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1 Introduction

To understand the behavior of firms one must consider their internal allocation of de-

cision rights. While owners have the formal authority to take all decisions on behalf

of their firms, they typically delegate at least some important decision rights to their

employees. These employees, however, often have consistent biases and can be expected

to take different decisions than the owners would (Jensen 1986). An understanding of

what determines the internal allocation of decision rights is therefore a prerequisite for

understanding, and potentially being able to predict, the decisions that firms take, such

as how much to invest and how many workers to hire and fire. In this paper we investi-

gate the optimal allocation of decision rights within firms. In particular, we investigate

how the owner of a firm should delegate decision rights to a biased employee.

While the formal authority to take decisions is concentrated at the top of firms, the

information needed to make effective use of this authority is often dispersed throughout

their ranks. The legal right to decide on the allocation of capital, for instance, resides

with the owners of firms but CEOs, division managers, and other employees are often

better informed about the profitability of different investment projects. The benefit of

delegating decision rights is that it allows the owners to utilize the specific knowledge

that their employees might have (Holmström 1977, 1984; Jensen and Meckling 1992).

There are two main difficulties in delegating decision rights, however. First, as

mentioned above, there is ample evidence which suggests that employees have consistent

biases and are therefore likely to take different decisions than the owners would want

them to. Agency costs therefore place a limit on the ability of owners to delegate decision

rights (Holmström 1977, 1984; Jensen and Meckling 1992). Second, delegated decision

rights are always “loaned, not owned” (Baker, Gibbons, and Murphy 1999, p.56). In

other words, while owners can delegate decision rights ex ante they can always overrule

the decisions that employees take ex post. Anticipating the possibility of being overruled

the employees in turn may act strategically and, as a result, their specific knowledge

might not get used efficiently. Imperfect commitment therefore places a second limit on

the ability of owners to delegate decision rights (Baker, Gibbons, and Murphy 1999).
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Due to the presence of agency costs and the lack of perfect commitment owners

rarely engage in complete delegation, that is they rarely delegate decision rights without

putting in place rules and regulations that constrain the decisions their employees can

take. Consider, for instance, the decision over the allocation of capital which is often

delegated to lower level managers and, in particular, to division managers. While

in some firms these division managers have almost full discretion in deciding between

different investment projects, in most they face a variety of constraints. In some firms,

for instance, division managers are allowed to decide on investment projects that affect

the daily operation of their divisions but not on those that are deemed to affect the

future of the firm as a whole. In other firms division managers can decide on investment

projects that do not exceed a certain threshold size and their superiors decide on larger

projects.3 In this paper we show that many of the organizational arrangements that

we observe in practice arise optimally in a model in which a principal with imperfect

commitment delegates decision rights to a better informed but biased agent.

We develop an infinitely repeated game in which a long lived principal faces a se-

quence of short lived agents each of whom interacts with the principal only once. In

every period a project has to be implemented and the principal has the formal authority

to do so. The potential projects differ on one dimension, for instance investment size,

and the principal and the agents have different preferences over this dimension. At

the beginning of each period the current agent observes the state of the world which

determines the identity of his preferred project and that of the principal. The agent

then recommends a project after which the principal takes her decision. Finally, payoffs

are realized, the state of the world becomes public information and time moves on to

the next period.

Although the principal always has the formal authority to decide on the projects,

she can engage in many different types of relational delegation. In other words, she can

implicitly commit to many different decision rules that map the agents’ recommenda-

tions into decisions. For instance, she can implicitly engage in complete delegation by

3A large number of studies have described the capital budgeting rules that firms use. See, for
instance, Marsheutz (1985), Taggart (1987) and, in particular, Bower (1970).
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committing herself to always rubber-stamp the agents’ recommendations. Other pos-

sibilities include threshold delegation — in which case the principal rubber-stamps the

agents’ recommendations up to a certain size and implements her preferred project if

they recommend a project that is above the threshold — and menu delegation — in which

case the principal rubber-stamps the agents’ recommendations only if they propose one

of a discrete number of projects. Of course the principal can also choose to ignore the

agents’ recommendations altogether and simply implement the project that maximizes

her expected payoff given her prior. In other words, she can engage in centralization.

Should the principal centralize or delegate? And if she delegates, should she engage

in complete delegation, threshold delegation, or some other form of delegation? The key

trade-off that the principal faces when she considers the many different organizational

arrangements is between the direct cost of biasing her decisions in favor of the agents

and the indirect benefit of inducing the agents to reveal more information. We show

that in many cases the organizational arrangements that optimize this trade-off are

commonly observed in the real world. In particular, we show that centralization,

threshold delegation and menu delegation are often optimal and that which one of these

arrangements is optimal depends only on the principal’s commitment power, on the one

hand, and a simple condition on the agents’ bias and the distribution of the state space,

on the other. Moreover, we show that for small biases threshold delegation is optimal for

almost all common distributions. These results are consistent with the pervasive use of

threshold delegation in organizations. Having derived our main characterization result

we then investigate further implications, including the effects of changes in the bias and

the amount of private information on the optimal organizational arrangement. We also

show that complete delegation is never optimal and that outsourcing can only be optimal

if the principal is sufficiently impatient. Finally, we discuss empirical implications of

our analysis.

In the next section we discuss the related literature. In Section 3 we present the

model after which we characterize the equilibrium of the stage game, in Section 4, and of

the repeated game, in Section 5. We discuss further implications in Section 6, extensions

in Section 7 and we conclude in Section 8. All proofs are relegated to the appendix.
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2 Related Literature

The stage game in our model is a standard principal-agent problem of the following

form. There is a principal and an agent who have different preferences over a decision

that has to be taken. The payoffs that the principal and the agent realize depend on the

decision and the state of world but the state of the world is only known by the agent.

A large number of papers have analyzed this static problem and they can be cat-

egorized in two dimensions: (i.) whether or not they allow for transfers between the

principal and the agent and (ii.) the extent of commitment power by the principal.

Our paper contributes to the strand of the literature which argues that in many

environments transfers between the principal and the agent are difficult or impossible.

Within this strand of the literature one can distinguish between delegation- and cheap

talk models. In the cheap talk models that follow Crawford and Sobel (1982) principals

cannot commit to arbitrary decision rules, that is they cannot commit to act on the

information they receive in a particular way. In contrast in the delegation models that

follow Holmström (1977, 1984) the principal can commit to a decision rule.4 Since we

allow for different degrees of commitment by the principal, varying from no commitment

all the way to perfect commitment, our paper contributes to the delegation literature

which we discuss next.

Holmström (1977, 1984) considers a general version of the set up described above and

proves the existence of an optimal delegation set or, equivalently, an optimal decision

rule. He does not, however, characterize the optimum.5 Melumad and Shibano (1991)

do solve for the optimal decision rule but restrict attention to the uniform distribution

and particular preferences. Dessein (2002) allows the principal to commit to only one

type of delegation, namely complete delegation, and shows that for a large number of

4Formally, Holmström (1977, 1984) assumes that the principal can commit to a delegation set, i.e.
she can commit to a set of decisions from which the agent can choose his preferred one. This is
equivalent to letting the agent make a recommendation and assuming that the principal can commit
to any decision rule that maps the recommendation into a decision. As Holmström (1984) puts it
“delegation of authority to an agent” is equivalent to “asking the agent for information and promising
to act on the information in a particular way” (see also Melumad and Shibano 1991).

5He restricts the set of feasible delegation sets to intervals. This is equivalent to restricting attention
to continuous decision rules.
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distributions, the principal does better when she commits to complete delegation than

when she cannot commit to any decision. We contribute to the delegation literature in

two main ways. First, we characterize the optimal decision rule for general distributions

and constant bias without restricting the set of feasible decision rules. Second, instead of

making assumptions about what the principal can and cannot commit to, we endogenize

her commitment power and characterize the optimal decision rule for any amount of

commitment power.

The second strand of the literature that analyzes the principal-agent problem de-

scribed above does allow for transfers. Ottaviani (2000) and Krishna and Morgan

(2004), in particular, both allow for message-contingent transfers but make different

assumption about the principal’s commitment power. In particular, Krishna and Mor-

gan (2004) focus on the case in which the principal can only commit to a transfer rule

while Ottaviani (2000) allows the principal to commit to a transfer- and a decision rule.

Finally, our work is related to several recent papers that investigate the role of rela-

tional contracts within and between organizations. Baker, Gibbons, and Murphy (1994,

2002) investigate the use of objective and subjective performance measures and the

ownership structures of firms in a repeated setting. Levin (2003) investigates relational

incentive contracts in the presence of moral hazard and asymmetric information.

3 The Model

We consider an infinitely repeated game in which the stage game is the Crawford and

Sobel (1982) cheap talk game with constant bias and quadratic loss functions. The

principal is infinitely long lived and faces a sequence of agents who only interact with

her for one period.

Specifically, we consider a model in which time runs from t = 1, 2, 3 ... . In any

period t a firm that consists of one principal and one agent must implement a project.

The agent knows the state of the world that determines the payoffs associated with

all possible projects and makes a recommendation to the principal who has the formal

authority to decide what project is chosen. In particular, at the beginning of period

t, the agent observes the state of the world θt ∈ Θ = [0, 1], which is drawn from a
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distribution with a cumulative density function F (·) and is i.i.d. over time, and then
sends a message mt ∈M to the principal. Next the principal chooses a project that can

be represented by a real number yt ∈ R. Although one can interpret yt as measuring
any one dimension on which the projects differ — for instance the number of workers

to be hired for a new plant or the size of a new office building — we interpret it as the

financial size of an investment. This interpretation facilitates the exposition and allows

us to relate our findings to a number of papers that describe the capital budgeting rules

which firms use to regulate the internal allocation of capital.6

After the project is chosen both players realize their stage game payoffs which are

given by UP (yt, θt) = −(yt − θt)
2 for the principal and UA(yt, θt, b) = −(yt − θt− b)2 for

the agent. The parameter b measures the congruency of the agent’s and the principal’s

preferences. Given these preferences, the principal’s preferred project is given by yt = θt

and the agent’s is given by yt = θt + b. As mentioned in the introduction there is

ample anecdotal evidence that documents the tendency of many managers to engage

in empire building, i.e. to invest more than would be optimal from the perspective of

their principals (see for instance Jensen 1986). For this reason we assume b > 0 so

that the agent prefers a larger investment than the principal. The analysis can easily

be adapted, however, to allow for negative biases. Since we are interpreting yt as the

financial size of an investment and since the agent’s and the principal’s preferred project

sizes are increasing in the state of the world θt, it is natural to think of low realizations

of θt as bad states of the world in which the business environment is unfavorable to new

investments and large realizations of θt as good states of the world in which the business

environment is more favorable.

After the project is chosen and the payoffs are realized, the state of the world becomes

publicly known and the stage game ends.

We assume that the principal is infinitely long lived and faces a single, new agent

every period. All the agents have the same preferences, i.e. they all have the same stage

6Clearly, focusing on this interpretation is without loss of generality and does not rule out other
possible interpretations. For studies describing the capital budgeting rules that firms use see Footnote
3. Theoretical papers seeking to rationalize the observed rules include Harris and Raviv (1996) and
Marino and Matsusaka (2004).
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game payoff function UA(·) and the same congruency parameter b. While the agents
care only about the payoff they realize in the one period in which they interact with the

principal, the principal cares about the present discounted value of her payoff stream

and discounts the future at a rate δ ∈ [0, 1).
We denote the history of the game up to date t by ht = (θ0, m0, y0, ..., θt−1, mt−1,

yt−1) and the set of all possible date t histories byHt. A relational contract then specifies

for any date t and any history ht ∈ Ht, (i.) a communication rule µt : Θ×Ht → ∆t(M)

which assigns a probability distribution over M for any state of the world θt; (ii.) a

decision rule Yt : M × Ht → R which assigns a project yt for every message mt; (iii.)

a belief function Gt : M → ∆t(Θ) which assigns a probability distribution over the

states θt for every message mt. Note, in particular, that histories are public. The belief

function Gt is derived from µt using Bayes’ rule wherever possible. Such a relational

contract is self-enforcing if it describes a subgame perfect equilibrium of the repeated

game.

We solve for the ‘optimal’ relational contract that maximizes the principal’s present

discounted payoff. In doing so we assume that the most severe punishment that can be

implemented off the equilibrium path calls for the agents and the principal to revert to

statically optimizing behavior. In other words, in the punishment phase the principal

and the agents play the strategies that maximize their expected stage game payoffs. This

assumption captures our belief that, when relational contracts break down, members of

the same firm are likely to coordinate on the equilibrium that maximizes their respective

payoffs in the absence of trust.7 It should be noted, however, that qualitatively our

results are not sensitive to this assumption.

As discussed in Section 2, we follow the cheap talk and delegation literatures by

ruling out transfers. We relax this assumption in Section 7 where we allow for wage

payments. For models with contingent transfers see Ottaviani (2000) and Morgan and

Krishna (2004). In Section 7 we also discuss the implications of allowing for commitment

by the agents which is ruled out in the set up described above.

7Baker, Gibbons, Murphy (1994) make a similar assumption for the same reason.
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4 Stage Game

We start by considering the static equilibria of the stage game. An equilibrium of the

stage game is characterized by (i.) a family of communication rules µ(m | θ) for the
agent, where µ(m | θ) is the probability of sending message m conditional on the agent

observing state θ, (ii.) a decision rule y(m) for the principal that maps messagesm ∈M

into actions y ∈ Y , (iii.) a belief function g(θ | m) for the principal, where g(θ | m) is
the probability of state θ conditional on receiving message m, such that (i.) for each

θ ∈ Θ, if m is in the support of µ(m | θ), then it maximizes the expected payoff of the
agent given the principal’s decision rule y(m), (ii.) for eachm ∈M , y(m) maximizes the

expected payoff of the principal given her beliefs and (iii.) the belief function g(θ | m)
is derived from µ(m | θ) using Bayes’ rule whenever possible.
Crawford and Sobel (1982) show that all equilibria are interval equilibria in which

the agent only communicates the interval that the state of the world lies in. In this sense

the agent’s communication is noisy and information is lost. Having learned what interval

the state of the world lies in, the principal implements the project that maximizes her

expected payoff, given her updated beliefs.

To describe these interval equilibria, let a ≡ (a0, ..., aN) denote the partition of [0, 1]
into N steps and dividing points between steps 0 ≡ a0 < a1 < ... < aN ≡ 1. Define for
all ai−1, ai ∈ [0, 1], byi ≡ argmaxy R aiai−1

UP (y, θ)dF (θ)/(F (ai) − F (ai−1)). Finally, let yi

denote the project that the principal implements if she receives a signal from interval

i, i.e. yi ≡ y(m) for m ∈ (ai−1, ai). We can now state the following proposition which
follows immediately from Theorem 1 in Crawford and Sobel (1982).

PROPOSITION 1 (Crawford and Sobel). If b > 0, then there exists a positive integer

N(b) such that for every N with 1 ≤ N ≤ N(b), there exists at least one equilibrium

(µ(·) , y(·), g(·)), where

µ(m | θ) is uniform, supported on [ai−1, ai] if θ ∈ (ai−1, ai),
yi = byi if m ∈ (ai−1, ai),
g(θ | m) = f(θ)/(F (ai)− F (ai−1)) if m ∈ (ai−1, ai),
ai =

1
2
(byi + byi+1 − 2b) for i = 1, ..., N − 1.
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The expression for the ai’s is derived from the indifference condition UA(byi, ai) =
UA(byi+1, ai) which ensures that in state of the world ai the agent is indifferent between

projects yi and yi+1. An implication of this condition is that the length of successive

intervals grows. In this sense less information gets communicated, the larger the state of

the world. Intuitively, since the agent always prefers larger projects than the principal,

his proposals are less credible the larger the projects that he recommends.

Crawford and Sobel (1982) also provide sufficient conditions under which the ex-

pected payoffs of the principal and the agent are increasing in the number of intervals

N . When these conditions are satisfied, as they are in our specification, one may there-

fore expect the players to coordinate on the equilibrium in which the number of intervals

is maximized, i.e. in which N = N(b). We denote this equilibrium by (µCS , yCS, gCS)

and the corresponding payoffs by UCS
A and UCS

P , where the superscript ‘CS’ stands for

‘Crawford and Sobel.’

In this paper we interpret interval equilibria of the type described in the first propo-

sition as a form of ‘menu delegation,’ as defined next.

DEFINITION 1 (Menu Delegation). Under ‘menu delegation’ agents reveal the interval

that the state of the world lies in and the project that the principal implements only

depends on the reported interval. Formally, [0, 1] is partitioned into N ≥ 1 intervals

with dividing points 0 = a0 < a1 < ... < aN = 1. The communication rule µ(m | θ) is
uniform, supported on [ai−1, ai] if θ ∈ (ai−1, ai). The decision rule is given by y(m) = yi

for all m ∈ (ai−1, ai] and i = 1, ..., N .

We can think of interval equilibria as menu delegation schemes since in any such

equilibrium the principal essentially offers a menu with a discrete number of projects and

the agents then choose between these different projects. In the static game the projects

on the menu have to be chosen such that implementing any one of them maximizes

the principal’s stage game payoff, given her updated beliefs after receiving the agents’

messages. In contrast, in a repeated setting the principal can commit to a menu in which

the projects do not maximize her stage game payoff. As we will see below, committing

to such a menu can be optimal since it allows her to elicit more information from the

agents.
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5 Relational Delegation

We now analyze the repeated game and characterize the optimal relational contract that

maximizes the discounted payoff stream for the principal. We start by showing that,

without loss of generality, we can restrict attention to ‘stationary’ and ‘monotonic’

relational contracts.

DEFINITION 2 (Stationarity and Monotonicity). (i.) A relational contract is ‘sta-

tionary’ if (a.) on-the-equilibrium path µt(·) = µ(·) and yt(·) = y(·) for every date
t, where µ(·) is some communication rule and y(·) is some decision rule and (b.) off
the equilibrium path µt(·) = µ(·) and yt(·) = y(·) for every date t, where µ(·) is some
communication rule and y(·) is some decision rule.
(ii.) A relational contract is ‘monotonic’ if for any period t and for any two states

θ1t and θ2t > θ1t the chosen projects satisfy yt(θ
2
t ) ≥ yt(θ

1
t ).

Thus, in a monotonic relational contract the implemented projects are weakly in-

creasing in the state of the world. We can now establish the following proposition.

PROPOSITION 2 (Stationarity and Monotonicity). There always exists an optimal

relational contract that is stationary and monotonic.

It then follows that in the optimal relational contract a deviation by the principal in

period t, i.e. the use of a decision rule yt(mt) 6= y(mt), leads to the best static equilibrium

(µCS(·) , yCS(·), gCS(·)) in every subsequent period. The optimal on-the-equilibrium

path communication and decision rules are then given by

(µ(·), y(·)) ∈ arg max
y(m),µ(θ)

1

1− δ
Eθ [UP (y(m), θ)] (1)

subject to

µ(θ) = argmaxUA(y(m), θ) (2)

∆y(m)2 ≤ δ

1− δ
Eθ
£
UP (y(m), θ)− UCS

P

¤
, (3)

where ∆y(m) is the difference between the on-the-equilibrium path decision and the

decision that maximizes the reneging payoff, i.e. ∆y(m) ≡ y(m) − by(m) and by(m) ≡
argmaxEθ [UP (y, θ) | m] .
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The first constraint states that the communication rule maximizes the agent’s stage

game payoff given the decision rule y(m) and the second constraint ensures that the

principal has no incentive to renege. The RHS of the reneging constraint is the future loss

from reneging, namely the appropriately discounted difference between the principal’s

expected on- and off-the-equilbrium path payoffs. The LHS is the expected one period

benefit from reneging Eθ [UP (by(m), θ)− UP (y(m), θ) | m] which, given the quadratic loss
function, simplifies to ∆y(m)2.

To characterize the solution of the contracting problem, we first parameterize the

reneging constraint by replacing (3) with

∆y(m)2 ≤ q2, (4)

where q ∈ [0,∞) is an exogenously given constant. We then solve the parameterized
problem (1) subject to (2) and (4) for all q. The solution to this problem for a given q

is equivalent to the solution of the original problem for the unique discount rate δ that

solves
δ

1− δ
Eθ
£
UP (q)− UCS

P

¤
= q,

where UP (q) is the principal’s stage game payoff under the optimal contract. Thus,

solving the original problem for all δ ∈ [0, 1) is equivalent to solving the parameterized
problem for all q ∈ [0,∞) as we do below.
The parameter q can be interpreted as the amount of ‘relational capital’ or ‘commit-

ment power’ that the principal has. In the next subsection we characterize the solution

to the contracting problem when the principal has a high level of relational capital, in

the sense that q ≥ b, where b is the agents’ bias. In Subsection 5.2 we then characterize

the solution when the principal has a low level of relational capital, in the sense that

q < b. As will become clear as we proceed, q = b is a natural cut-off level since the

agents can be induced to reveal the true states of the world for some subset Θ0 ⊆ Θ if

and only if q ≥ b.
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5.1 High Relational Capital

In this subsection we characterize the solution to the contracting problem (1) subject to

(2) and (4) for q ≥ b. We will show that in many cases commonly observed organizational

arrangements are optimal. In particular, we will show that often the optimal relational

contract takes the form of either ‘centralization’ or ‘threshold delegation,’ as defined

next.

DEFINITION 3 (Centralization). Under ‘centralization’ agents do not communicate any

information and the principal implements the project that she expects to maximize her

stage game payoff, given the limited information that she has. Formally, the communi-

cation rule µ(θ) is uniform, supported on [0, 1] for all θ ∈ [0, 1]. The decision rule is
given by y(m) = by(m) = E[θ] for all m ∈ [0, 1].
Under centralization the principal disregards the agents information and simply im-

plements the project that she expects to maximize her stage game payoff, given her

prior. The agents in turn do not communicate any information.

DEFINITION 4 (Threshold Delegation). Under ‘threshold delegation’ agents reveal the

state of the world up to a threshold and pool in a single interval above the threshold.

The principal implements the agents’ preferred project below the threshold and her own

preferred project above the threshold. Formally, the communication rule is given by

µ(θ) = θ for all θ ∈ [0, a1) and µ(θ) is uniform, supported on [a1, 1] for all θ ∈ [a1, 1],
where a1 ∈ [0, 1). The decision rule is given by y(m) = m + b for all m ∈ [0, a1) andby(m) = a1 + b for all m ∈ [a1, 1].
A graphical illustration of threshold delegation is given in Figure 1. The lower

diagonal line plots the principal’s preferred project θ for any state of the world and the

higher diagonal line θ+b plots the preferred projects for the agent. The bold line graphs

the implemented projects as a function of the state of the world. Essentially, under

threshold delegation the principal rubber-stamps the agents’ recommendations up to

some threshold and implements her preferred project above this threshold. Threshold

delegation of this type is widely observed in organizations and, in particular, capital

budgeting rules often take this form. Threshold delegation is also consistent with the
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observation in Ross (1986) that in many firms lower level managers can decide on small

investments while senior managers can decide on larger investments.

The next proposition shows that in many cases threshold delegation is in fact the

optimal relational contract.

PROPOSITION 3 (Threshold Delegation). Suppose that q ≥ b and that G(θ) ≡ F (θ)+

bf(θ) is strictly increasing in θ for all θ ∈ Θ. Then threshold delegation is optimal.

The distributional assumption stated in the proposition is satisfied for a large number

of distributions and a wide range of biases. It is, for instance, always satisfied by the

uniform distribution and by any unimodal distribution as long as the variance is large

relative to the bias. Also, for any distribution that is continuously differentiable there

exists a strictly positive value b0 such that the condition is satisfied for all b ≤ b0. Thus,

it is satisfied for most common distributions when the bias is small.

A sketch of the formal proof of the proposition can be provided in three steps. The

first part of the proof shows that it cannot be optimal to have two pooling intervals next

to each other. In other words, it can never be optimal for the principal to implement

a project yi if θ ∈ [ai−1, ai] and another project yi+1 6= yi if θ ∈ (ai, ai+1]. The second
part of the proof shows that it cannot be optimal to have a pooling interval to the left

of separation. In other words, it cannot be the case that the principal implements a

project yi if θ ∈ [ai−1, ai] and projects y = θ + b if θ ∈ [ai, ai+1]. Together the first and
the second part imply that the optimal delegation scheme is characterized by separation

for low states of the world and a single pooling interval for high states. Finally, the

first order condition for the optimal threshold implies that it is chosen so as to ensure

that the principal’s preferred project is implemented above the threshold.

To get an intuition for why among the very many possible organizational arrange-

ments threshold delegation often does best for the principal, we first need to think about

the trade-off that she faces when deciding what projects to implement. The key question

for the principal is how much she should bias her decisions in favor of the agents. On

the one hand, the principal clearly incurs a direct cost when she biases her decisions in

favor of the agents by implementing projects that are larger than the ones she expects

to maximize her payoff. On the other hand, however, the agents are more willing to give
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precise recommendations, the more they expect their interests to be taken into account

by the principal. Thus, the key trade-off that the principal faces is between the direct

cost of biased decision making and the indirect benefit of better information. A feature

of threshold delegation is that, conditional on the information the principal receives,

decision making is biased entirely in favor of the agents when the state of the world is

below the threshold a1 and it is biased entirely in favor of the principal when the state

of the world is above the threshold. To see this, note that when the principal gets a

message m = θ ≤ a1 she knows exactly the state of the world but instead of using this

information to implement her preferred project θ she uses it to implement the agent’s

preferred project θ + b. In contrast, when the principal gets a message m = θ > a1 she

does not know the exact state of the world and only knows that it is above the threshold.

In this case it is optimal for her to implement the project E(θ | θ ≥ a1) that maximizes

her expected payoff and not bias the decision at all in favor of the agents. As a result

of this decision rule, agents are willing to communicate all information when the state

of the world is below the threshold and very limited information when it is above the

threshold.

To get an intuition for Proposition 2 it is therefore key to understand why it is

optimal to bias the decisions in favor of the agents for low states of the world and in

favor of the principal for high states of the world. For this purpose, it is instructive to

compare threshold delegation to two benchmarks. In the first benchmark the principal

always implements her preferred projects and in the second she always implements the

agents’ preferred projects.

When the principal always implements her preferred projects, the agents are not

willing to reveal the states of the world and instead only reveal the intervals that they

lie in. An example of such an equilibrium is illustrated in Figure 2a in which the

agents only reveal whether the state of the world is below a threshold a1 or above it

and the principal implements her respective preferred projects by1 ≡ E(θ | θ ≤ a1) andby2 ≡ E(θ | θ ≥ a1). IfG(θ) is increasing in θ, the principal can do better by implementing

the agents’ preferred project y = θ + b for θ ∈ [0, by2 − b] and by2 for θ ∈ [by2 − b, 1], i.e.

she can do better by entirely biasing her decisions in favor of the agents for low states
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of the world. On the one hand, doing so is costly for the principal since she implements

projects that are worse for her if θ ∈ [0, a1]. This loss is indicated by triangle A in

Figure 2b. On the other hand, however, precisely because she is implementing projects

that are worse for her if θ ∈ [0, a1] she is able to implement projects that are better for
her if θ ∈ [0, a1]. This gain is indicated in Figure 2b by triangle B. Essentially, biasing
decisions in favor of the agents for low states of the world relaxes the incentive constraint

for higher states which in turn allows the principal to implement projects that are better

for her. As long as the probability of being in the loss making interval [0, a1] is not too

large compared to the probability of being in profiting interval [a1, by2 − b], the gain of

biasing the decisions in favor of the agents outweighs the costs and the principal is made

better off. The condition that G(θ) is always increasing ensures that this is indeed the

case.

In the second benchmark, the principal biases her decisions entirely in favor of the

agents who in turn always reveal the state of the world. This case is illustrated in Figure

3a. While this arrangement allows the principal to elicit all available information, it

also commits her to implement projects y > 1 that cannot be optimal for her in any

state of the world. This suggests an alternative arrangement in which the principal

implements the agents’ preferred projects below a threshold a1 ≤ 1 and implements a
single project a1+ b above the threshold, as illustrated in Figure 3b. If a1 is sufficiently

high the principal is made better off under the alternative scheme since she can realize

the benefit of less biased decision making, indicated by triangle A in Figure 3b, without

the cost of tightening the incentive constraint for any higher states of the world.

A key questions we are interested in is what form delegation takes when a principal’s

ability to commit is limited. From our analysis above it follows that the optimal thresh-

old delegation scheme can be implemented for any q ≥ b and not just as q →∞. This
is the case since, under threshold delegation, the principal never biases her decision by

more than b and thus never faces a reneging temptation of more than b2. Thus, when

G(θ) is everywhere increasing, a principal with high relational capital q0 ≥ b behaves in

exactly the same way as a principal with very high relational capital q00 > q0.

Proposition 3 has shown that in many cases threshold delegation is optimal. In
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the next proposition we show that when the conditions of that proposition are not

satisfied, it is often optimal for the principal to centralize, that is to implement the

project y = E(θ) that she expects to maximize her payoff, given her prior.

PROPOSITION 4 (Centralization). Suppose that q ≥ b and that G(θ) ≡ F (θ) + bf(θ)

is strictly decreasing in θ for all θ ∈ Θ. Then centralization is optimal.

A necessary condition for G(θ) to be decreasing for all θ ∈ Θ is that f(θ) is ev-

erywhere decreasing. In this sense, the condition is satisfied if bad states of the world

are more likely than better states of the world. As we will show in an example below,

this condition is satisfied, for instance, for exponential distributions with sufficiently low

means.

The formal proof of this proposition has two key parts. The first shows that separa-

tion can never be optimal, that is it can never be optimal to induce the agents to reveal

the true state of the world. For the intuition consider Figure 4a which illustrates an

equilibrium in which the principal implements a project y1 if θ is below a threshold a1,

project y2 if θ is above another threshold a2 and the agents’ preferred project y = θ+ b

if θ is between a1 and a2. If G(θ) is decreasing in θ, the principal can do better by only

implementing projects y1 and y2 as illustrated in Figure 4b. On the one hand, doing so

makes the principal worse off if θ ∈ [1
2
(a1 + a2), a2]. This loss is indicated by triangle A

in the figure. On the other hand, however, it makes her better off if θ ∈ [a1, 12(a1+ a2)],

as indicated by triangle B in the figure. As long as the probability of being in the loss

making interval [1
2
(a1 + a2), a2] is not too large compared to the probability of being in

profiting interval [a1, 12(a1 + a2)], the gain of biasing the decisions in favor of the agents

outweighs the costs and the principal is made better off. The condition that G(θ) is

always decreasing ensures that this is indeed the case. The first part of the proof there-

fore establishes that under the stated conditions only a discrete number of projects get

implemented. The second part of the proof shows that if G(θ) is always decreasing,

centralization dominates any menu delegation scheme that offers two or more projects.

The proposition shows that in the absence of sophisticated monetary incentive schemes,

it is often optimal for a principal to forgo the information that her agents possess and

to simply impose a decision on the firm. Essentially, when the principal is limited to
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delegation schemes, the cost of extracting information from the agents can easily be so

high that the principal is better off taking an ignorant but unbiased decision than to

try to bias decisions in favor of her subordinates to elicit more information. Business

history and newspapers are abound with descriptions of monolithic firms in which bu-

reaucratic rules and regulations stifle the creativity and flexibility of their employees.8

The proposition suggests that such bureaucracy may simply be a symptom of the firms’

optimal responses to the agency problems they face.

We have seen above that whenG(θ) is everywhere increasing, a principal with limited

ability to commit implements the same delegation scheme as a principal with unlimited

commitment power. The same is true when G(θ) is everywhere decreasing. This is

so since the principal is always able to implement centralization, independent of the

amount of relational capital q that she possesses.

From the two previous propositions it is clear that the key condition that deter-

mines the optimal relational contract when relational capital is high is whether G(θ) is

increasing or decreasing. To get a better sense for this condition and its implications

we next consider an example. In particular, suppose that θ is drawn from a truncated

exponential distribution with cumulative density

F (θ) =
1

1− e−1/β
¡
1− e−θ/β

¢
,

where β > 0 is the scale parameter. An increase in β is a first order stochastic in-

crease of the distribution and thus increases the mean E(θ). Moreover, as β → ∞,

the distribution approaches the uniform distribution. It can be verified that for this

exponential distribution G(θ) is everywhere increasing if b ≤ β and it is everywhere

decreasing otherwise. Thus, if the bias is smaller than the scale parameter threshold

delegation is optimal and if the bias is larger than the scale parameter centralization

is optimal, as illustrated in Figure 5. To get some sense for the comparative statics,

which we analyze more generally in Section 6, take a point above the diagonal in Figure

5 and consider the effect of an increase in the bias. Initially, such an increase leads to a

reduction of threshold below which the principal rubber-stamps the agents’ recommen-
8For a colorful historical example see the case of The Hudson Bay Company in Milgrom and Roberts

(1992, pp. 6-9).

17



dations. Eventually, b > β and the principal centralizes, i.e. she simply implements

E(θ). At this point further increases in the bias do not affect the optimal relational

contract or the decision that is taken. Similarly, take a point below the diagonal in

Figure 5 and consider the effect of an increase in β. Such an increase moves probability

mass from low- to high states of the world, making it less and less costly for the princi-

pal to implement the agents’ preferred projects when their recommendations are small.

When β is sufficiently high, i.e. when β ≥ b, it then becomes optimal for the principal

to switch to threshold delegation and implement the agents’ preferred projects for low

states of the world. Further increases in β then simply increase the threshold up to the

maximum value of a1 = 1− 2b.
While for any exponential- and many other distributions, G(θ) is either everywhere

increasing or decreasing, this is, of course, not always the case. For instance, for normal

distributions with a sufficiently small variance, G(θ) is first increasing and then decreas-

ing. For such distributions we can use the same proof strategy as described above by

dividing the support of this distributions into intervals in which G(θ) is monotonic. For

an analysis of such distributions in the full commitment limit see Alonso andMatouschek

(2004).

5.2 Low Relational Capital

In this subsection we characterize the solution to the contracting problem (1) subject

to (2) and (4) for q < b. The key difference between the high- and the low relational

capital cases is that in the former the principal can credibly commit to decision rules

that induce the agents to reveal the true state of world for some Θ0 ⊆ Θ while in the

latter this is not possible. In other words, separation can be supported when q ≥ b but

it cannot be supported when q < b. Together with the fact that optimal contracts are

monotonic, as established in Proposition 2, this implies that when relational capital is

low, the optimal contract takes the form of menu delegation, as defined in Definition 1

above. We make this point formally in the next proposition.

PROPOSITION 5 (Menu Delegation). Suppose that q < b. Then menu delegation is

optimal.
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Thus, when relational capital is low, the principal cannot do better than to let the

agents choose between a discrete number of projects. We believe that menu delegation

is a widespread organizational arrangement, just like centralization and threshold del-

egation. Consider for instance a business school that tries to hire junior and/or senior

faculty members. In most cases the Dean will delegate this decision to the relevant

department. When she does so, however, she may well restrict the department members

to making either two junior or one senior offer and she will not allow them to make

three junior offers if the junior search is more successful than the senior search. In other

words, she may not allow the department members to fine-tune their decision to the job

market conditions. Note that such fine-tuning would be possible if the Dean instead

engaged in threshold delegation, that is if she allowed the department members to make

any combination of offers that together do not cost more than some threshold amount.

The above proposition shows that allowing for such fine-tuning is not optimal for the

Dean if her relational capital is below some threshold.

Having established that for q < b threshold delegation is optimal, the only remaining

question is what projects the principal should put on the menu. To address this question

it is useful to restate the original contracting problem (1) subject to (2) and (4) as

max
N,y1,...,yN

Eθ [UP ] =
−1
1− δ

NX
i=1

Z ai

ai−1
(yi − θ)2dF (θ) (5)

subject to a0 = 0, aN = 1,

ai =
1

2
(yi + yi+1 − 2b) for i = 1, ..., N − 1 (6)

and

∆y2i ≤ q2 for i = 1, ..., N, (7)

where ∆yi ≡ yi − byi is the difference between the project yi that the principal is com-
mitted to implement when the state of the world is reported to lie in interval i and

project byi, the project that maximizes her expected stage game payoff in this case. In
this formulation the incentive constraint (6) is derived from the indifference conditions

UA(yi, ai) = UA(yi+1, ai) for i = 1, ..., N − 1 which ensure that in states of the world
a1, ..., aN−1 the agents are indifferent between projects yi and yi+1.
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Just as in the case with high relational capital, the key trade-off that the principal

faces is between the extent to which decision making is biased in favor of the agents,

given her information, and the amount of information that is communicated by the

agents. To see this note that the incentive constraints (6) imply that

(ai+1 − ai) = (ai − ai−1) + (4b− 2∆yi+1 − 2∆yi) . (8)

The lengths of the intervals therefore increase by 4b− 2∆yi+1− 2∆yi > 0 as i increases.

Thus, just as in the static equilibrium, less information gets communicated by the

agents, the larger their recommendation. The above expression, however, shows that in

a repeated setting the principal can reduce the loss of information by committing to bias

her decisions in favor of the agents, i.e. by setting∆yi > 0 for i = 1, ..., N−1. Intuitively,
agents are more willing to communicate information if the principal is committed to take

the agents’ interests into account when making a decision. It is because of the improved

communication that the principal may be willing to incur the direct cost of biasing her

decisions in favor of the agents.

The solution to the above contracting problem again depends crucially on the distri-

bution of θ and the bias b. The next proposition shows that when G(θ) ≡ F (θ)+bf(θ) is

decreasing in θ then, just as in the high relational capital case, centralization is optimal.

In other words, under this condition, the principal only puts one project on the menu

from which the agents can ‘choose.’

PROPOSITION 6 (Centralization with Low Relational Capital). Suppose that q < b

and that G(θ) ≡ F (θ)+bf(θ) is decreasing for all θ ∈ Θ. Then centralization is optimal.

This proposition follows immediately from Proposition 4 since, under centralization,

the temptation to renege is equal to zero and can therefore be implemented for any

level of relational capital q. Together Propositions 4 and 6 imply that when G(θ) is

decreasing for all θ ∈ Θ, centralization is always optimal, independent of the amount of

relational capital that the principal possesses. Put differently, when G(θ) is everywhere

decreasing, commitment power does not matter at all, the principal behaves the same

whether she has no relational capital, an infinite amount of it, or anything in between.

When G(θ) is not everywhere decreasing, the optimal menu delegation scheme does
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depend on the amount of relational capital q. To get a better understanding of how

changes in q affect the optimal menu delegation scheme in this case, the next proposition

provides a characterization for an example in which θ is uniformly distributed on [0, 1].

PROPOSITION 7 (Uniform Example). Suppose that q < b and that F (θ) = θ. Then

there exists a q ∈ (0, b) such that
i. for all q ≤ q, ∆yi = q for all i and the number of intervals N is maximized.

ii. for all q > q, ∆y1 ≤ q, ∆yi = q for i = 2, ..., N − 1, and ∆yN ≤ q.

Thus, when the principal has very little relational capital, i.e. when q ≤ q, her desire

for better information is so large that the benefit of biasing decisions dominates the

costs. As a result, it is optimal for her to bias her decisions up to the maximum credible

level. Note that in this case the number of intervals is maximized and that intervals

grow by 4(b− q), as can been from (8). Thus, the amount of information that is being

communicated is exactly the same as the one that would be communicated in the best

Crawford and Sobel equilibrium of the static game when the agent has a bias of (b− q).

In terms of information transmission, therefore, relational capital is a perfect substitute

for a reduction in the agents’ bias.

When the amount of relational capital grows beyond the threshold q, it is still the

case that the principal wants to extract more information by biasing all intermediate

decisions y2, ...yN−1 as much as possible. However, it can now be optimal to reduce ∆y1

and ∆yN so as to economize on the cost of biased decision making. In fact, we know

from Proposition 3 that as q = b, the bias of the last and largest interval is optimally set

to zero. Thus, although the principal could extract as much information as in a static

game with bias (b− q), it is not always optimal for her to do so when q ≥ b/4.

In summary, the analysis thus far has shown that commonly observed organizational

arrangements are often optimal in our model. Moreover, we have seen that exactly

what arrangement is optimal depends crucially on two factors, namely the amount of

relational capital and the interplay between the bias and the distribution of the state of

the world, as summarized in the simple condition G(θ) = F (θ) + bf(θ). In particular,

Table 1, which summarizes some of the key results that we derived so far, shows that

when G(θ) is always increasing, threshold delegation is optimal when the amount of
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relational capital is high and menu delegation is optimal when the amount of relational

capital is low while centralization is always optimal when G(θ) is decreasing. Also, we

have seen that in many cases changes in the amount of relational capital do not affect

the optimal delegation scheme. In particular, when either G(θ) is decreasing or G(θ)

is increasing and relational capital is high, increases in q have no effect on the optimal

delegation scheme. Only when relational capital is small and G(θ) is not everywhere

decreasing can changes in q lead to changes in the optimal delegation scheme.

6 Implications

In this section we explore further implications of our analysis of optimal relational

delegation schemes.

Relational Delegation for Small Biases In the previous section we have seen that

in many cases three commonly observed organizational arrangements are optimal. It

turns out that for small biases the set of potentially optimal arrangements is even

smaller. Specifically, as the next proposition shows, threshold delegation is optimal for

almost all common distributions when the bias is sufficiently small.

PROPOSITION 8 (Threshold Delegation for Small Biases). Suppose that f(θ) is twice

continuously differentiable. Then threshold delegation is optimal for sufficiently small

biases.

Recall that when f(θ) is continuously differentiable, G(θ) is increasing for a suf-

ficiently small bias b. To prove Proposition 8 we therefore only need to show that

threshold delegation can be credibly implemented when b is small enough. To see that

this is indeed the case, consider the reneging constraint b2 ≤ δ/(1− δ)Eθ
£
UTD
P − UCS

P

¤
,

where the LHS is the maximum reneging temptation under threshold delegation, the

RHS is the punishment for reneging and UTD
P is the principal’s stage game payoff under

the optimal threshold delegation scheme. Note that a reduction in the bias increases

the payoff UCS
P the principal can realize in the absence of a relational contract. Thus, a

reduction in the bias not only reduces the benefit of reneging — the LHS of the inequal-
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ity — but also, potentially, the punishment of doing so — the RHS. It is therefore not

immediate that a reduction in the bias makes the reneging constraint less binding. In

the formal proof we show, however, that when f(θ) is twice continuously differentiable,

then, as b goes to zero, the benefit of reneging goes to zero faster than the punishment.

Thus, for sufficiently small b the reneging constraint is satisfied and threshold delegation

can be credibly implemented.

The Effects of Changes in the Bias and the Amount of Private Information

Since threshold delegation and centralization play such prominent roles in our model we

next investigate how they are affected by changes in the economic environment.

Suppose first that threshold delegation is optimal and consider the maximization

problem that determines the optimal threshold a1 below which the principal implements

the agents’ preferred project and above which she implements her own preferred project:

max
a1

1

1− δ
Eθ [UP ] = − 1

1− δ

µZ a1

0

b2dF (θ) +

Z 1

a1

(a1 + b− θ)2dF (θ)

¶
.

The optimal threshold level then solves the necessary first order condition

(E(θ | θ ≥ a1)− (a1 + b))

(
≤ 0 if a1 = 0

= 0 if a1 > 0.

Comparative statics can now be easily performed using the graphical representation of

the first order condition in Figure 6.

For instance, suppose that threshold delegation is optimal for a given b and consider

the effect of a reduction in the bias. Note that if G(θ) is increasing for a given b then

it is also increasing for any b0 < b; thus threshold delegation remains optimal after the

reduction in the bias. It can be seen in Figure 6 that a reduction in b shifts down

(a1 + b) but does not affect E(θ | θ ≥ a1). Thus, a reduction in the bias increases the

optimal threshold, i.e. it leads to more delegation. This result is in line with Jensen

and Meckling (1992) who argue that a reduction in agency costs should generally lead

to more delegation.

Suppose next that threshold delegation is optimal for a given distribution and con-

sider the effect of an increase in the amount of private information, as formalized by a
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mean preserving spread of the distribution. At first glance one may think that such a

change makes the agents’ information ‘more important’ and should thus lead to more

delegation. In our model, however, there are two reasons why this is not necessarily

the case. First, a mean preserving spread can affect the sign of G(θ). Thus, it is quite

possible that after an increase in private information threshold delegation is no longer

optimal. Second, even if G(θ) is still increasing after the mean preserving spread, it has

an ambiguous effect on the optimal threshold a1. To see this, consider Figure 6 and note

that while a mean preserving spread does not affect (a1+ b), it has an ambiguous effect

on conditional mean E(θ | θ ≥ a1). Thus, in our model, a change in the amount of pri-

vate information can lead to more or less delegation, depending on the exact parameter

values and distributional assumptions.

Finally, consider the effects of changes in the economic environment on centralization.

Suppose that centralization is optimal for a given bias b0 and consider the effect an

increase in the bias to b00 > b0. If G(θ) is everywhere decreasing for b0 then it is also

everywhere decreasing for b00 > b0. Thus, after the increase in the bias centralization is

still optimal. Moreover, since an increase in the bias does not affect E(θ), the principal

implements the same decision after the increase in b as she did before the increase.

While the effect of an increase in the bias on centralization is unambiguous, the effect of

an increase in the amount of private information is less clear-cut. This is again the case

since a mean preserving spread can change the sign of G(θ) so that centralization may

no longer be optimal after the increase in private information. If it does not change the

sign of G(θ) an increase in the amount of private information does not affect the optimal

delegation scheme and the decision that is implemented by the principal remains E(θ).

Threshold Delegation and Investment Inefficiencies Whenever the principal

chooses threshold delegation, she optimally induces overinvestment in low states of the

world and underinvestment in high states.

COROLLARY 1 (Investment Inefficiencies). Under the conditions in Proposition 3, it is

optimal for the principal to induce underinvestment if θ ≥ E(θ | θ ≥ a1) and to induce

overinvestment otherwise.

24



To see this, consider Figure 1 which gives an example of a threshold delegation

scheme. From the principal’s perspective, the efficient investment level in state θ is

simply θ. In Figure 1, however, it can be seen that this efficient investment level is

almost never achieved. Instead, it is optimal for the principal to induce investments

that are larger than θ when the states of the world are low, i.e. below E(θ | θ ≥ a1),

and to induce investments that are smaller than θ when states of the world are high. In

other words, given the informational asymmetry, the principal cannot do better than to

allow the agents to spend too much on small projects and too little on large projects.

Why Complete Delegation Is Never Optimal An organizational arrangement

that has received a lot of attention in the literature (see in particular Dessein (2002))

and is notably absent from our discussion up to this point is ‘complete delegation,’ as

defined next.

DEFINITION 5 (Complete Delegation). Under ‘complete delegation’ agents always re-

veal the state of the world and the principal always implements the agents’ preferred

project. Formally, the communication rule is given by µ(θ) = θ for all θ ∈ [0, 1] and the
decision rule is given by y(m) = m+ b for all m ∈ [0, 1].
Thus, under complete delegation the principal always rubber-stamps the agents’

proposals and the agents, in turn, always recommend their preferred projects. The next

proposition establishes that complete delegation is never optimal in our model.

PROPOSITION 9 (Complete Delegation). Complete delegation is never optimal.

To see this suppose that the principal does engage in complete delegation, as illus-

trated in Figure 3a. Note that to do so she must be able to resist a maximum reneging

temptation of b2. When she has enough relational capital to implement complete delega-

tion, however, she also has enough relational capital to implement an alternative scheme

in which she rubber-stamps the agents’ proposals when they are small and implements

a threshold project when they are large. As can be seen from Figure 3b such a scheme

increases the principal’s expected payoff but does not increase the maximum reneging

temptation, which remains to be b2. Thus, whenever complete delegation is feasible, it
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is not payoff maximizing for the principal.

This proposition is in contrast to the key result in Dessein (2002). He considers a

game that is very similar to our stage game and compares complete delegation to ‘com-

munication,’ i.e. the best equilibrium without any commitment. The important result

in his paper is that in many cases the principal is better off committing to complete

delegation than to rely on communication. Our analysis shows that although com-

plete delegation often dominates communication it is itself always dominated by other

delegation schemes.

Outsourcing So far we have ruled out the possibility of outsourcing, by which we

mean the transfer of formal authority to the agents. In some contexts, however, it may

be possible for the principal to outsource. The next proposition shows that outsourcing

can only be optimal if the principal’s relational capital is sufficiently small.

PROPOSITION 10 (Outsourcing). There exists a critical level of relational capital

q0 < b such that outsourcing does better than relational delegation only if q < q0.

When the principal outsources, the agents always choose their preferred project.

Thus, outsourcing implements the same decision rule as complete delegation. In contrast

to complete delegation, however, it does not require any commitment power by the

principal. We have seen above that when relational capital is high, the principal can

implement complete delegation but does not find it optimal to do so. It is then immediate

that outsourcing cannot be optimal for a principal with high relational capital. However,

a principal with low relational capital cannot implement complete delegation and may

find it optimal to outsource since doing so allows her to credibly commit to having the

agents’ preferred projects being implemented.

Empirical Implications Our model is quite stylized and abstracts from many factors

that are likely to influence delegation schemes in the real world. Nevertheless, the model

does offer a number of predictions that differentiate it from other models of delegation

and that are, in principle, testable. Below we provide a short list of our main empirical

implications, focusing on two of the three choice variables in our model — the type of
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delegation schemes that is being used and the projects that get implemented. We do

not discuss the third choice variable — the information that is transmitted — since in most

contexts in cannot be observed. In discussing empirical implications we concentrate on

capital budgeting rules since this is an area in which both delegation schemes and project

choices are often observable. The main empirical implications are the following:

• A variety of delegation schemes such as, for instance, centralization and threshold
delegation should be observed. Complete delegation, however, should never be

observed.9

• A larger variety of delegation schemes should be observed in firms in which agency
problems are severe than in firms in which they are limited. In the latter case

threshold delegation should be pervasive.

• Firms that operate in booming markets, i.e. in markets in which good states of the
world are more likely than bad states, should engage in more threshold delegation

and less centralized decision making than firms that operate in depressed markets,

i.e. in markets in which bad states of the world are more likely than good states.

• The size distribution of investments should by ‘lumpier’ in firms with severe agency
problems than in firms in which they are limited. In other words, investments of

many different sizes should be observed in firms in which agency problems are small

whereas investments of a limited number of different sizes should be observed in

firms in which agency problems are large.

• The size distribution of investments should by lumpier in firms in which the top
management has a low discount factor — for instance because the firm operates

in an industry with high exit rates or is characterized by high labor turnover of

top managers — than in firms in which top management in which a high discount

factor.
9This is in contrast to Dessein (2002). His analysis suggests that complete delegation should be

observed often.
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• The size distribution of investments should be lumpier in firms that operate in
booming markets than in firms that operate in depressed markets.

All these implications follow immediately from the results derived above, we therefore

do not provide proofs for them.

7 Extensions

So far we have not allowed for wage payments and for any commitment power by the

agents. In this section we discuss the implications of relaxing these two assumptions.

Wages Suppose that at the beginning of each period the principal makes the agent a

take-it-or-leave-it wage offer w and that the agent’s outside option is x. It is immediate

that the principal will always offer a wage such that the agent is indifferent between

accepting the offer and realizing x. The optimal on-the-equilibrium path communication

and decision rules are then given by

(µ(·), y(·)) ∈ arg max
y(m),µ(θ)

1

1− δ
Eθ [UP (y(m), θ) + UA(y(m), θ)− x]

subject to

µ(θ) = argmaxUA(y(m), θ)

∆y(m)2 ≤ δ

1− δ
Eθ
£
UP (y(m), θ)−

¡
UCS
P + UCS

A − x
¢¤
.

In contrast to the contracting problem analyzed above, the principal now aims to maxi-

mize the net joint surplus Eθ [UP (y(m), θ) + UA(y(m), θ)− x] rather than her stage game

payoff Eθ [UP (y(m), θ)]. Using the same type of arguments that we made above, it can

be shown that all of our results continue as long as one replaces G(θ) ≡ F (θ) + bf(θ)

with bG(θ) ≡ 2F (θ) + bf(θ). Thus, threshold delegation is more likely to be optimal

once one allows for wages, in the sense that the set of distributions for which threshold

delegation is optimal if one allows for wages contains the set of distributions for which

threshold delegation is optimal if one does not allow for wages. In the same sense cen-

tralization is less likely once one allows for wages. Thus, the nature of our results is not

sensitive to the possibility of wage payments.

28



Agent Commitment In our model the principal has some commitment power but

the agents do not. While we believe that these are the right assumptions to make when

one analyzes delegation, there are clearly other contexts in which one wants to allow

for commitment power by the agents and not the principals. Consider, for instance,

the relationship between the British civil service and Her Majesty’s governments. In

contrast to the US system, most British civil servants are not replaced when a new

government comes to power. One can therefore think of British civil servants as long

run agents who advice a series of short run and opportunistic governments that have

the formal authority to take decisions on behalf of the state.

We leave the full analysis of a version of model in which a single, long lived agent

faces a sequence of short lived principals for future work. Here we just make a number

of informal observations about this case. It is straightforward to show that if the long

run agent is patient enough, it is optimal for him to exactly reveal the state of the

world and let the receivers take their preferred action. Thus, a patient enough agent

does not have the incentive to manipulate the information that he transmits so as to

influence the principals’ actions. Essentially, in equilibrium the loss of information that

must arise from doing so always outweighs any gain in control. Note that this contrasts

with our model in which complete revelation of information is never optimal. Note also

that this implies that as long as the agent is patient enough, the principals achieve their

most preferred outcome: they learn all the information and can implement their most

preferred project. Moreover, as the bias becomes very small, complete truth revelation

is optimal for any strictly positive discount rate. Applied to the question of whether

governments should rely on their own advisors or on life time civil servants, this suggests

a trade-off between the potentially smaller bias of the own advisors and the stronger

reputational concerns of life time civil servants. Even if the government and life time

civil servants have very different policy preferences, the government can only gain by

bringing in their own advisors if the preferences of these advisors are exactly the same

as those of the government.
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8 Conclusion

In this paper we investigated the allocation of decision rights within firms. In particu-

lar, we analyzed a principal-agent problem in which an uninformed principal can elicit

information from an informed agent by implicitly committing herself to act on the infor-

mation she receives in a particular manner. We derived the optimal relational delegation

schemes and showed that they often resemble organizational arrangements that are ob-

served in practice. Specifically, we showed that centralization, threshold delegation and

menu delegation are often optimal. Which one of these organizational arrangements

is optimal depends only on the principal’s commitment power, on the one hand, and a

simple condition on the agents’ bias and the distribution of the state space, on the other.

Moreover, we showed that for small biases threshold delegation is optimal for almost

all common distributions. Finally, we showed that complete delegation is never optimal

and that outsourcing can only be optimal if the principal is sufficiently impatient.

In ongoing work we use the techniques developed in this paper to address further

issues related to delegation. First, in Alonso and Matouschek (2004) we consider

a static model and characterize the optimal delegation sets for general distributions

and generalized quadratic preferences with arbitrary state-contingent biases. Second,

in Alonso and Matouschek (2004b) we consider a model with endogenous information

acquisition and investigate how a principal should delegate decision rights if she does

not only wants to elicit information from agents but also motivate them to acquire

information in the first place.
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9 Appendix

This appendix contains the proofs of all Propositions in the paper.

9.1 Proof of Propositions 1 and 2

Proof of Proposition 1: Follows from Theorem 1 in Crawford and Sobel (1982). ¥
The proof of Proposition 2 will follow from the following two lemmas. The first

lemma establishes the existence of an optimal stationary relational contract for any

discount factor δ ∈ [0, 1).
LEMMA 1 For any optimal relational contract there is a stationary optimal relational

contract.

Proof: Consider an optimal relational contract (Ht, µt(·), yt(·)), t ∈ {0, 1, ...} and let
VR(ht) =

P∞
τ=t δ

τ−tEθτ [UP (yτ(µτ (θτ)), θτ)] be the receiver’s expected discounted utility

at time t after history ht with VR(h0) = v. Now letΨ = {θ0 : VR({θ0, µ0(θ0), y0(µ0(θ0))}) < v}
be the set of states in the first period which generate continuation utilities less than

v. If Pr [θ0 ∈ Ψ] > 0 we can construct a new relational contract that after the first

period history {θ0, µ0(θ0), y0(µ0(θ0))} , θ0 ∈ Ψ calls for play of the original relational

contract. To see that this new contract is subgame perfect note that since histories

are common knowledge the first period choice y0(µ0(θ0)), θ0 /∈ Ψ remains optimal for

the receiver and she obtains a higher continuation utility by playing y0(µ0(θ0)) θ0 ∈ Ψ.

Finally, since VR(h0) = δEθ0 [UP (y0(µ0(θ0)), θ0)]+(1−δ)Eθ0 [VR(h1))] = v it follows that

Eθ0 [UP (y0(µ0(θ0)), θ0)] = v.

Now consider a stationary contract (Ht, µ
0
t(·), y0t(·)), t ∈ {0, 1, ...} where along the

equilibrium path µ0t(·) = µ0(·), y0t(·) = y0(·). Since on and off the equilibrium path the

principal obtains the same continuation utility this new contract is subgame perfect. ¥
The next lemma establishes monotonicity of the optimal relational contract.

LEMMA 2 (Melumad and Shibano 1991) An incentive compatible y(µ(θ)) must satisfy

the following: (i.) y(µ(θ)) is weakly increasing, (ii.) If y(µ(θ)) is strictly increas-

ing and continuous in (θ1, θ2), then y(µ(θ)) = θ + b on (θ1, θ2), (iii.) if y(µ(θ))
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is discontinuous at bθ, then the discontinuity must be a jump discontinuity that sat-
isfies: (a.)

³
y−(µ

³bθ´) + y+(µ
³bθ´)´ /2 = bθ + b, (b.) y(θ) = y−(bθ) for θ ∈

[max
n
0, y−(µ

³bθ´)− b
o
,bθ) and y(θ) = y+(bθ) for θ ∈ (bθ,minn1, y+((µ³bθ´))− b

o
]

and (c.) y((µ
³bθ´)) ∈ ny−((µ³bθ´)), y+((µ³bθ´))o.

This lemma corresponds to Proposition 1 in Melumad and Shibano (1991) and we

refer to their proof.

Proof of Proposition 2: Follows immediately from Lemmas 1 and 2. ¥

9.2 Proofs of Propositions 3 and 4

For the proofs of Propositions 3 and 4 it is useful to introduce some new notation.

In particular, let eF (θ) ≡ 1 − F (θ), S(θ) ≡ eF (θ) [(θ + b)− E [s |s ≥ θ ]] and T (θ) ≡
F (θ) [(θ + b)− E [s |s ≤ θ ]]. It is also useful to introduce two lemmas. To do so, let

∆(p, t) ≡ −
Z p−b+t

p−b−t
b2dF (θ)−

µ
−
Z p−b

p−b−t
[p− t− θ]2 dF (θ)−

Z p−b+t

p−b
[p+ t− θ]2 dF (θ)

¶
,

where (p− b− t) and (p− b+ t) belong to [0, 1] and t ≥ 0. To understand the economic
meaning of this function, suppose that there are two decision rules which only differ in

the projects that are induced for θ ∈ [p− b− t, p+ t− b]. In particular, the first decision

rule induces y = θ+b for θ ∈ [p−b−t, p+t−b] while the second decision rule implements
y = p − t for all θ ∈ [p − b − t, p − b) and y = p + t for all θ ∈ [p − b, p + t − b]. The

function ∆(p, t) captures the difference in the principal’s expected stage game payoff

from these decision rules.

LEMMA 3. Suppose that G(θ) is strictly monotone in [θ, θ] ⊂ [0, 1]. If G(θ) is strictly
increasing in [θ, θ] then ∆(p, t) > 0. If G(θ) is strictly decreasing in [θ, θ] then ∆(p, t) <

0, with p =
¡
θ + θ

¢
/2 + b and t =

¡
θ − θ

¢
/2 .

Proof: We first note that,

∂∆(p, t)

∂t
=

Z p−b

p−b−t
2 [−p+ θ] dF (θ)+

Z p−b+t

p−b
2 [p− θ] dF (θ)+2t[F (p−b+t)−F (p−b−t)]

and

∂2∆(p, t)

∂t2
= 2 [F (p− b+ t) + bf(p− b+ t)− F (p− b− t)− bf(p− b− t)] .
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Thus, if G(θ) is strictly increasing in θ ∈ [θ, θ], then ∂2∆(
¡
θ + θ

¢
/2 + b, t)/ ∂t2 > 0 for

all 0 < t ≤ ¡θ − θ
¢
/2. Since ∂∆(

¡
θ + θ

¢
/2 + b, 0)/∂t = 0 it follows that for all t > 0,

∂∆(p, t)/ ∂t > 0 and ∆(
¡
θ + θ

¢
/2 + b,

¡
θ + θ

¢
/2) =

(θ+θ)/2Z
0

∂∆(
¡
θ + θ

¢
/2 + b, t0)

∂t
dt0 >

0. By a similar reasoning, if G(θ) is decreasing in θ, we have that ∆(
¡
θ + θ

¢
/2 +

b,
¡
θ + θ

¢
/2) < 0. ¥

LEMMA 4. Suppose that G(θ) is strictly monotone in [0, 1], then (i.) if G(θ) is strictly

decreasing in [0, 1] then E [θ |θ ≥ a1 ] < a1 + b for all a1 ∈ [0, 1] (ii.) if G(θ) is strictly

increasing in [0, 1] then the equation E [θ |θ ≥ a1 ] = a1 + b, a1 ∈ (0, 1) has a solution if
and only if E [θ] > b. Furthermore, this solution is unique.

Proof: (i.) Since G(θ) is strictly decreasing we have that 1 − F (θ) < 1 − F (1) +

b (f(θ) − f(1)) = b (f(θ) − f(1)). Integrating both sides between a1 and 1 yields the

inequality

1Z
a1

θf(θ)dθ− eF (a1)a1 < eF (a1)b− bf(1)(1− a1) < eF (a1)b. It then follows that
E [θ |θ ≥ a1 ] < a1 + b.

(ii.) Recall the definition of S(θ) and note that dS(θ)/dθ = 1−G(θ) for θ ∈ (0, 1).
Thus, S(θ) is strictly concave from the assumptions on G(θ). Since S(1) = 0, strict

concavity implies that there can be at most one point θ ∈ [0, 1) at which S(θ) = 0. The
existence of this point in turn requires S(0) to be non-positive, i.e. S(0) = b−E [θ] ≤ 0
and thus establishes necessity. Now suppose that E [θ] > b. Since for 0 < ε < b we have

that (1− ε+ b)−E [s |s ≥ 1− ε ] ≥ b−ε > 0. Therefore S(0) < 0 and S(1−ε) > 0 which
guarantees the existence of a solution to E [s |s ≥ θ ] = θ+ b thus proving sufficiency. ¥

9.2.1 Proof of Proposition 3

To establish Proposition 3 we need to introduce two more lemmas.

LEMMA 5. Suppose that G(θ) is strictly increasing in [0, 1]. Then if y(·) and µ(·) is
an optimal delegation scheme there cannot be two consecutive pooling regions, i.e. there

cannot be two intervals [θi, θi+1] and [θi+1, θi+2] with 0 ≤ θi < θi+1 < θi+2 ≤ 1 such that
y(µ(θ)) = yi for all θ ∈ (θi, θi+1) and y(µ(θ)) = yi+1 (6= yi) for all θ ∈ (θi+1, θi+2).
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Proof: We consider three cases: (i.) both consecutive projects yi, yi+1 ∈ [b, 1 + b], (ii.)

yi < b and b < yi+1 < 1 + b (iii.) b < yi < 1 + b and yi+1 > 1 + b.

CASE I: Let [θi, θi+1] and [θi+1, θi+2] be the two pooling regions that, for all interior

points, induce the projects yi and yi+1, respectively. Then from incentive compatibility,

it must be that yi− b ∈ [θi, θi+1] and yi+1− b ∈ [θi+1, θi+2]. Now consider an alternative
(by(·), bµ(·)) such that by(bµ(θ)) = θ+ b if θ ∈ [yi − b, yi+1 − b] and y(µ(θ)) otherwise. It is

immediate that (by(·), bµ(·)) is incentive compatible if y(·) and µ(·) is. SinceG(θ) is strictly
increasing in [0, 1] by Lemma 3 we infer that ∆((yi + yi+1) /2−b, (yi+1 − yi) /2) > 0 and

therefore the principal strictly prefers (by(·), bµ(·)) to (y(·), µ(·)). Hence (y(·), µ(·)) cannot
be optimal.

CASE II: If both yi and yi+1are to be induced with positive probability it must

be that b < (yi + yi+1) /2. From incentive compatibility of the agent, yi is induced in

[0, (yi + yi+1) /2 − b) and for ((yi + yi+1) /2− b, yi+1 − b] we have y(µ(θ)) = yi+1. Now

consider the alternative incentive compatible (by(·), bµ(·)) such that

by(bµ(θ)) =


b if θ ∈ [0, (yi + yi+1) /2− b]

yi + yi+1 − b if θ ∈ ((yi + yi+1) /2− b, yi + yi+1 − 2b]
θ + b if θ ∈ [yi + yi+1 − 2b, yi+1 − b]

y(µ(θ)) otherwise.

Let a ≡ (yi + yi+1) /2 − b. Then the increment in the principal’s expected payoff of

switching from (y(·), µ(·))to (by(·), bµ(·)) is
∆ ≡

Z a

0

¡
[yi − θ]2 − [b− θ]2

¢
dF (θ) +

Z 2a

a

³£
yi+1 − θ

¤2 − [yi + yi+1 − b− θ]2
´
dF (θ)

+

Z yi+1−b

2a

³£
yi+1 − θ

¤2 − b2
´
dF (θ).

Note that

∆ >

Z a

0

2

µ
[yi − b]

·
yi + b

2
− θ

¸¶
dF (θ) +

Z 2a

a

2

µ
[b− yi]

·
yi + 2yi+1 − b

2
− θ

¸¶
dF (θ).

Using T (θ) as defined at the beginning of this section, the above inequality can then

be rewritten as ∆ > [b− yi] [2T (2a)− 4T (a)] + [b− yi]
2 F (2a). Since G(θ) is strictly
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increasing, T (θ) is strictly convex which in turn implies that T (2a) > 2T (a). This

establishes that ∆ > 0. Thus, (y(·), µ(·)) cannot be optimal.
CASE III: Suppose yi+1 > 1 + b, b < yi < 1 + b. In this case if both yi and yi+1are

to be induced with positive probability it must be that (yi + yi+1) /2 < 1 + b. From

incentive compatibility of the agent, yi is induced in [yi − b, (yi + yi+1) /2 − b) and for

((yi + yi+1) /2 − b, 1] we have y(µ(θ)) = yi+1. Now consider the alternative incentive

compatible (by(·), bµ(·)) such that by(bµ(θ)) = yi if θ ∈ [yi − b, 1] and y(µ(θ)) otherwise.

Note that (y(·), µ(·)) and (by(·), bµ(·)) only differ for θ ∈ ((yi + yi+1) /2− b, 1]. Thus, the

increment in the principal’s expected payoff of switching to (by(·), bµ(·)) is
∆ ≡

Z 1

(yi+yi+1)/2−b

³£
yi+1 − θ

¤2 − [yi − θ]2
´
dF (θ) = 2

£
yi+1 − yi

¤
S((yi + yi+1) /2− b).

If E [θ] < b, then by the proof of Lemma 4 (ii.) we have S(θ) > 0 for θ ∈ [0, 1).
Hence, ∆ > 0. If E [θ] ≥ b, then let θ∗ be the unique solution to E [s |s ≥ θ ] = θ + b. If

(yi + yi+1) /2− b > θ∗ then again S((yi + yi+1) /2− b) > 0 and ∆ > 0.

For the case that E [θ] ≥ b and (yi + yi+1) /2 − b < θ∗ consider the alternative

incentive compatible (by(·), bµ(·)) which is derived from (y(·), µ(·)) by replacing the project
yi+1 with by, such that yi < by < yi+1. Then (by(·), bµ(·)) is defined by by(bµ(θ)) = yi if

θ ∈ [yi − b, (yi + by) /2− b), by(bµ(θ)) = by if θ ∈ [(yi + by) /2− b, 1] and y(µ(θ)) otherwise.

Defining a = (yi + by) /2 − b and c = (yi + yi+1) /2 − b the increment in the principal’s

expected payoff of switching to (by(·), bµ(·)) is
∆ ≡

Z c

a

¡
[yi − θ]2 − [by − θ]2

¢
dF (θ) +

Z 1

c

³£
yi+1 − θ

¤2 − [by − θ]2
´
dF (θ).

Noting that
R c
a

¡
[yi − θ]2 − [by − θ]2

¢
dF (θ) = 2(yi−by)[S(a)−S(c)+((yi+1 − by) /2) eF (c)]

and
R 1
c

³£
yi+1 − θ

¤2 − [by − θ]2
´
dF (θ) = 2(yi+1 − by)[S(c) − ((yi − by)/2) eF (c)] we can

express the increment ∆ as

∆ ≡ 2(yi − by)S(a) + 2(yi+1 − by)S(c) (9)

From a < c < θ∗ and Lemma 4 (ii.) we have that S(a) < 0, which implies that the

first term on the RHS of (9) is positive and the second term is negative. By selecting a

project by close enough to yi+1 we have that ∆ > 0 and (y(·), µ(·)) cannot be optimal. ¥
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LEMMA 6. Suppose that G(θ) is strictly increasing in [0, 1]. Then if y(·) and µ(·) is
an optimal delegation scheme it must be that (i.) if E [θ] < b then y(µ(θ)) = E [θ] for all

θ ∈ [0, 1] (ii.) if E [θ] > b then there exists a threshold level θ, such that y(µ(θ)) = θ+ b

if θ ∈ [0, θ] and y(µ(θ)) = θ + b if θ ∈ [θ, 1]. Moreover the threshold level θ satisfies
θ + b = E

£
θ
¯̄
θ ≥ θ

¤
.

Proof: From the previous lemma the optimal delegation scheme is characterized by

two threshold levels
©
θ, θ
ª
with (a.)

y(µ(θ)) =


θ + b if θ ∈ [0, θ)
θ + b if θ ∈ [θ, θ]
θ + b if θ ∈ (θ, 1].

if 0 < θ < θ < 1, and (b.) y(µ(θ)) constant over [0, 1] if θ = θ. The expected utility of

the principal is given by

−
Z θ

0

[θ + b− θ]2 dF (θ)−
Z θ

θ

b2dF (θ)−
Z 1

θ

£
θ + b− θ

¤2
dF (θ)

Optimality of y(·) and µ(·) requires that θ and θ satisfy the first order necessary con-

ditions 2F (θ) [(θ + b)− E [θ |θ ≤ θ ]] = λ − ν and 2 eF (θ) £(θ + b)− E £θ ¯̄θ ≥ θ
¤¤
= ν,

where λ, ν are nonnegative multipliers associated with the constraints θ ≥ 0, and θ ≥ θ,

respectively. First we establish that that θ = 0 is necessary. If at an optimum θ > 0

then, since θ + b > E [θ |θ ≤ θ ], we must have λ− ν > 0. This necessarily implies that

λ > 0 and the constraint θ ≥ 0 binds, reaching a contradiction.
Next suppose that E [θ] < b. By Lemma 4 (ii.) there is no interior point at which

S(θ) = eF (θ) [θ + b− E [s |s ≥ θ ]] and therefore ν > 0. But then θ ≥ θ binds, i.e. θ =

θ = 0. In this case the principal selects a single project for all states of the world.

Since no information from the agent is used in this case it must be that the principal

implements y(µ(θ)) = E [θ] for all θ ∈ [0, 1].
Now suppose that E [θ] > b. Then by Lemma 4 (ii.) there is a unique interior point

θ ∈ (0, 1) at which S(θ) = 0. Then the quadruple
©
0, θ, 0, 0

ª
satisfies the necessary

conditions where θ solves θ + b = E
£
θ
¯̄
θ ≥ θ

¤
. ¥

Proof of Proposition 3: Follows from Lemmas 3-6. ¥
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9.2.2 Proof of Proposition 4

The proof of Proposition 4 is carried out through a sequence of lemmas that gradually

reduce the class of potential optimal delegation schemes when G(θ) is strictly decreasing

in [0, 1].

LEMMA 7. Suppose that G(θ) is strictly decreasing in [0, 1]. Then if (y(·),µ(·)) is an
optimal delegation scheme, there cannot be a non-degenerate interval [θ, θ] ⊂ [0, 1] where
y(µ(θ)) = θ + b for θ ∈ [θ, θ].
Proof: Suppose on the contrary that y(µ(θ)) = θ + b for θ ∈ [θ, θ]. Now consider the
alternative (by(·), bµ(·)) such that

by(bµ(θ)) =


θ + b if θ ∈ [θ, ¡θ + θ
¢
/2]

θ + b if θ ∈ (¡θ + θ
¢
/2, θ]

y(µ(θ)) otherwise.

It is immediate that by(bµ(·)) is incentive compatible if y(µ(·)) is. Furthermore, underby(bµ(θ)) only the extreme projects ©θ + b, θ + b
ª
are implemented in [θ, θ]. Since G(θ)

is strictly decreasing in [0, 1] by Lemma 1 we infer that ∆(
¡
θ + θ

¢
/2,
¡
θ − θ

¢
/2) < 0

and therefore the principal strictly prefers (by(·), bµ(·)) to (y(·), µ(·)). Hence y(·) and µ(·)
cannot be optimal. ¥

LEMMA 8. Suppose that G(θ) is strictly decreasing in [0, 1]. Then if (y(·),µ(·)) is an
optimal menu delegation scheme then y(µ(·)) induces at most two projects, i.e. y(µ(θ)) ∈
{y1, y2} for θ ∈ [0, 1].
Proof: Let DA = {y ∈ R : y(µ(θ)) = y, θ ∈ [0, 1]} be the set of projects induced by
y(·) and µ(·) and suppose that DA contains more than two projects. We consider in

turn two cases: (i.) there are three projects y1 < y2 < y3, {y1, y2, y3} ⊂ DA, that are

consecutive in the sense that no other project is induced between them (i.e. such that

(y1, y2)∩ DA = (y2, y3)∩ DA = ∅), (ii.) there do not exist three consecutive projects in
DA.

i.) Consider then three consecutive projects y1 < y2 < y3. Incentive compatibility

implies that (a.) y(µ(θ)) = y1 for θ ∈ [y1 − b, (y1 + y2) /2 − b), (b.) y(µ(θ)) = y2 for
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θ ∈ ((y1 + y2) /2 − b, (y2 + y3) /2 − b), and (c.) y(µ(θ)) = y3 for θ ∈ ((y2 + y3) /2 −
b, y3 − b]. We now propose an alternative delegation scheme in which the project y2 is

not implemented by the principal, i.e. consider (by(·), bµ(·)) such that
by(bµ(θ)) =


y1 if θ ∈ [y1 − b, (y1 + y3) /2− b]

y3 if θ ∈ ((y1 + y3) /2− b, y3 − b]

y(µ(θ)) otherwise.

Suppose that y2 ≤ (y1 + y3)/2 (the analysis if y2 ≥ (y1 + y3)/2 would follow the same

argument). Letting r = (y1 + y2) /2 − b, s = (y2 + y3) /2 − b, t = (y2 + y3) /2 − b, the

increment in the principal’s expected payoff when switching to (by(·), bµ(·)) is
∆U ≡

Z s

r

¡
[y2 − θ]2 − [y1 − θ]2

¢
dF (θ) +

Z t

s

¡
[y2 − θ]2 − [y3 − θ]2

¢
dF (θ)

= 2(y2 − y1)

Z s

r

·
y2 + y1
2

− θ

¸
dF (θ) + 2(y2 − y3)

Z t

s

·
y2 + y3
2

− θ

¸
dF (θ)

Making use of T (·) as defined above, we obtain

∆U = 2 [(y3 − y1)T (s)− (y2 − y1)T (r)− (y3 − y2)T (t)] .

If we express s = (y2 + y3) /2− b as a convex combination of r and t, s = λr+(1−λ)t,

and noting that y3− y2 = (1−λ)(y3− y1) and y2− y1 = λ(y3− y1), we can write ∆U in

the more transparent form ∆U = 2(y3 − y1) [T (λr + (1− λ)t)− λT (r)− (1− λ)T (t)] .

Since G(θ) is strictly decreasing, T (θ) is strictly concave and hence ∆U > 0. This

establishes that the original delegation scheme (y(·), µ(·)) where more than two projects
are implemented cannot be optimal.

ii.) Suppose that DA does not contain three consecutive projects. From Lemma 2

y(µ(θ)) is weakly increasing and therefore continuous except in a countable set of points

{αi} , i ∈ N. 10 We will now introduce some notation pertinent to this part of the proof.
Let d = maxDA and d = minDA be the maximum and minimum projects induced

under y(µ(θ)) and, for each i ∈ N, let y+i = limθ→α+i
y(µ(θ)) and y−i = limθ→α−i

y(µ(θ))

be the two projects induced to the left and to the right of the point of discontinuity

10We note that since DA does not contain three consecutive projects and does not contain any
nondegenerate interval the set of discontinuity points of y(µ(θ)) must indeed be infinite.
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αi, respectively . Finally let Ai =
©
θ ∈ [0, 1] : y(µ(θ)) ∈ ©y+i , y−i ªª be the set of states

under which the projects
©
y+i , y

−
i

ª
are induced. For convenience we will order the set

of discontinuity points {αi} , i ∈ N in such a way that the probability of the projects y+i
or y−i being induced is (weakly) larger than the probability of inducing y

+
i+1 or y

−
i+1, i.e.

such that Prob[θ ∈ Ai] ≥ Prob[θ ∈ Ai+1]. By the assumptions on y(µ(θ)) we have that

limi→∞ Prob[θ ∈ ∪i1Aj] = 1.

Consider now a sequence of incentive compatible delegation schemes (yi(·),µi(·)) i =
0, 1, 2....to be defined momentarily. Denoting by Di

A = {y ∈ R : yi(µi(θ)) = y, θ ∈ [0, 1]}
the set of projects induced by (yi(·),µi(·)) , we define Di

A inductively as follows: D
0
A =©

d, d
ª
, Di+1

A = Di
A∪

©
y+i+1, y

−
i+1

ª
. We note that this scheme fully identifies yi(µi(·))

except possibly at its points of discontinuity. For completeness we define yi(·), µi(·) such
that yi(µi(θ)) is left continuous at its points of discontinuity.

Since G(θ) is strictly decreasing, the analysis of the case with three consecutive

projects establishes that Eθ [UP (yi(µi(θ)), θ)] > Eθ
£
UP (yi+1(µi+1(θ)), θ)

¤
. Next we show

that Eθ [UP (yi(µi(θ)), θ)] converges to Eθ[UP (y(µ(θ)), θ)] as i→∞.For ε > 0 there exist

an i such that Prob[θ ∈ ∪i0Aj] > 1 − ε

2(d−d)d . Therefore we have that for k > i, with

Sk =
¡∪k1Aj

¢c
.

|Eθ [UP (yk(µk(θ)), θ)]− Eθ[UP (y(µ(θ)), θ)]| <
Z
Sk

¯̄
[y(µ(θ))− θ]2 − [yi(µi(θ))− θ]2

¯̄
dF (θ) =

=

Z
Sk

2 |y(µ(θ))− yi(µi(θ))|
¯̄̄̄
y(µ(θ)) + yi(µi(θ)

2
− θ

¯̄̄̄
dF (θ) ≤ 2 ¡d− d

¢
dPr ob [θ ∈ Sk] < ε.

Thus Eθ [UP (yi(µi(θ)), θ)]−→ Eθ[UP (y(µ(θ)), θ)] for i→∞. Therefore Eθ [UP (yi(µi(θ)), θ)] >

Eθ[UP (y(µ(θ)), θ)] for all i which implies that y(·) and µ(·) cannot be optimal. ¥
LEMMA 9. Suppose that G(θ) is strictly decreasing in [0, 1]. Then any two-project

delegation scheme is dominated by centralization, i.e. by a decision rule that implements

E [θ] for all messages the agent selects.

Proof: Let y(µ(θ)) ∈ {y1, y2} be an optimal two-project equilibrium with y1 < y2.

Since both projects are selected with positive probability there must exist a state of

the world a1, with 0 < a1 < 1, at which the agent is indifferent between y1 and y2, i.e.

(y1 + y2) /2 = a1 + b. Since, for fixed a1, the projects {y1, y2} are optimal they must
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satisfy the first order condition (y1 − E [θ |θ ≤ a1 ])F (a1) = (y2 − E [θ |θ ≥ a1 ]) eF (a1).
Equivalently, these can be expressed as

S(a1)− T (a1) +
y2 − y1
2

= 0 (10)

Now consider the difference in expected utility to the principal between the best

centralized decision E [θ] and y(µ(θ))

∆U =

1Z
0

−(E [θ]− θ)2dF (θ) +

a1Z
0

(y1 − θ)2dF (θ) +

1Z
a1

(y2 − θ)2dF (θ)

Using the fact that S(a1)+T (a1) = (y1 + y2) /2−E [θ] this expression can be rewritten
as

∆U = 2 (y2 − E [θ])S(a1) + (E [θ]− y1)

µ
S(a1)− T (a1) +

y2 − y1
2

¶
. (11)

Using Lemma 4 (i.) we have that S(a1) > 0 for 0 ≤ a1 < 1, and, in particular,

S(0) = b−E [θ] > 0 . Since y2 > b the first term in (11) is positive and the second term

is zero from the first order condition (10) implying that ∆U > 0. Thus any two-project

optimal delegation scheme is dominated by centralization. ¥

Proof of Proposition 4: Follows from Lemmas 3,4 and 7-9. ¥

9.3 Proofs of Propositions 5-10

Proof of Proposition 5: Follows from the discussion in the text. ¥
Proof of Proposition 6: Follows from Proposition 4. ¥
Proof of Proposition 7: We first show that for given N , the solution to (5) subject

to (6) and (7) satisfies ∆yi = q for i = 2, ..., N − 1. To see this, note first that the
reneging constraint (7) can be stated as ∆y1 = (3y1 − y2 + 2b)/4 ≤ q, ∆yN = (3yN −
yN−1 − 2(1− b)) ≤ q and

1

4
(2yi − yi−1 − yi+1 + 4b) ≤ q for i = 2, ..., N − 1.

Thus, an increase in yj relaxes the reneging constraint for all i 6= j. Note second that

dEθ [UP ]

dyi
=
1

4
(yi+1 − yi−1)(yi+1 + yi−1 − 2yi) for i = 2, ..., N − 1.
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If∆yj < q for any j ∈ {2, ..., N−1}, then, from the above two equations, dEθ [UP ] /dyj >

0. Since an increase in yj relaxes all the other reneging constraints it follows that∆yj < q

cannot be a solution. Thus, the solution must satisfy ∆yi = q for i = 2, ..., N − 1.
We can now prove part (i.) of the proposition. We first prove that if q ≤ b/4, then

∆yi = q for i = 1, N . Solving ∆yi = q for i = 2, ..., N − 1 we obtain

yi =
N − i

N − 1y1 +
i− 1
N − 1yN − 2(i− 1)(N − i)(b− q) for i = 2, ..., N − 1.

Substituting into (5) and differentiating then gives

dEθ [UP ]

dy1
= b (y2 − y1)− 2∆y1a1 +

N−1X
i=2

∂Eθ [UP ]

∂yi

dyi
dy1

.

Note that the third term on the RHS is positive and that (y2− y1) > a1. Thus, q ≤ b/2

is a sufficient condition for ∆y1 = q.

Suppose that q ≤ b/2 and ∆y1 = q. Note that ∆yN ≤ q if and only if yN ≤
(1 + b− (2N − 1) (b− q)) ≡ eyN and that eyN < 1. Next, differentiating Eθ [UP ] twice

gives
d2Eθ [UP ]

dy2N
=

−2
(2N − 1)N (1 + 4N (N − 1) (1− yN)) .

Note that the second derivative is negative for all yN ≤ eyN . Thus, it is optimal to set
yN = eyN , and thus ∆yN = q, if and only if

dEθ [UP ]

dyN

¯̄̄̄
yN=eyN ≥ 0.

Differentiating Eθ [UP ] once shows that this inequality is satisfied if and only if

q ≤ (N − 1) (2N (N − 2) (b− q) + 3) (b− q)

3(1 + 2N (N − 1) (b− q))
≡ eq(N)

Since eq(N) is increasing in N , ∆yN = q for all N ≥ 2 if and only if q ≤ eq(2) ≡ q. It is

straightforward to verify that q ∈ (0, 1).
We now know that for given N , the solution satisfies ∆yi = q for i = 1, ..., N if q ≤ q.

We next argue that the optimal number of intervals is given by the maximum number

of intervals eN that can be supported in equilibrium. We do so in two steps. First, we
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show that eN is increasing in ∆yi. Second, we show that if ∆yi = q for i = 1, ..., N , then

Eθ [UP ] is increasing in N .

>From (6) it follows that

(ai − ai−1) = a1 + 4(i− 1)b− 2∆y1 − 2∆yi − 4
i−1X
j=2

∆yj for all i = 2, ..., N . (12)

In any equilibrium the intervals must add up to one, i.e. a1+
PN

i=2(ai−ai−1) = 1. Since
it must be that a1 ≥ 0, eN is given by the largest integer for which

PN
i=2(ai− ai−1) ≤ 1.

From (12) it then follows that eN is increasing in ∆yi for i = 1, ..., N .

Next, suppose that ∆yi = q for i = 1, ..., N . Then

Eθ [UP ] = −
¡¡
4(b− q)2N2 (N − 1) (N + 1) + 1

¢
+ q2

¢
/
¡
12N2

¢
.

The expression on the RHS is increasing in N for all N ≤ eN . This proves part (i.).
For part (ii.) note that from the above ∆yi = q for i = 2, ..., N − 1 for any q < b. ¥

Proof of Proposition 8: Note that since f(θ) is continuously differentiable, there

exists a b0 > 0 such that for all b ≤ b0, G(θ) is increasing in θ for all θ ∈ Θ. Thus,

for sufficiently small b threshold delegation is optimal if it does not violate the reneging

constraint. To see that for sufficiently small b threshold delegation does not violate

the reneging constraint, let δTD be the δ for which the reneging constraint is strictly

satisfied under threshold delegation, i.e. b2 = δTD/(1−δTD)Eθ
£
UTD
P − UCS

P

¤
. Similarly,

let δCD ≡ −b2/Eθ
£
UCS
P

¤
be the δ for which the reneging constraint is strictly satisfied

under complete delegation. >From Proposition 3 in Dessein (2002) it follows that if

f(θ) is twice continuously differentiable, then limb→0 δCD = 0. Note next that since

Eθ
£
UTD
P

¤ ≥ Eθ £UCD
P

¤
, δCD ≥ δTD. Thus, limb→0 δCD = 0 ≥ limb→0 δTD. ¥

Proof of Proposition 9: Follows immediately from the discussion in the text. ¥
Proof of Proposition 10: Follows immediately from the discussion in the text. ¥
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