.634 -10.332 0.151
ELA Test 13.618 9.244 2.154 10.276 6.473 1.808
Future Math Test 33.044 50.465 23.878 28.835 40.864 23.176
Future ELA Test 22.429 33.027 14.717 15.905 21.732 11.608
Attendance -24.247 -41.447 -15.458 -1.237 -1.963 -0.878
Future Attendance 14.737 26.172 32.063 8.367 13.789 20.249
Future Grades in Subject 6.114 11.733 27.438 5.682 10.118 28.362
Future Grades Other Subjects 20.015 22.476 15.067 18.538 19.318 15.523

(B) Middle School

Test Scores 15.491 22.044 15.303 15.758 24.774 15.936
Future Test Scores 4.040 6.872 5.805 4.406 8.279 6.480
Attendance 40.109 40.808 40.810 3.314 3.725 3.452
Future Attendance 5.765 6.340 8.448 5.826 7.079 8.741
Future Grades in Subject 6.301 0.693 -0.993 10.199 1.238 -1.645
Future Grades Other Subjects 28.294 23.243 30.626 60.498 54.905 67.036

Notes: This table shows how much each individual component is weighted in our three main weighting approaches. Each
observation is a teacher-subject-year. Columns 1 and 4 contain weights based on the first eigenvalue from principal
components analysis. Columns 2 and 5 contain weights based on the coefficients from a regression of teacher effects
on high school graduation on the first four components from principal components analysis. Columns 3 and 6 contains
weights based on the coefficients from a regression of teacher effects on high school graduation on the empirical Bayes
estimates of teacher effects on individual outcomes. The weights in columns 4 to 6 are standardized to account for the
variation in teacher effects on each of the outcomes. The weights for elementary school (5th grade) are in panel A and
those for middle school (6th-7th grade) are in panel B.
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Table 7: Correlation of Estimates of Teacher Effectiveness

Weighted Summary Measures Empirical Bayes Estimates
PCA PCA Multi Single Multi Single
First Regression Regression Dimension Dimension Dimension Dimension

Eigenvalue Coefficients Coefficients Test VA Test Non-Test Non-Test
(1) (2) (3) (4) (5) (6) (7)

(A) Elementary School

PCA First Eigenvalue 1.000 0.943 0.904 0.619 0.612 0.802 0.731
PCA Regression 0.943 1.000 0.944 0.341 0.334 0.875 0.771
Regression 0.904 0.944 1.000 0.303 0.332 0.963 0.913
Multidim Test VA 0.619 0.341 0.303 1.000 0.967 0.143 0.144
Single Dim Test VA 0.612 0.334 0.332 0.967 1.000 0.189 0.203
Multidim Non-Test VA 0.802 0.875 0.963 0.143 0.189 1.000 0.970
Single Dim Non-Test VA 0.731 0.771 0.913 0.144 0.203 0.970 1.000

(B) Middle School

PCA First Eigenvalue 1.000 0.979 0.989 0.519 0.435 0.982 0.925
PCA Regression 0.979 1.000 0.987 0.664 0.575 0.943 0.853
Regression 0.989 0.987 1.000 0.544 0.447 0.969 0.882
Multidimensional Test VA 0.519 0.664 0.544 1.000 0.940 0.417 0.305
Single Dimension Test VA 0.435 0.575 0.447 0.940 1.000 0.327 0.222
Multidimensional Non-Test VA 0.982 0.943 0.969 0.417 0.327 1.000 0.960
Single Dimension Non-Test VA 0.925 0.853 0.882 0.305 0.222 0.960 1.000

Notes: These estimates show the correlation between different measures of teacher effectiveness. The first three columns
are based on the weighted summary measures of teacher effectiveness. Column 1 is based on the weights (coefficients) from
a regression of teacher effects on high school graduation on the empirical Bayes estimates of teacher effects on individual
outcomes. Column 2 is based on weights from a regression of teacher effects on high school graduation on the first four
components from principal components analysis. Column 3 is based on weights from the first eigenvalue from principal
components analysis. Column 4 is based on our estimate of teacher effects on test scores in the multidimensional setting.
Column 5 is based on traditional estimates of teacher effects on test scores in the single dimension setting. Column 6 is
based on our estimates of teacher effects on non-test score outcomes in the multidimensional setting. Column 7 is based on
estimates of teacher effects on non-test outcomes in the single dimension setting. Non-test score empirical Bayes estimates
are based on teacher effects on attendance, future attendance, future grades in subject and future grades in other subjects.
This measure equally weights teacher effects on these four outcomes. Panel (A) is based on elementary school teachers
(grade 5) and panel (B) table is based on middle school teachers (grades 6-7). For elemenatry school, test VA is an average
of the teacher’s effect on math and ELA. For middle school, test VA is for the subject taught by the relevant teacher.
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Table 8: Elementary School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates

Test Non-Test
First PCA Reg Value- Value-

Eigenvalue Reg Added Added
(1) (2) (3) (4) (5)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.149 0.145 0.142 0.078 0.111

Test Scores 0.524 0.203 0.230 0.907 0.207

Non-Test Outcomes 0.782 0.801 0.981 0.303 1.071

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.234 0.192 0.215 0.168 0.178

Test Scores 0.374 0.182 0.201 1.000 0.159

Non-Test Outcomes 0.467 0.481 0.696 0.159 1.000

Eigenvalue Summary 1.000 0.687 0.617 0.374 0.467

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first five columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on
weights from the first eigenvalue from principal components analysis. Column 2 is based on weights from a regression
of teacher effects on high school graduation on the first four components from principal components analysis. Column
3 is based on the weights (coefficients) from a regression of teacher effects on high school graduation on the empirical
Bayes estimates of teacher effects on individual outcomes. Column 4 is based on traditional estimates of teacher effects
on test scores in the single dimension setting. Column 5 is based on estimates of teacher effects on non-test outcomes
in the single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance,
future attendance, future grades in subject and future grades in other subjects. This measure equally weights teacher
effects on these four outcomes. This table is based on elementary school teachers (grade 5) and test score measurse are
based on averages across math and reading.
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Table 9: Middle School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates

PCA PCA Test Non-Test
First Regression Regression Value- Value-

Eigenvalue Coefficients Coefficients Added Added
(1) (2) (3) (4) (5)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.067 0.069 0.067 0.078 0.064

Test Scores 0.252 0.322 0.250 0.968 0.159

Non-Test Outcomes 1.550 1.507 1.524 0.230 1.611

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.101 0.104 0.103 0.153 0.097

Test Scores 0.129 0.169 0.131 1.000 0.091

Non-Test Outcomes 0.827 0.772 0.792 0.091 1.000

Eigenvalue Summary 1.000 0.913 0.931 0.129 0.827

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first three columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on
the weights (coefficients) from a regression of teacher effects on high school graduation on the empirical Bayes estimates
of teacher effects on individual outcomes. Column 2 is based on weights from a regression of teacher effects on high
school graduation on the first four components from principal components analysis. Column 3 is based on weights from
the first eigenvalue from principal components analysis. Column 4 is based on traditional estimates of teacher effects
on test scores in the single dimension setting. Column 5 is based on estimates of teacher effects on non-test outcomes
in the single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance,
future attendance, future grades in subject and future grades in other subjects. This measure equally weights teacher
effects on these four outcomes. This table is based on middle school teachers (grades 6-7) and test score measures are
based on the subject a teacher teaches.
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Figure 1: Distribution of Empirical Bayes Estimates for Elementary School Teachers

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(A) Math Test

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(B) ELA Test 

0
1

2
3

4
5

De
ns

ity
-.5-.25 0 .25 .5

EB estimate in SDs of Outcome 

(C) Future Math Test

0
2

4
6

De
ns

ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(D) Future ELA Test 

0
20

40
60

80
10

0
De

ns
ity

-.5-.25 0 .25 .5
EB estimate in SDs of Outcome 

(E) Attendance

0
2

4
6

8
De

ns
ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(F) Future Attendance

0
2

4
6

8
De

ns
ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(G) Future Math Grades

0
2

4
6

De
ns

ity

-.5 -.25 0 .25 .5
EB estimate in SDs of Outcome 

(H) Future ELA Grades

Notes: The figures above show the distribution of the multidimensional empirical Bayes
estimates of teacher effects on individual outcomes for elementary school (5th grade). All
estimates are in standard deviations of the outcome measure (standardized at the student
level before computing teacher effects). Panels A, B and E are based on student outcomes
in the year they are taught by the focal teacher. The remaining panels are based on student
outcomes in the year following assignment to the focal teacher. Elementary school teachers
teach both math and ELA.
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Figure 2: Distribution of Empirical Bayes Estimates for Middle School Teachers
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Notes: The figures above show the distribution of the multidimensional empirical Bayes
estimates of teacher effects on individual outcomes for middle school (6th - 7th grade). All
estimates are in standard deviations of the outcome measure (standardized at the student
level before computing teacher effects). Panels A and C are based on student outcomes in
the year they are taught by the focal teacher. The remaining panels are based on student
outcomes in the year following assignment to the focal teacher. Middle school teachers
typically teach one grade so test score effects reflect the relevant subject.
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Figure 3: Scree Plot of Eigenvalues
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Notes: The figures above show the percent of variance in teacher effects on our student
outcome measures explained by each principal component. These estimates come from
conducting principal components analysis on the true measures of teacher effects. Panel
(A) is for elementary school and is based on eight student outcome measures. Panel (B) is
for middle school and is based on six student outcome measures.
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Figure 4: PCA Components
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Notes: The figures above show the relative weight each student outcome receives in each of
the four main principal components. For middle school (in panel B) test scores and future
grades refer to the subject taught by the focal teacher. In elementary school (panel A)
teachers teach both math and ELA. The principal components in panels A and B are not
the same, in part because they are based on different sets of outcomes. For both middle
and elementary school, the first four principal components each individually explain at least
five percent of the variation in teacher effects on the relevant outcomes.
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Figure 5: Composition of Weights
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Notes: The figures above show the relative weights placed on each individual outcome for
each of our three main approaches for creating summary measures of teacher effectiveness.
The first approach (represented by the green bars) uses the first eigenvalue from principal
components analysis to combine teacher effects on the outcomes into a summary measure.
The height of the green bars shows the extent to which each individual outcome contributes
to the summary measure. The second approach (orange bars) uses the coefficients from
a regression of high school graduation on the four PCA components to weight individual
outcomes in a summary measure. The third approach (navy bars) uses the coefficients from
a regression of high school graduation on the empirical Bayes estimates of the individual
outcomes as weights. Panel (A) shows the weights for elementary school teachers and panel
(B) shows them for middle school teachers.
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Figure 6: Elementary School: Correlation between Teacher Ratings on Different Measures
of Effectiveness
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Notes: These figures show the correlations between elementary school teachers’ ratings
on our summary measures of effectiveness and traditional single dimensions value-added
measures based on test scores or non-test score measures. In panels (A) and (B), the y-axis
is based on the weights from the first eigenvalue from principal components analysis. The y-
axis in panels (C) and (D) is based on the (PCA regression) approach which uses the weights
from a regression of high school graduation on the four PCA components. In panels (E) and
(F), the y-axis shows the summary measure based on a regression of high school graduation
on the empirical Bayes estimates of the individual outcomes. Panels (C) and (E) look at
correlations with test score value-added and Panels (D) and (F) look at correlations with
non-test value-added. The dots represent the standardized ratings for individual teachers
and the red lines show the relationship between the two relevant measures. These figures
are for elementary school teachers who teach fifth grade.
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Figure 7: Middle School: Correlation between Teacher Ratings on Different Measures of
Effectiveness
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Notes: These figures show the correlations between middle school teachers’ ratings on our
summary measures of effectiveness and traditional single dimensions value-added measures
based on test scores or non-test score measures. In panels (A) and (B), the y-axis is based
on the weights from the first eigenvalue from principal components analysis. The y-axis in
panels (C) and (D) is based on the (PCA regression) approach which uses the weights from
a regression of high school graduation on the four PCA components. In panels (E) and
(F), the y-axis shows the summary measure based on a regression of high school graduation
on the empirical Bayes estimates of the individual outcomes. Panels (C) and (E) look at
correlations with test score value-added and Panels (D) and (F) look at correlations with
non-test value-added. The dots represent the standardized ratings for individual teachers
and the red lines show the relationship between the two relevant measures. These figures
are for middle school teachers who teach sixth and seventh.
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Figure 8: Fairness in Policy with Missing Measures
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Notes: This figure considers two policies: one of which removes teachers whose value-added
is in the bottom 5% of the distribution (illustrated by the dark grey bars) and the other
removes teachers with a probability equal to the probability that their true effectiveness is
in the bottom 5% of the distribution (illustrated by the light grey bars). We then randomly
remove measures from teachers to see how the probability that a teacher is removed varies
with the number of measures observed.
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A Additional Tables and Figures

Table A.1: PCA: Proportion of Variance Explained by Components

True Empirical Raw
Measures Bayes Measures

(1) (2) (3)

(A) Elementary School

Component 1 0.485 0.526 0.428
Component 2 0.250 0.300 0.199
Component 3 0.116 0.103 0.104
Component 4 0.059 0.039 0.086
Component 5 0.047 0.023 0.072
Component 6 0.033 0.007 0.067
Component 7 0.010 0.002 0.041
Component 8 0.001 0.000 0.002

(B) Middle School

Component 1 0.682 0.758 0.582
Component 2 0.163 0.166 0.144
Component 3 0.078 0.053 0.126
Component 4 0.067 0.020 0.098
Component 5 0.010 0.002 0.048
Component 6 0.001 0.000 0.001

Notes: These estimates indicate the proportion of variance explained by each component when conducting principal
components analysis on the true measures of teacher effects (in column 1), the empirical Bayes measures (in column 2)
and the raw measures of teacher effects. For elementary school, PCA is conducted on eight outcomes, and for middle
school it is conducted on six outcomes.

Table A.2: Correlation between Multidimensional and Single Dimension Empirical Bayes
Estimates

Math ELA Future Future Future Future
Test Test Math ELA Future Math ELA

(A) Elementary School Scores Scores Test Test Attendance Attendance Grades Grades

Correlation 0.964 0.900 0.958 0.899 0.873 0.931 0.962 0.941

Future Future Future
Test Test Future Grades Grades in

(B) Middle School Scores Scores Attendance Attendance in Subject Other Subjects

Correlation 0.943 0.816 0.850 0.931 0.898 0.983

Notes: Panel A is based on elementary school (5th grade) teachers and panel B is based on middle school teachers
(6th-7th grade). Estimates indicate the correlation between the single and multidimensional empirical Bayes’ estimates
of teacher effects on the noted outcome. The multidimensional empirical Bayes estimates incorporate information about
teacher effects on and the noisiness of other outcomes.
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Table A.3: Regression Results: Predictors of Regents Diplomas

Elementary School Middle School

Regents Diploma Advanced Regents Regents Diploma Advanced Regents
(1) (2) (3) (4)

(A) PCA Components

First Component 0.027∗∗∗ 0.030∗∗∗ 0.020∗∗∗ 0.016∗∗∗

(0.002) (0.002) (0.001) (0.001)
Second Component -0.011∗∗∗ -0.007∗∗∗ 0.006∗∗∗ 0.015∗∗∗

(0.003) (0.002) (0.001) (0.001)
Third Component 0.003 0.009∗∗∗ 0.000 -0.002

(0.003) (0.002) (0.001) (0.001)
Fourth Component 0.003 0.002 -0.002 -0.002∗∗

(0.002) (0.002) (0.001) (0.001)

(B) Individual Measures

Math Test Score 0.005 0.010
(0.007) (0.007)

ELA Test Score -0.003 -0.005
(0.008) (0.008)

Test Score 0.003 0.013∗∗

(0.006) (0.005)
Future Math Test 0.005 0.010

(0.010) (0.009)
Future ELA Test 0.002 0.007

(0.010) (0.010)
Future Test Score 0.005 0.007

(0.007) (0.005)
Attendance -0.008∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.001

(0.003) (0.004) (0.001) (0.002)
Future Attendance 0.013∗∗∗ 0.014∗∗∗ 0.007∗∗∗ 0.000

(0.004) (0.003) (0.002) (0.001)
Future Grade 0.012 0.019∗∗∗ -0.001 -0.003

(0.009) (0.006) (0.003) (0.002)
Future Grade Other Subjects 0.004 -0.008 0.016∗∗∗ 0.010∗∗∗

(0.008) (0.006) (0.003) (0.002)

N 2,918 2,918 14,128 14,128

Notes: (* p<.10 ** p<.05 *** p<.01). Each observation is a teacher-subject-year. Panel (A) uses the empirical Bayes
estimates of the components that result from conducting PCA on the true measures of teacher effects. Panel (B) is
based on the empirical Bayes estimates of effectiveness in terms of individual outcomes. Measures are standardized so
that the coefficient represents the effect of a one standard deviation better teacher (in terms of that measure). The
coefficients are from a regression of teacher effects on high school graduation for cohort +1onteachereffectsonshort−
termoutcomesforcohort. We can only estimate teacher effects on high school graduation and regents diplomas for 5th
grade teachers in 2006 and 2007, and for middle school teachers in 2006-2010. Standard errors are clustered at the
teacher-level.
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Table A.4: Spearman Correlations of Estimates of Teacher Effectiveness

Weighted Summary Measures Empirical Bayes Estimates

PCA PCA Multi Single Multi Single
First Regression Regression Dimension Dimension Dimension Dimension

Eigenvalue Coefficients Coefficients Test VA Test Non-Test Non-Test
(1) (2) (3) (4) (5) (6) (7)

(A) Elementary School

PCA First Eigenvalue 1.000 0.936 0.898 0.599 0.600 0.799 0.736
PCA Regression 0.936 1.000 0.942 0.331 0.334 0.878 0.781
Regression 0.898 0.942 1.000 0.299 0.335 0.964 0.917
Multidim Test VA 0.599 0.331 0.299 1.000 0.965 0.150 0.155
Single Dim Test VA 0.600 0.334 0.335 0.965 1.000 0.198 0.212
Multidim Non-Test VA 0.799 0.878 0.964 0.150 0.198 1.000 0.973
Single Dim Non-Test VA 0.736 0.781 0.917 0.155 0.212 0.973 1.000

(B) Middle School

PCA First Eigenvalue 1.000 0.977 0.986 0.535 0.466 0.980 0.909
PCA Regression 0.977 1.000 0.986 0.672 0.597 0.936 0.828
Regression 0.986 0.986 1.000 0.560 0.478 0.963 0.858
Multidim Test VA 0.535 0.672 0.560 1.000 0.952 0.434 0.317
Single Dim Test VA 0.466 0.597 0.478 0.952 1.000 0.363 0.249
Multidim Non-Test VA 0.980 0.936 0.963 0.434 0.363 1.000 0.953
Single Dim Non-Test VA 0.909 0.828 0.858 0.317 0.249 0.953 1.000

Notes: These estimates show the Spearman rank correlations between different measures of teacher effectiveness. (This
is a non-parametric estimate of the association between two measures.) The first three columns are based on the
weighted summary measures of teacher effectiveness. Column 1 is based on the weights (coefficients) from a regression
of teacher effects on high school graduation on the empirical Bayes estimates of teacher effects on individual outcomes.
Column 2 is based on weights from a regression of teacher effects on high school graduation on the first four components
from principal components analysis. Column 3 is based on weights from the first eigenvalue from principal components
analysis. Column 4 is based on our estimate of teacher effects on test scores in the multidimensional setting. Column
5 is based on traditional estimates of teacher effects on test scores in the single dimension setting. Column 6 is based
on our estimates of teacher effects on non-test score outcomes in the multidimensional setting. Column 7 is based
on estimates of teacher effects on non-test outcomes in the single dimension setting. Non-test score empirical Bayes
estimates are based on teacher effects on attendance, future attendance, future grades in subject and future grades in
other subjects. This measure equally weights teacher effects on these four outcomes. Panel (A) is based on elementary
school teachers (grade 5) and panel (B) table is based on middle school teachers (grades 6-7). For elemenatry school,
test VA is an average of the teacher’s effect on math and ELA. For middle school, test VA is for the subject taught by
the relevant teacher.
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Table A.5: Weights based on Predicting Regents Diploma and Advanced Regents

Unstandardized Weights Standardized Weights

Regents Diploma Advanced Regents Regents Diploma Advanced Regents

PCA Regression PCA Regression PCA Regression PCA Regression
Regression Coefficients Regression Coefficients Regression Coefficients Regression Coefficients

(1) (2) (3) (4) (5) (6) (7) (8)

(A) Elementary School

Math Test -8.159 4.994 -2.414 10.946 -7.291 5.326 -2.201 11.281
ELA Test 10.042 1.322 11.508 0.314 7.098 1.115 8.297 0.256
Future Math Test 52.099 26.899 55.594 37.070 42.581 26.235 46.348 34.942
Future ELA Test 32.519 15.808 31.887 22.697 21.599 12.529 21.603 17.386
Attendance -39.902 -14.782 -37.036 -19.402 -1.907 -0.843 -1.806 -1.070
Future Attendance 25.100 31.198 23.491 29.048 13.348 19.798 12.742 17.816
Future Grades in Subject 7.550 18.041 -0.327 15.795 6.571 18.739 -0.291 15.856
Future Grades Other Subjects 20.751 16.520 17.298 3.532 18.002 17.102 15.307 3.534

(B) Middle School

Test Scores 22.916 15.836 33.072 40.670 25.774 16.949 36.081 38.159
Future Test Scores 7.283 5.806 11.894 15.769 8.780 6.661 13.910 15.860
Attendance 40.066 40.827 30.573 19.286 3.660 3.549 2.709 1.470
Future Attendance 6.561 10.217 7.774 5.198 7.331 10.864 8.426 4.846
Future Grades in Subject 0.574 -0.967 -1.080 -4.257 1.026 -1.646 -1.875 -6.355
Future Grades Other Subjects 22.600 28.281 17.768 23.334 53.429 63.623 40.748 46.020

Notes: This table shows the weights from the PCA regression and regression approach when use Regents Diploma
receipt or Advanced Regents Diploma as the long-term outcome of interest. Each observation is a teacher-subject-year.
Columns 1 and 5 contain weights based on the coefficients from a regression of teacher effects on Regents diploma
receipt on the first four components from principal components analysis. Columns 2 and 6 contain weights based on
the coefficients from a regression of teacher effects on Regents diploma receipt on the empirical Bayes estimates of
teacher effects on individual outcomes. Columns 3 and 7 contain weights based on the coefficients from a regression of
teacher effects on earning an Advanced Regents diploma receipt on the first four components from principal components
analysis. Columns 4 and 8 contain weights based on the coefficients from a regression of teacher effects on earning an
Advanced Regents diploma on the empirical Bayes estimates of teacher effects on individual outcomes. The weights in
columns 5 through 8 are standardized to account for the variation in teacher effects on each of the eight outcomes.
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Table A.6: Middle School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates

PCA HS Grad Regents Advanced Test Non-Test
First PCA Reg Reg Regents Value- Value-

Eigenvalue Reg Reg Added Added
(1) (2) (3) (4) (5) (6) (7)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.067 0.069 0.067 0.067 0.083 0.078 0.064

Regents Diploma 0.070 0.072 0.070 0.070 0.085 0.077 0.068

Advanced Regents 0.022 0.024 0.023 0.022 0.034 0.042 0.021

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.101 0.104 0.103 0.105 0.132 0.153 0.097

Regents Diploma 0.114 0.117 0.118 0.118 0.140 0.142 0.114

Advanced Regents 0.038 0.042 0.036 0.032 0.069 0.105 0.041

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first five columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on
weights from the first eigenvalue from principal components analysis. Column 2 is based on weights from a regression of
teacher effects on high school graduation on the first four components from principal components analysis. Column 3 is
based on the weights (coefficients) from a regression of teacher effects on high school graduation on the empirical Bayes
estimates of teacher effects on individual outcomes. Column 4 is based on weights from a regression of teacher effects
on receipt of a Regents diploma on the empirical Bayes estimates of teacher effects on individual outcomes. Column
5 is based on weights from a regression of teacher effects on earning an Advanced Regents diploma on the empirical
Bayes estimates of teacher effects on individual outcomes. Column 6 is based on traditional estimates of teacher effects
on test scores in the single dimension setting. Column 7 is based on estimates of teacher effects on non-test outcomes
in the single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance,
future attendance, future grades in subject and future grades in other subjects. This measure equally weights teacher
effects on these four outcomes. This table is based on middle school teachers (grades 6 and 7) and test score measures
are based on the subject a teacher teaches.
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Table A.7: Elementary School: Implications of Changing Evaluation Measures

Weighted Summary Measures Empirical Bayes Estimates
PCA HS Grad Regents Advanced Test Non-Test
First PCA Reg Reg Regents Value- Value-

Eigenvalue Reg Reg Added Added
(1) (2) (3) (4) (5) (6) (7)

(A) Projected Change in Outcomes from Replacing Bottom 5% with Mean Teacher

HS Graduation 0.149 0.145 0.142 0.151 0.145 0.078 0.111

Regents Diploma 0.165 0.159 0.158 0.167 0.159 0.082 0.121

Advanced Regents 0.091 0.090 0.090 0.094 0.094 0.054 0.062

(B) Percent of Bottom 5% on Column VA also in Bottom 5% on Row VA

HS Graduation 0.234 0.192 0.215 0.224 0.196 0.168 0.178

Regents Diploma 0.262 0.238 0.257 0.271 0.252 0.187 0.187

Advanced Regents 0.173 0.164 0.164 0.164 0.173 0.093 0.093

Notes: The estimates in Panel (A) show the differences in projected outcomes (high school graduation, test scores and
non-test outcomes) for average teachers and those in the bottom 5% as ranked in terms of the value-added measure
from the relevant column. The estimates in Panel (B) show the fraction of teachers in the bottom 5% in terms of the
value-added metrics in the relevant row who are also in the bottom 5% in terms of the column’s value-added metric.
The first five columns are based on the weighted summary measures of teacher effectiveness. Column 1 is based on
weights from the first eigenvalue from principal components analysis. Column 2 is based on weights from a regression of
teacher effects on high school graduation on the first four components from principal components analysis. Column 3 is
based on the weights (coefficients) from a regression of teacher effects on high school graduation on the empirical Bayes
estimates of teacher effects on individual outcomes. Column 4 is based on weights from a regression of teacher effects
on receipt of a Regents diploma on the empirical Bayes estimates of teacher effects on individual outcomes. Column
5 is based on weights from a regression of teacher effects on earning an Advanced Regents diploma on the empirical
Bayes estimates of teacher effects on individual outcomes. Column 6 is based on traditional estimates of teacher effects
on test scores in the single dimension setting. Column 7 is based on estimates of teacher effects on non-test outcomes
in the single dimension setting. Non-test score empirical Bayes estimates are based on teacher effects on attendance,
future attendance, future grades in subject and future grades in other subjects. This measure equally weights teacher
effects on these four outcomes. This table is based on elementary school teachers (grade 5) and test score measures are
based on averages across math and reading.
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Figure A.1: Scree Plot of Eigenvalues
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Notes: The figures above show the percent of variance in teacher effects on our student
outcome measures explained by each principal component. These estimates come from
conducting principal components analysis on four covariance matrices: C1, C2, C3, C4,
where Ck is the covariance between Θj,t and Θj,t−k. Panel (A) is for elementary school and
is based on eight student outcome measures. Panel (B) is for middle school and is based on
six student outcome measures.
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Figure A.2: PCA Components

0
.1

.2
.3

.4
.5

PC
A 

W
ei

gh
t

Math
Test

ELA
Test

Future
Math
Test

Future
ELA
Test

AttendanceFuture
Attendance

Math
Grades

ELA
Grades

(A) Elementary School
0

.2
.4

.6
.8

PC
A 

W
ei

gh
t

Test Future
Test

Attendance Future
Attendance

Future
Grades

Future
Grades
Other

Subjects

(B) Middle School

First Covariance Second Covariance
Third Covariance Fourth Covariance

Notes: The figures above show the relative weight each student outcome receives in each of
the first main principal components. For middle school (in panel B) test scores and future
grades refer to the subject taught by the focal teacher. In elementary school (panel A)
teachers teach both math and ELA. The principal components in panels A and B are not
the same, in part because they are based on different sets of outcomes. For both middle
and elementary school, we show the first principal component for each of the following four
covariance matrices: C1, C2, C3, and C4, where Ck is the covariance between Θj,t and
Θj,t−k.
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Figure A.3: Comparing the Missing Data Approaches
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Notes: The figure above shows three empirical Bayes distributions. All three are a weighted
average of the empirical Bayes estimates of all the effectiveness measures, with the weights
estimated using the PCA Regression approach defined in Section III. They differ in how the
missing observations are handled. The “No Imputation” method uses the approach defined
in Section VI. The other two approaches imputes the missing data and then estimates
the empirical Bayes estimates as if none of the observations were missing. The “Impute
Missing as Overall Mean” imputes the missing data at the overall mean and the “Impute
Missing as Linear Prediction” imputes the missing observations as the best linear predictions
conditional on the observed outcomes.
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B Proofs

Theorem 2. Let Ω =
( σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)
and Σj =

( σ2
Σ,1 ρΣ

ρΣ σ2
Σ,2

)
. If denote Ω∗j =

( ω1,1 ω1,2
ω2,1 ω2,2

)
, we get

that:

ω1,1 =
1

det(Ω + Σj)

[
σ2

Ω,1σ
2
Ω,2 + σ2

Ω,1σ
2
Σ,2 − ρ2

Ω − ρΩρΣ

]
(17)

ω1,2 =
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(18)

Proof. This is most clearly seen using the fact that Ω∗j can also be written as
(
(Ω+Σj)

−1Ω
)′

,

which we prove below. We then get that:

Ω∗j =
(
(Ω + Σj)

−1Ω
)′

(19)

=

[
1

det(Ω + Σj)

(
σ2

Ω,2 + σ2
Σ,2 −(ρΩ + ρΣ)

−(ρΩ + ρΣ) σ2
Ω,1 + σ2

Σ,1

)(
σ2

Ω,1 ρΩ

ρΩ σ2
Ω,2

)]′
(20)

(21)

where det(Ω + Σj) is the determinant of Ω + Σj . Multiplying the matrices and accounting

for the transpose, we get that:

ω1,1 =
1

det(Ω + Σj)

[
(σ2

Ω,2 + σ2
Σ,2)σ2

Ω,1 − ρΩ(ρΩ + ρΣ)
]

(22)

ω1,2 =
1

det(Ω + Σj)

[
(σ2

Ω,2 + σ2
Σ,2)ρΩ − σ2

Ω,2(ρΩ + ρΣ)
]

(23)

=
1

det(Ω + Σj)

[
σ2

Σ,2ρΩ − σ2
Ω,2ρΣ

]
(24)

ω2,1 =
1

det(Ω + Σj)

[
(σ2

Ω,1 + σ2
Σ,1)ρΩ − σ2

Σ,1(ρΩ + ρΣ)
]

(25)

=
1

det(Ω + Σj)

[
σ2

Σ,1ρΩ − σ2
Ω,1ρΣ

]
(26)

ω2,2 =
1

det(Ω + Σj)

[
(σ2

Ω,1 + σ2
Σ,1)σ2

Ω,2 − ρΩ(ρΩ + ρΣ)
]

(27)

Theorem 3. For any symmetric, invertible matrices Σj and Ω such that Σj + Ω is also

invertible, we have:

(Σ−1
j + Ω−1)−1Σ−1

j =
(
(Ω + Σj)

−1Ω
)′

(28)

Proof. We first note that if two matrices A and B are invertible, then A = B if and only
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if A−1 = B−1. So we will show that
[
(Σ−1

j + Ω−1)−1Σ−1
j

]−1
=
[(

(Ω + Σj)
−1Ω

)′]−1
. Using

the properties of inverses, we get that:[
(Σ−1

j + Ω−1)−1Σ−1
j

]−1
= Σj(Σ

−1
j + Ω−1) (29)

= ΣjΣ
−1
j + ΣjΩ

−1 (30)

= I + ΣjΩ
−1 (31)

where I is the identity matrix.

Similarly, using the properties of inverses, transposes, and the the fact that Ω and Σj

are symmetric, we get that:[(
(Ω + Σj)

−1Ω
)′]−1

=
[
Ω(Ω + Σj)

−1
]−1

(32)

= (Ω + Σj)Ω
−1 (33)

= I + ΣjΩ
−1 (34)

Two final notes. First, the condition that Σj and Ω are both invertible, as is Σj + Ω, is

satisfied when Σj and Ω are positive definite matrices. Thus, the conditions for the proof

will hold in our context as long as Ω is invertible. Second, this proof provides yet another

way to express the weights, where Ω∗j =
(
I + ΣjΩ

−1
)−1

. This also makes clear that the

weights depend on the relative size of the error terms, Σj , and the true effects, Ω.

Theorem 4. Under the estimate approach specified in Section III.A, the model specified

in Section III.C, and the assumption that the number of teachers and students increases to

infinity, we have that: β̂ → β, Ω̂→ Ω, Σ̂ε → Σε and Σ̂ν → Σν .

Proof. We start by showing that under the assumptions, β̂ → β as the number of students

goes to infinity. To do so, we note that from the Frisch-Waugh-Lovell theorem including

teacher fixed effects is equivalent to demeaning the outcome and covariates at the teacher-

level and then running a regression at the student-level without the teacher fixed-effects.

Denoting Xj,t−1 as the average outcome on measure X over the students who teacher j

teaches in year t− 1, our statistical model of student outcomes (e.g. Equation (37)) implies

that:

yi,t−1 − yj,t−1 = β · (Xi,t−1 −Xj,t−1)− (εi,t−1 − εj,t−1) (35)

Next, note that since Xi,t−1 is uncorrelated with εi,t−1, we also get that Xi,t−1 −Xj,t−1 is

uncorrelated with εi,t−1 − εj,t−1. Thus, the coefficient from the regression of yi,t−1 − yj,t−1

on Xi,t−1 −Xj,t−1 will converge to β as the number of students go to infinity.
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Next, we note that if β̂ = β we get that θj,t = Θj + νj,t + εi,t. From this, we see that:

Ω̂ =
1

J

∑
ΘjΘ

′
j + Θj · (νj,t−1 + εi,t−1)′ + (νj,t + εi,t) ·Θ′j (36)

Under the assumptions regarding the error term, we get that 1
J

∑
Θj · (νj,t−1 + εi,t−1)′ → 0

and 1
J

∑
(νj,t + εi,t) ·Θ′j → 0. Thus, Ω̂→ E[ΘjΘ

′
j ] = Ω.

Similarly, we get that E[θj,tθ
′
j,t − Ω̂− 1

Nj
Σ̂ε] = Ω + Σν + 1

Nj
Σε − Ω̂− 1

Nj
Σ̂ε. So if Ω̂→ Ω

and Σ̂ε → Σε, we get that E[θj,tθ
′
j,t − Ω̂− 1

Nj
Σ̂ε] = Σν for all j. From method of moments,

we can then get that Σ̂ν → Σν .

Theorem 5. Let θ0 to be the observed measures for some teacher and θ1 to be any potential

subset of the unobserved measures for the same teacher. Further, let d(Θj) be any policy that

a principal would like to implement if Θj were fully observed and define P(θ) = EΘj [d(Θj)|θ].
Then:

P(θ0) = Eθ1
[
P(θ1, θ0)

∣∣∣ θ0

]
for any θ0.

Proof. The proof follows almost directly from the law of iterated expectations. Specifically,

note that:

P(θ0) = EΘ

[
d(Θ) | θ0

]
= Eθ1

[
EΘ

[
d(Θ) |θ1, θ0

] ∣∣∣ θ0

]
= Eθ1

[
P(θ1, θ0)

∣∣∣ θ0

]
The first and third equality signs stem from the definition of P(θ0) and P(θ1, θ0), while the

second uses the law of iterated expectations.

C Framework with Teacher Value-Added Drift

C.1 Model with Drift

In our main analysis, we assumed that teachers do not get more or less effective over time;

instead, any teacher’s effect on their students’ outcomes is a combination of the teacher’s

persistent effectiveness and a year-specific shock. We now present the model in which there

is drift and discuss how that changes the interpretation of the results; the model also informs
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the discussion in Section ?? of how to include multiple years of teacher effectiveness in the

predictions.

As before, we can write the statistical model of student outcomes as:

yi,t−1 = βXi,t−1 + Θj,t−1 + νj,t−1 + εi,t−1 (37)

where Xi,t−1 are the student’s characteristics, Θj,t−1 is the effect of the teacher on her out-

comes, and both νj,t−1 and εi,t−1 are normally distributed error terms that represent the

classroom and individual-shock, respectively. Note that we are slightly abusing notation

here, in that before νj,t−1 denoted the classroom shocks caused by both idiosyncratic shocks

to the teachers’ effectiveness and classroom shocks that have other causes and here νj,t−1

only corresponds to classroom shocks caused by factors other than the teachers’ effective-

ness.

Defining a teacher’s value-added in year t− 1 as we do in Equation (3) and continuing

to denote these estimates θj,t−1, from this statistical model we get that if β̂ → β:

θj,t−1|Θj,t−1 ∼ N
(

Θj,t−1,Σν +
1

Nj
Σε

)
(38)

If we assume that Θj,t−1 ∼ N(0,Ω), we can then use Bayes’ Law as before to show that:

Θj,t−1|θj,t−1 ∼ N
(

Ω∗jθj,t−1,Σ
∗
j

)
(39)

where again

Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j

Σ∗j = (Σ−1
j + Ω−1)−1

The challenge is that we do not want the posterior distribution of Θj,t−1 conditional

on θj,t−1 and instead want the posterior of Θj,t conditional on θj,t−1. To calculate this

posterior, we need to augment that model by specifying how Θj,t−1 is linked to Θj,t.

In the Section III.A, we linked Θj,t−1 and Θj,t by assuming that both are equal to some

permanent component of teacher effectiveness and a year specific shock. We now relax that

assumption and only assume that Θj,t evolves in a stationary Gaussian process. That is,

we assume that: [
Θj,t

Θj,t−1

]
∼ N

([
0

0

]
,

[
Ω C1

C1 Ω

])
(40)

for every t. Here Ω equals the variance of Θj,t, while before we used it to only denote

the persistent component of teacher effectiveness, and C1 equals the covariance of Θj,t
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and Θj,t−1. Our assumption that they evolve in a Gaussian process implies that their

joint distribution is distributed according to a multivariate normal distribution and the

assumption that it’s stationary implies that the variance and covariance of this distribution

do not depend on t.

From this model, we get that:

Θj,t|Θj,t−1 ∼ N
(
C1Ω−1Θj,t−1,Ω− C1Ω−1C1

)
(41)

which follows from the fact that conditioning on a portion of the observations in a multi-

variate normal distribution still results in a multivariate normal distribution. Our earlier

assumption that Θj,t consists of a persistent component and year-specific shock, which we

ignored when computing Ω, meant that C1 = Ω. That meant that Θj,t|Θj,t−1 ∼ N
(
Θj ,0

)
,

which is why we were able to ignore this step in the derivations used in the main body of

the paper.

We can then combine Equations (41) and (39) to get that:38

Θj,t|θj,t−1 ∼ N
(
C1Ω−1Ω∗jθj,t−1,Ω− C1Ω−1C1 + C1Ω−1Σ∗j

)
(42)

Substituting in the fact that Ω∗j = Ω(Ω+Σj)
−1, we get that the empirical Bayes estimates

in a model with drift are the mean posterior, or:

Θ̂j,t = C1(Ω + Σj)
−1θj,t−1 (43)

C.2 Interpretation of Estimates

In the paper, we framed the results in a model without drift. We now briefly discuss how

the interpretation changes in our model with drift in teacher effectiveness. To ease the

comparison, we will put a bit more structure on the nature of the drift and assume that the

teacher effects can be decomposed into three components: a persistent effect Θj , a time-

varying effect denoted φj,t, and a year-specific shock ηj,t. We will further assume that the

time-varying component evolves according to a stationary AR(1) process, so φj,t = ρφj,t−1+

φ̃j,t for ρ ∈ (0, 1) and an idiosyncratic error term φ̃j,t. Assuming the three components are

independent, we then get that Ω = V
(
Θj

)
+ V

(
φj,t
)

+ V(ηj,t) and C1 = V
(
Θj

)
+ ρV

(
φj,t
)

38To see why this is true, we can write Θj,t = C1Ω−1Θj,t−1 + ε and Θj,t−1 = Ω∗jθj,t−1 + η, where ε and
η are mean-zero and normally distributed error terms; these error terms are not to be confused with the ε
and η error terms defined in the paper above and are instead placeholders for the error terms implied by
the distributions of Θj,t|Θj,t−1 and Θj,t−1|θj,t−1. We can then combine these equations to get that Θj,t =
C1Ω−1Ω∗jθj,t−1 + C1Ω−1η+ ε. Note that θj,t−1 is independent from ε since Θj,t|Θj,t−1, θj,t−1 = Θj,t|Θj,t−1.
We therefore get that Θj,t|θj,t−1 is distributed normally with mean C1Ω−1Ω∗jθj,t−1 and variance defined by
the variance of C1Ω−1η + ε.
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Our results regarding the dimensionality of teacher effectiveness therefore incorrectly

attempted to explain how well Θj + ρφj,t−1 could be summarized by a lower dimensional

vector rather than Θj + φj,t−1. However, these differ only by (1 − ρ)V
(
φj,t
)
. Unless most

of the variation in teacher effectiveness is generated by the time-varying component (i.e.

V
(
φj,t
)

is much bigger than V(Θj), ρ is much smaller than one, and the variance structure

of Θj is quite different than the variance structure of φj,t−1 the results are likely to be

similar.

Furthermore there is also a conceptual justification for using the model without drift

for our purposes. Fundamentally, Θj + ρφj,t−1 is the only part of the teachers’ effectiveness

in year t that is knowable in year t − 1. Just as we ignored the year-specific shock ηj,t

when exploring how well teacher effectiveness can be explained by a lower dimensional

vector, one could argue that we should only be concerned with how well Θj + ρφj,t−1 can

be summarized rather than Θj + φj,t−1. From that perspective, it is actually C1 that we

want to explain, rather than Ω, and the approach we use in the paper provides the correct

empirical estimates, albeit motivated in a slightly incorrect way.

Having said that, we can also provide some empirical evidence that our results, which

aim to understand the dimensionality of Θj +ρφj,t−1, provide a similar results as if we were

to explore the dimensionality of Θj + φj,t−1. While we cannot test directly how much our

results would change if we used Θj+φj,t−1 instead of Θj+ρφj,t−1 without more assumptions

to better separate the classroom shock due to the teacher from the classroom shock not due

to the teacher, we can explore whether our results change when looking at Θj + ρ2φj,t−1

rather than Θj + ρφj,t−1 by conducting a PCA on Ĉ2 = Cov(θi,t, θi,t−2), rather than on Ĉ1.

If the results are similar, then it’s likely that they would also be similar when exploring

Θj + φj,t−1.

In Figures A.1 and A.2, we show that the results of the PCA are nearly identical,

regardless of whether we estimate the components using C1, C2, C3, or C4. More specifically,

in Figure A.1 we illustrate that the components explain a similar percentage of the overall

variance regardless of the lag we use. In Figure A.2, we further show that the weights derived

from the first component are similar regardless of the lag used. We therefore believe that

the results do not depend on the fact that we assumed C1 ≈ Ω.

Finally, although we used the model without drift to compute the empirical Bayes’

estimates, the empirical Bayes estimates will actually be identical to those computed in a

model with drift. Interestingly, this is true in spite of the fact that erroneously assuming

away drift implies leads us to estimate both Ω and Σj incorrectly. However, since we

estimate Σν as consisting of the the “unexplained” variance of θj,t, which corresponds to

the unexplained variance of Ω + Σj , we still correctly estimate Ω + Σj even though both

the estimates of Ω and Σj are incorrect. For the empirical Bayes’ estimates, therefore,
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specifying whether there is drift in teacher effectiveness or not is only important when

including multiple years of data in the estimates; we discuss this more below.

D Using Empirical Bayes’ Estimates as Covariates

Researchers often use the empirical Bayes estimates as covariates in a subsequent regression.

In cases where the empirical Bayes estimate consist of a single dimension and are the only

covariate in this regression, it is well known that one can interpret the coefficient as if the

true measure was used in the regression (Jacob and Lefgren (2008)). We show here that

the same is true when the empirical Bayes estimates are multidimensional and when other

covariates are included in the regression; however, there are some subtitles that we discuss

as well.

To formalize this, suppose that we want to use the empirical Bayes estimates as regres-

sors, i.e., we want to estimate a regression of some outcome Θ̃j on Θj . We will let γ be the

OLS coefficient resulting from that regression, i.e.,:

γ = lim
N→∞

(Θ′Θ)−1Θ′Θ̃ (44)

where the jth row of Θ is Θ′j . Since we do not observe Θj directly, however, we instead

need to estimate

γ̂ = lim
N→∞

(Θ̂′Θ̂)−1Θ̂′Θ̃ (45)

where the jth row of Θ̂ is Θ̂′j and Θ̂j = Ω∗jθj,t−1. Our question is how γ̂ and γ are related

and, more specifically, under what assumptions are they equal.

We start by using the law of large numbers, together with the fact that Θ̂j = Ω∗jθj,t−1, to

get that 1
N Θ̂′Θ̂→ E[(Ω∗jθj,t−1)(Ω∗jθj,t−1)′]. From the assumptions inherent to the the model

we discuss in Section III.A, it follows that E[(Ω∗jθj,t−1)(Ω∗jθj,t−1)′] = E[Ω∗j (Ω + Σj)Ω
∗′
j ].

Thus, 1
N Θ̂′Θ̂→ E[Ω∗j (Ω + Σj)Ω

∗′
j ].

Next, also using the law of large numbers we get that 1
N Θ̂′Θ̃ → E[(Ω∗jθj,t−1)Θ̃j ]. From

the fact that γ is the OLS coefficient resulting from a regression of θ̃j on Θj , we can write

Θ̃j = Θ′jγ + ej , where E[Θjej ] = 0. Thus, E[(Ω∗jθj,t−1)Θ̃j ] = E[(Ω∗jθj,t−1)Θ′jγ + ej ] =

E[Ω∗jθj,t−1Θ′j ]γ + E[Ω∗jθj,t−1ej ].

We will assume that E[θj,t−1ej ] = 0 since E[Θjej ] = 0, which is essentially assuming

that the estimation error for Θj is uncorrelated with the outcome of interest Θ̃j . This

would generally be true if, for example, the long-run outcome of interest is measured using

a different cohort of students than is used to estimate the short-term impact.

Under this assumption, we get that 1
N Θ̂′Θ̃→ E[Ω∗jΩ]γ. This follows from the fact that

E[θj,t−1Θ′j ] = Ω, which reflects the fact that the estimation error is uncorrelated with the

80



Mulhern and Opper

true impact of the teacher.

Combining the above two results, we get that:

γ̂ = E[Ω∗j (Ω + Σj)Ω
∗′
j ]−1E[Ω∗jΩ]γ (46)

which itself implies that γ̂ = γ if (and only if) E[Ω∗j (Ω + Σj)Ω
∗′
j ] = E[Ω∗jΩ]. Using the

formulation that Ω∗j = (Σ−1
j + Ω−1)−1Σ−1

j it is far from obvious that this is the case.

That it is true, however, is easy to see when using the alternative description, that Ω∗j =

Ω(Ω + Σj)
−1. From this, we get that:

E[Ω∗j (Ω + Σj)Ω
∗′
j ] = EΩ(Ω + Σj)

−1(Ω + Σj)(Ω + Σj)
−1Ω]

= E[Ω(Ω + Σj)
−1Ω]

= E[Ω∗jΩ]

An important implication of this proof is that using the “correct” Ω∗j , i.e. Ω∗j = Ω(Ω +

Σj)
−1, is not only important for efficiency reasons (e.g. the difference between weighted least

squares and ordinary least squares), but is a requirement for the consistency of the resulting

coefficients. Stated differently, using a different Ω∗j leads to inconsistent coefficient estimates,

i.e. γ̂ 6= γ.39 While this is clear from the proof, this has a number of important implications.

First, it is worth noting that conducting the empirical Bayes’ shrinkage separately for each

measure corresponds to a different Ω∗j and therefore would lead to inconsistent coefficients

in any resulting regression.40

More subtly, suppose after estimating the empirical Bayes’ estimates on a number of

short-term measures, one first ran a series of simple linear regressions to look at how each

measure individual was related to the long-term outcome of interest before then running a

regression that included all of the empirical Bayes’ estimates in a single regression. Con-

fusingly, while the coefficients from the final regression could be interpreted as if the true

measures were used as covariates in this case, the coefficients from the simple linear regres-

sions could not be interpreted this way. If one wants to conduct this analysis, the above

result suggests that one should estimate conduct the empirical Bayes’ shrinkage differently

for each regression that is run where the set of measures used to construct Ω∗j , and hence

39To see this, take the simply example where every teacher has the same number of students, in which
case Ω∗j is identical for all j and so we can ignore the expectations. Thus, Ω∗j (Ω + Σj)Ω

∗′
j = Ω∗jΩ can be

solved directly to get that Ω∗
′
j = (Ω+Σj)

−1Ω. When teachers have different number of students, it becomes
more complicated and the Ω∗j required for consistency is no longer unique: most notably both (Ω + Σj)

−1Ω
and E[(Ω + Σj)

−1Ω] would work. This subtlety does not impact the points discussed below, however.
40More specifically, conducting the empirical Bayes’ shrinkage separately for each measure corresponds to

an Ω∗j that is identical to Ω(Ω + Σj)
−1 on the diagonals and zero everywhere else. This is therefore only

identical to Ω(Ω+Σj)
−1 if both the true effects and the measurement error are uncorrelated across measures.
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the empirical Bayes’ estimates, is restricted to those used in the regression.

Similarly, suppose that either to improve identification or precision, one hopes to in-

clude additional covariates in the regression of the long-term outcome on the empirical

Bayes’ measures. Again, the above results suggest that unless the additional covariates are

uncorrelated with both the true effects and the measurement error, the resulting coefficient

estimates will be inconsistent.41

All of these points are more apparent when the use of empirical Bayes’ estimates as

covariates is viewed as the second stage of a two-stage least squared approach to dealing with

measurement error. In essence, our comments above are simply noting that the estimates of

E[Θj |θj,t] used in the regression should include: a) only the subset of θj,t−1 measures used

in the regression; b) all of the θj,t−1 measures used in the regression; and c) any additional

covariates used in the regression.

E Implied Weights on the Raw Effect Estimates

Note that there were two sets of weights that we discussed in Section IV. The first is the

set of weights implied by the multidimensional empirical Bayes that turn the combined raw

estimates into the best estimates of the teachers’ true effects, denoted by Ω∗j .
42 The second

is the set of weights that determine how a principal can reduce the multiple dimensions of

teacher effectiveness into a small number of summary measures, e.g., the first eigenvalue of

the short-term effectiveness measures or their relative relationship with long-term effective-

ness measures. Here, we combine the two results to illustrate the weights the different raw

estimates receive when computing the final measures.

The key is to leverage the fact that E[Θj |θj,t−1] = Ω∗jθj,t−1, where as before Ω∗j is the

matrix implied by the multidimensional empirical Bayes approach and is defined above in

Section III. As a reminder of notation, Θj corresponds to the true effectiveness of teacher j

and θj,t−1 is the raw estimate of teacher effectiveness, i.e., the average residuals as opposed

to the empirical Bayes’ value-added estimates. It follows that E[ω′Θj |θj,t−1] = ω′Ω∗jθj,t−1

for any set of weights ω that one wants to put on the true measures of effectiveness. Thus,

ω′Ω∗j are the weights on the raw measures, which we present below.

As in the previous section we focus on three potential choices for ω:

1. First Eigenvalue: Use the vector of weights from first principal component.

41To see this, we can think of simply extending Θ̂ to include these covariates. This changes Ω and Σj ,
but does not change the fact that Ω∗j needs to equal Ω(Ω + Σj)

−1. Unless Ω and Σj are both block diagonal
matrices, with the blocks corresponding (at least) to the θj,t−1’s and the additional covariates, one cannot
do the empirical Bayes’ only on the θj,t−1’s and still obtain the correct result.

42Explicitly, the estimates are “best” under a mean-squared loss function and the normality assumptions.
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2. PCA Regression: Use the coefficients from a regression of high school graduation rates

on empirical Bayes’ estimates of the first four principal components.

3. Regression: Use the coefficients from a regression of high school graduation rates on

empirical Bayes’ estimates of the K outcomes.

Table 6 uses the PCA and regression results to construct these three types of weights for

elementary and middle school teachers. Note that the specific weights depend on Ω∗j , which

varies across teachers and depends on how many students they taught.43 For our example,

we focus on a hypothetical teacher who teachers the average number of students. Columns

one to three contain the unstandardized weights, while the weights in columns four to six

are standardized according to the variance in teacher effects on the relevant outcome. Thus,

columns one to three give the weights that should actually be used on the raw outcomes

(i.e. ω′Ω∗j ), while columns four to six illustrates how important each of the raw outcomes

are in determining the summative measure.

For elementary school, (panel (A) of Table 6), teacher effects on future outcomes receive

a lot more weight than teacher effects on current test scores (and attendance). Weights on

attendance are typically small and always negative. The weights on current test scores vary

across the weighting approach employed and in the PCA regression approach, the weights

on math test scores are negative.

For middle school, (panel (B) of Table 6), teacher effects on future grades in subjects

other than those taught receive the most weight. Test scores also receive substantial weight.

The relative weights of the four remaining dimensions vary across methods.

Which set of weights they will want to use depends on the goals of evaluation and

what underlying measure of effectiveness the decision maker is trying to summarize. The

weights from the regressions in columns (2) and (3) are likely most appropriate when the

decision maker cares about placing the most weight on the short-term measures most related

to longer-term outcomes.44 The weights from the first eigenvalue, in contrast, are more

appropriate when the decisionmaker simply aims to best summarize effects on the short-

term outcomes.

43In the case where multiple years of data are incorporated into the empirical Bayes’ measures, it will also
depend on how many years teachers are in the data.

44The differences between columns (2) and (3) is less a question of what the decision maker cares about
and more a practical question of whether reducing the dimensions of the data before the regression helps
improve the predictions.
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F Incorporating Multiple Years of Data into the Estimates

F.1 Without Drift

In the model without drift in teacher effectiveness, incorporating multiple years of data into

the estimates is straightforward. This is because the assumption of no drift in effectiveness

implies the teacher effect estimates in year t− 2, i.e. θj,t−2, are just as predictive of teacher

effectiveness in year t, i.e. Θj,t, as are the teacher effect estimates from year t−1, i.e. θj,t−1.

We therefore do not need to distinguish between θj,t−1, θj,t−2, etc. and instead can just

condition on the average of the teacher effect estimates.

Formally, suppose that teacher j has been in the data for M years prior to year t. We

can then define:

θj,−t =

M∑
m=1

θj,t−m (47)

Under the assumption of no drift, we can use the same derivation as before to get an

almost identical expression:

E
[
Θj,t|θj,−t

]
= Ω∗θj,−t (48)

where as before Ω∗ =
(
Σ−1
j + Ω−1

)−1
Σ−1
j , Ω is the covariance matrix of the true teacher ef-

fects and Σj is the covariance matrix of the error terms implicit in θj,−t. The only additional

challenge here is to estimate Σj now that the empirical Bayes’ estimate is conditioning on

an average measure over years (and students within each year) as well as over students in

a single year. From the assumptions discussed in Section III.A, it follows that:

Σj =
1

M
Σν +

1

M

M∑
m=1

1

Nj,t−m
Σε (49)

where Nj,t−m is the number of students teacher j taught in year t−m.45

As we discuss in Appendix C, the assumption of no drift in teacher effectiveness is

not particularly consequential when including only a single year in the empirical Bayes

estimates. However, whether one allows for drift in teacher effectiveness does impact the

interpretation and estimation of the empirical Bayes estimates when multiple years are

included in the estimates. Intuitively, this is because drift in teacher effectiveness means

the estimated teacher effects from year t − 1 are more predictive of the teacher’s effect in

45We subtly jumped to conditioning on θj,−t rather than on θj,t−1, θj,t−2, ..., θj,t−M . In a model without
drift, this is mostly inconsequential, although it is not actually quite optimal. Instead, one should condition
on a weighted average of the previous estimates, with the weights being proportional to the variance of the
estimates. In practice, we expect (and encourage) researchers and practitioners to allow for drift in teacher
effectiveness when using multiple years of data to construct teacher value-added estimates. We outline how
to do so in Appendix F. If one wants to use the optimal weights without allowing for drift, one can rely on
the results presented here and assume that the covariances between the years are all identical.
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year t than the estimated teacher effects from year t −M . Thus, when constructing the

posterior distribution, one should give more weight to the estimates from year t − 1 than

on the ones from year t−M . Appendix F explains this in more depth and shows how one

can compute the empirical Bayes’ estimates of multidimensional teacher quality in a model

with drift in teacher effectiveness.

F.2 With Drift

We next use the model presented in Appendix C to construct the empirical Bayes’ estimates

in a model which allows for drift in teacher effectiveness.

To do so, we will initially focus on the case where we only aim to condition on two years,

θj,t−1 and θj,t−2, rather than the more general case of conditioning on M years. It is easy

to see how this can be extended to the more general case.

To start, we note that:(
θj,t−1

θj,t−2

)∣∣∣∣∣
(

Θj,t−1

Θj,t−2

)
∼ N

([
Θj,t−1

Θj,t−2

]
,

[
Σj,t−1 0

0 Σj,t−2

])
(50)

where Σj,t−1 = Σν + 1
Nj,t−1

Σε and Nj,t−1 is the number of students teacher j teaches in

year t − 1. Most notably, once you condition on Θj,t−1 and Θj,t−2, θj,t−1 and θj,t−2 are

independent.

Next, from our assumptions on drift, we get that(
Θj,t−1

Θj,t−2

)
∼ N

([
0

0

]
,

[
Ω C1

C1 Ω

])
(51)

Thus, from Bayes’ Law we get that:

E

[(
Θj,t−1

Θj,t−2

)∣∣∣∣∣
(
θj,t−1

θj,t−2

)]
=

[
Ω C1

C1 Ω

][
Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]
(52)

Finally, from our assumptions on drift we get that: Θj,t

Θj,t−1

Θj,t−2

 ∼ N(
0

0

0

 ,
 Ω C1 C2

C1 Ω C1

C2 C1 Ω

) (53)

and so

Θj,t

∣∣∣∣∣
(

Θj,t−1

Θj,t−2

)
∼ N

([
C1 C2

] [ Ω C1

C1 Ω

]−1 [
Θj,t−1

Θj,t−2

]
,Σ

)
(54)
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for a covariance matrix Σ = Ω−
[
C1 C2

] [ Ω C1

C1 Ω

]−1 [
C1

C2

]
. Thus, we get that

E
[
Θj,t|

(
θj,t−1

θj,t−2

)]
=
[
C1 C2

] [ Ω C1

C1 Ω

]−1 [
Ω C1

C1 Ω

][
Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]

=
[
C1 C2

] [Ω + Σj,t−1 C1

C1 Ω + Σj,t−2

]−1 [
θj,t−1

θj,t−2

]

G Teachers with Missing Outcomes

In Section VI, we discussed how to construct empirical Bayes estimates when some of the

effect estimates are missing. We now discuss this in more detail.

G.1 Derivation of Empirical Bayes Posterior Distribution

In this section, we provide the derivation of the empirical Bayes’ posterior distribution when

not all measures have observable estimates, i.e., we derive Equation 16.

To do so, we start by noting that since Θj ∼ N
(
0,Ω

)
, we get that:

Θ1,j |Θ2,j ∼ N
(

Ω1,2Ω−1
2,2Θ2,j ,Ω1,1 − Ω1,2Ω−1

2,2Ω2,1

)
(55)

We can therefore write that:

Θj =

[
Ω1,2Ω−1

2,2

I

]
Θ2,j + η with η ∼ N

(
0,

[
Ω1,1 − Ω1,2Ω−1

2,2Ω2,1 0

0 0

])
(56)

where I is the identity matrix with the number of rows equal to the number of measures

the researcher observes.

Similarly, we can the same derivation used to construct the empirical Bayes’ estimates

without missing data in Section III to get that:

Θ2,j |θ2,j,t−1 ∼ N
(

Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1,

(
Ω−1

2,2 + Σ−1
j,2,2

)−1
)

(57)

Again, we can use this expression to write Θ2,j as a linear function of θ2,j,t−1 plus a

normally distributed error term to get that:

Θ2,j = Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1 + ζ with ζ ∼ N

(
0,
(
Ω−1

2,2 + Σ−1
j,2,2

)−1

)
(58)
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We can then plug in Equation (58) into (56) to get that:

Θj =

[
Ω1,2Ω−1

2,2

I

]
Ω2,2

(
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1 +

[
Ω1,2Ω−1

2,2

I

]
ζ + η (59)

We then note that η is also independent from θ2,j,t−1, i.e., after conditioning the true

effect of the teacher on the set of observed measures, the true effect of the teacher on

the unobserved measures is independent from the estimated effects of the teacher on the

observed measures. Thus, we can re-write Equation (59) as:

Θj |θ2,j,t−1 = N

([
Ω1,2

Ω2,2

] (
Ω2,2 + Σj,2,2

)−1
θ2,j,t−1,

[
Ω1,2Ω−1

2,2

I

]
V ar(ζ)

[
Ω1,2Ω−1

2,2

I

]′
+ V ar(η)

)
(60)

and Equations (58) and (56) make clear that V ar(ζ) =
(
Ω−1

2,2 + Σ−1
j,2,2

)−1
and V ar(η) =[

Ω1,1 − Ω1,2Ω−1
2,2Ω2,1 0

0 0

]
.

G.2 Comparison with Imputation Approach

As mentioned in the Section VI, the most natural alternative approach is to impute the

missing values and then construct the empirical Bayes estimates according to Section III.

Here we contrast the empirical Bayes approach outlined in Section VI with imputation

approaches.

To do so, we focus on two potential ways to impute the missing values. The easiest

approach is to impute the missing values as E[θki,t], if θki,t is the value that is missing. Note

that the measures are normalized so that E[θki,t] = 0 for all k. Of course, this approach is

problematic as it is does not distinguish between θki,t being missing and teacher i’s impact

on measure k as being average. Thus, the resulting empirical Bayes estimates are overly

shrunken toward the mean. Note that since the empirical Bayes estimates of all measures

will depend on θki,t, the empirical Bayes estimates of all measures will be shrunken too much.

This comparison is a bit of a straw man, as we compare the method to the most sim-

ple imputation approach. A more complex imputation approach would be to impute the

missing values as E[θki,t|θ
−k
i,t ], where θ−ki,t is the set of measures which are not missing, before

calculating the empirical Bayes estimates according to Section III. Note that E[θki,t|θ
−k
i,t ]

are themselves the empirical Bayes estimates, so among other things this approach is more

complex to implement than the approach mentioned in Section VI. It also means that, in

some sense, the approach shrinks the estimates twice: first when constructing E[θki,t|θ
−k
i,t ]

and second when computing the empirical Bayes estimates post-imputation. This means

that, while less obvious than the previous case, the resulting empirical Bayes estimates will
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be shrunken too much in this case as well.

There is, however, another force pushing this approach to shrink the empirical Bayes

estimates too little. By imputing the missing values to E[θki,t|θ
−k
i,t ], this approach assumes

that we observe more information about individual i than we actually do. This alone

would lead the empirical Bayes estimates are shrunken too little. Empirically, it appears

the “double shrinkage” dominates and the resulting empirical Bayes estimates are indeed

shrunken to much.

To see this, we conduct a simulation where we randomly drop 25% of each observation

and estimate the empirical Bayes estimates under three approaches: the missing value

approach defined in Section VI; the imputation approach where missing values are imputed

to the overall mean; and the imputation approach where the missing values are imputed

as E[θki,t|θ
−k
i,t ]. We then calculate each individuals’ effectiveness, using the PCA Regression

weights defined in Section III. Figure A.3 shows the three resulting distributions, focusing

on individuals who are missing at least two observation. As can be seen, imputing the

missing values at the overall mean shrinks the distribution much more than just treating

the observations as missing. Similarly, imputing the missing values at E[θki,t|θ
−k
i,t ] also shrinks

the distribution more than just treating the observations as missing, although this is less

pronounced than when imputing missing values to the overall mean.

Of course, the fact that the imputation approaches shrink the measures more than just

treating is as missing does not alone mean that they are “overly shrunk” rather than the

other distribution being under shrunken. In addition to the conceptual reasons to prefer

the missing value approach over the imputation approaches, we can also provide some

empirical evidence that it does better. While we do not observe the true effects, given

our simulation we can compare the three empirical Bayes estimates to the empirical Bayes

estimates generated when none of the observations are missing. When doing so, we find

that the empirical Bayes estimates generated from the missing value approach are closer

(as measured via mean-square error) to the ones when no variables are missing than the

empirical Bayes estimates generated from either of the two imputation approaches.
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