Taxation, Migration, and Innovation: The Effect of Taxes on the Location of Star Scientists?

#### Enrico Moretti (UC Berkeley) Daniel Wilson (Federal Reserve Bank of San Francisco)

Preliminary

IZA, 31 May 2014

\*The views expressed in this paper are those of the authors should not be attributed to the Federal Reserve Bank of San Francisco or the Federal Reserve System.

Moretti & Wilson

Taxation, Migration, and Innovation

- How sensitive are people and businesses to taxes?
- When jurisdictions raise tax rates, do they **push** taxpayers to move away?
- By cutting taxes, can jurisdictions **pull** in "economically valuable" taxpayers those who generate either fiscal or social rents

• Much debate about tax-induced migration



Gérard Depardieu in Russian costume last year, after receiving his new passport.

• For example, Gerard Depardieu moves to Russia after France enacts 75% income tax rate on high-wealth residents

- Recent literature on tax-induced migration has focused on particular segments of population:
  - Young & Varner (2011) and Varner & Young (2012) look at "millionaires taxes" and high-income migration (in California and New Jersey)
    - Found little evidence of tax-induced migration
  - Kleven, Landais, & Saez (2013) look at within-E.U. mobility of star football players in response to tax changes
    - Found strong evidence of tax-induced migration
- Large literature on non-tax determinants of migration
  - Kennan & Walker's (2011) estimate dynamic structural location choice model
  - Gabriel, Shack-Marquez, and Wascher (1993) estimate state-pair level crosssectional model of pairwise migration as function of pairwise unemployment rate differentials.

- Surprisingly little research on tax-induced mobility of "economically valuable" individuals
  - Jurisdictions have strong interest in attracting individuals and businesses who generate positive economic spillovers (fiscal or social)

- This paper estimates tax-induced mobility of star scientists...
  - Surprisingly little research on tax-induced mobility of "economically valuable" individuals
  - Star scientists thought to have large positive local spillovers (Jaffe, Henderson, and Trajtenberg 2005)
- ...in context of U.S. states
  - Using data on state-to-state migration of (all) star scientists in U.S.
  - Compute bilateral migration rates for every pair of states (50x50)
  - Identify tax effects on migration rates from within state-pair, overtime variation in pairwise tax rate differentials

# Outline

- Introduction
- Data
- Some Stylized Facts
- Theoretical Framework
  - Model of Location Choice
- Estimation Results
- Conclusion

#### Data

We address these questions with rich compilation of data

- 1. Universe of U.S. patents from 1977-2010
  - Identify prolific ("star") patenters
  - Identify state of residence and state-to-state moves
  - Identify important characteristics of scientists such as corporate status of employer
  - Compute annual bilateral migration flows between pairs of states
- 2. Individual Income Tax Rates by Income Level, by State
  - NBER TaxSim
  - World Top Income Database (Alvaredo, Atkinson, Piketty, & Saez, 2013)
- 3. Corporate Income Tax Rates, R&D Credit Rates, and Investment Credit Rates, by State
  - Chirinko & Wilson (2008), Wilson (2009)

## Some Stylized Facts

#### Basic Facts about Star Scientists

- 1. Define stars as scientists in top 5% of patent count over prior 10 years
  - 290,000 observations over 83,000 scientists
     (conditional on observing *state* in both year *t* and *t*+1)

#### 2. Mobility

- About 4% of (top 5<sup>th</sup>) star-scientist\*year observations exhibit a move
- About 6% of stars move at least once
- Average moves per star: 0.33
- Average moves per star, conditional on moving at least once: 2.6
- Not a lot of movers, but movers move a lot

## Bilateral Flows of Stars (2006)



- CA accounts 1/3 of
  bilateral flows over 4 (or
  20% of all flows)
- High-tax CA is net
  exporter to low-tax WA.
  Yet CA is net importer
  from low-tax TX

#### **Cross-State Variation in Taxes**

Individual Income Tax Rate for household making \$365,026 (99<sup>th</sup> percentile) in 2010





Notes: Categories are identical across maps. White indicates no change.

## **Theoretical Framework**

- Objective: Derive regression eqn at state-pair\*year level
- Random Utility Model:

$$\begin{split} U_{iot}^{d} &= u[(1 - \tau_{t}^{d})w_{it}^{d}, \mu_{iot}^{d}] \\ &= \alpha s_{o}^{d}\log\left(1 - \tau_{t}^{d}\right) + \alpha\log w_{it}^{d} + \gamma_{o}^{d} + \gamma_{t} + \epsilon_{iot}^{d} \\ \end{split}$$
where  $s_{o}^{d}$  captures salience of policy in d relative to  $o(s_{o}^{o} = 1)$ 

- Define Probability of Moving from state *o* to state *d*:  $P_{iot}^{d} = \Pr(U_{iot}^{d} > U_{iot}^{x} \text{ for } x = 1 \text{ to } 50)$
- Assuming Independence of Irrelevant Alternatives (McFadden 1978):  $P_{iot}^{d} = exp(U_{iot}^{d}) / \sum_{k} exp(U_{iot}^{k})$

### **Theoretical Framework**

Aggregate over i to state-pair\*year level (level of tax variation), measuring  $P_{ot}^d$  by observed bilateral migration rate.

$$P_{ot}^{d} = exp(U_{ot}^{d}) / \sum_{k} exp(U_{ot}^{k}) \; ; \; P_{ot}^{o} = exp(U_{ot}^{o}) / \sum_{k} exp(U_{ot}^{k})$$

implies *odds-ratio*:  $\frac{P}{P}$ 

$$\frac{\frac{Dd}{ot}}{\frac{Do}{ot}} = \frac{exp(U_{ot}^d)}{exp(U_{ot}^o)}$$

and *log odds-ratio* :

$$\log P_{ot}^d / P_{ot}^o = U_{ot}^d - U_{ot}^o$$
$$= \alpha s \log (1 - \tau_t^d) - \alpha \log (1 - \tau_t^o) + \tilde{\gamma}_o^d + \gamma_t + \nu_{ot}^d$$

### **Estimating Equation**

 $\log P_{ot}^d / P_{ot}^o = \alpha s \log \left(1 - \tau_t^d\right) - \alpha \log \left(1 - \tau_t^o\right) + \tilde{\gamma}_o^d + \gamma_t + \nu_{ot}^d$ 

• Under perfect information/salience, s = 1, and equation reduces to single regressor :

destination – origin net-of-tax rate differential

- For tax credits,  $-\tau = c$
- Regression accounts for state "pair" and year fixed effects
  - Controls for amenities/characteristics of different states
- Cluster by state-pair
- Coefficients are reduced-form functions of (unobserved) labor supply and labor demand elasticities

## **Graphical Evidence**

Out-migration Vs. Tax Rates (Net of State-Pair & Year Fixed Effects)



Notes: Points represent averages of x and y within quantile bins. All variables demeaned of their state-pair and year means.

#### **Baseline Regression Results**

$$\log P_{ot}^{d} / P_{ot}^{o} = \alpha(k) \sum_{k} \left[ \log \left( 1 - \tau_{t}^{d}(k) \right) - \log \left( 1 - \tau_{t}^{o}(k) \right) \right] + \tilde{\gamma}_{o}^{d} + \gamma_{t} + \nu_{ot}^{d}$$

|                                          | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio                  | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio   |
|------------------------------------------|----------------|----------------|---------------------------------|----------------|----------------|------------------|
|                                          | (1)            | (2)            | (3)                             | (4)            | (5)            | (6)              |
|                                          |                |                | Origin Region <sup>*</sup> Year | Origin State   | Dest. State    | Region Pair*Year |
| MTR, 99th Perc.                          | $2.5309^{***}$ | $2.4254^{***}$ | 1.7347***                       | 1.6689**       | $3.1461^{***}$ | 1.6711***        |
|                                          | (0.4691)       | (0.5005)       | (0.3696)                        | (0.7044)       | (0.8865)       | (0.3464)         |
| State CIT Rate                           | 2.1846***      | 2.1828***      | 2.3906***                       | 2.2003***      | 2.7070**       | 1.3492**         |
|                                          | (0.6716)       | (0.7269)       | (0.6698)                        | (0.7382)       | (1.3045)       | (0.6737)         |
| State ITC                                | 1.9634***      | 2.0270***      | 1.5197***                       | 2.5678***      | 1.6930**       | 1.5256***        |
|                                          | (0.3989)       | (0.4311)       | (0.3689)                        | (0.5691)       | (0.6880)       | (0.3829)         |
| R&D Credit                               | 0.4250**       | 0.4385**       | 0.0502                          | 1.2742***      | -0.6182*       | -0.3180*         |
|                                          | (0.1855)       | (0.2036)       | (0.1783)                        | (0.2914)       | (0.3439)       | (0.1744)         |
| No. Observations<br>Origin & Destination | 11475          | 11475          | 11475                           | 11475          | 11475          | 11475            |
| State Fixed Effects                      | Yes            | No             | No                              | No             | No             | No               |
| Origin <sup>*</sup> Destination          |                |                |                                 |                |                |                  |
| Pair Fixed Effects                       | No             | Yes            | Yes                             | Yes            | Yes            | Yes              |
| State*Year                               |                |                |                                 |                |                |                  |
| Fixed Effects                            | No             | No             | No                              | Yes            | Yes            | No               |

• Higher Destination-Origin Net-of-Tax Differential  $\rightarrow$  Higher Origin-to-Destination Migration

#### Individual Income MTR, Top-End vs. Median

|                                                                 | Log Odds Ratio             | Log Odds Ratio             | Log Odds Ratio             | Log Odds Ratio            | Log Odds Ratio                                          | Log Odds Ratio             |
|-----------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------------------------------------|----------------------------|
|                                                                 | (1)                        | (2)                        | (3)                        | (4)                       | (5)                                                     | (6)                        |
|                                                                 |                            |                            |                            | Origin Region*Year        | Origin State                                            | Dest. State                |
| MTR, 50th Perc.                                                 | -0.0594<br>(0.6786)        | -0.2133<br>(0.7327)        | $0.4130 \\ (0.5410)$       | $-1.2976^{*}$<br>(0.7439) | 0.9662<br>(1.1303)                                      | 0.5833<br>(0.5539)         |
| MTR, 99th Perc.                                                 | $3.6206^{***}$<br>(0.7066) | $3.5246^{***}$<br>(0.7579) | $2.0880^{***}$<br>(0.5770) | $2.7213^{**}$<br>(1.1080) | $\begin{array}{c} 4.4479^{***} \\ (1.1718) \end{array}$ | $1.7832^{***}$<br>(0.5528) |
| No. Observations<br>Origin & Destination<br>State Fixed Effects | Yes                        | No                         | No                         | No                        | No                                                      | No                         |
| Origin <sup>*</sup> Destination<br>Pair Fixed Effects           | No                         | Yes                        | Yes                        | Yes                       | Yes                                                     | Yes                        |
| State <sup>*</sup> Year<br>Fixed Effects                        | No                         | No                         | No                         | Yes                       | Yes                                                     | No                         |

#### • Only High-Income Net-of-Tax Rate Matters for Star Scientists

#### Corporate Income MTR, Corp vs. Non-corp

|                   | Log Odds Ratio | Log Odds Ratio             |
|-------------------|----------------|----------------------------|
|                   | (1)            | (2)                        |
|                   | Full Sample    | Excluding Firm-Based Stars |
| MTR, 99.9th Perc. | $2.8785^{***}$ | $1.3415^{**}$              |
|                   | (0.5027)       | (0.5957)                   |
| MTR, 99th Perc.   | 2.6980***      | 1.3902**                   |
|                   | (0.5170)       | (0.6025)                   |
| MTR, 95th Perc.   | 2.6811***      | $1.0515^{*}$               |
| · ·               | (0.5212)       | (0.6033)                   |
| MTR, 50th Perc.   | 1.6461***      | -0.0409                    |
|                   | (0.6357)       | (0.5616)                   |
| State CIT Rate    | 2.4772***      | 1.0283                     |
|                   | (0.6899)       | (0.8982)                   |
| State ITC         | 2.1736***      | 1.8271***                  |
|                   | (0.4564)       | (0.4994)                   |
| R&D Credit        | 0.5382**       | 0.6502***                  |
|                   | (0.2247)       | (0.2476)                   |

• Corporate Tax Matters for corporate stars, but not for non-corporate stars

## Dynamic Specifications: Effect seen at t+l or t+2

$$\log P_{ot}^{d} / P_{ot}^{o} = \sum_{j=-2 \text{ to } 2} \alpha^{j} [\log (1 - \tau_{t-j}^{d}) - \log (1 - \tau_{t-j}^{o})] + \tilde{\gamma}_{o}^{d} + \gamma_{t} + \nu_{ot}^{d}$$

#### Dynamic Specifications: Effect seen at t+l or t+2

$$\log P_{ot}^{d} / P_{ot}^{o} = \sum_{j=-2 \text{ to } 2} \alpha^{j} [\log (1 - \tau_{t-j}^{d}) - \log (1 - \tau_{t-j}^{o})] + \tilde{\gamma}_{o}^{d} + \gamma_{t} + \nu_{ot}^{d}$$



Moretti & Wilson

#### Dynamic Specifications: Effect seen at t+l or t+2





Moretti & Wilson

## Asymmetric Effects of Origin vs. Destination

| $\log P_{ot}^d / P_{ot}^o =$ | $\sum [\alpha(k)s\log\left(1-\right.$ | $-	au_t^d(k)) - lpha(k) \log$ | $\log\left(1-\tau_t^o(k)\right)]$ | $+ \tilde{\gamma}_o^d + \gamma_t + \nu_{ot}^d$ |
|------------------------------|---------------------------------------|-------------------------------|-----------------------------------|------------------------------------------------|
|                              | k                                     |                               |                                   |                                                |

|                               | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio                  | Log Odds Ratio   |
|-------------------------------|----------------|----------------|---------------------------------|------------------|
|                               | (1)            | (2)            | (3)                             | (4)              |
|                               |                |                | Origin Region <sup>*</sup> Year | Region Pair*Year |
| MTR, 99th Perc. Origin        | -3.9020***     | -3.4439***     | -1.8819**                       | -2.0127***       |
|                               | (0.8124)       | (0.8817)       | (0.7711)                        | (0.7500)         |
| MTR, 99th Perc. Destination   | 1.1168         | 1.3441         | 1.6581**                        | $1.3062^{*}$     |
|                               | (0.7317)       | (0.8347)       | (0.7641)                        | (0.7847)         |
| State CIT Rate - Origin       | -3.2780***     | -3.1000**      | -2.8234**                       | -2.8975**        |
|                               | (1.1481)       | (1.2740)       | (1.2278)                        | (1.1847)         |
| State CIT Rate - Destination  | 0.9722         | 1.1568         | $1.6806^{*}$                    | -0.2979          |
|                               | (0.9456)       | (1.0443)       | (0.9506)                        | (1.0914)         |
| State ITC - Origin            | -2.2237***     | -1.9177***     | -0.6896                         | -0.7092          |
| 0                             | (0.6067)       | (0.6530)       | (0.7141)                        | (0.7334)         |
| State ITC - Destination       | 1.7227***      | 2.1188***      | 2.1617***                       | 2.2989***        |
|                               | (0.6179)       | (0.7042)       | (0.5975)                        | (0.5997)         |
| R&D Credit - Origin           | 0.1225         | 0.4216         | 1.3737***                       | 1.3112***        |
| nap orono ongn                | (0.3010)       | (0.3360)       | (0.3224)                        | (0.3084)         |
| R&D Credit - Destination      | 0.9593***      | 1.2880***      | 1 2239***                       | 0.6531**         |
| really offering - Destination | (0.3010)       | (0.3474)       | (0.3261)                        | (0.3184)         |
|                               |                | 1. C           | 1. 1                            | 1.               |

• For taxes (Indiv. and corp.), origin more salient; for credits, destination more salient

Moretti & Wilson

### Robustness

Baseline results robust to:

- Alternative Definitions of Stars: Top 10%, Top 1%
- Alternative Patent Database applying disambiguation algorithm to scientist names (Li, et al. 2014)
- Weighting observations by (origin) state population
- Cluster by destination\*year & origin\*year
- Dropping post-2006 observations

# Conclusion

- Taxes (& Credits) Matter
  - Both Personal Taxes and Business Taxes
  - Both Taxes and Credits: Investment Credits and R&D Credits
- Tax Progressivity Matters
  - Star scientists very sensitive to marginal tax rate on high income, insensitive to marginal tax rate on median income.
- Corporate Taxes Only Matter for Corporations
  - Migration of star scientists who work for corporations is sensitive to corporate income tax
  - migration of non-corporate scientists insensitive to corporate income tax
- Push vs Pull
  - For taxes, push (origin tax) effect is bigger than pull (destination tax) effect
  - For credits, pull effect is bigger

## Still To Come

- Estimate tax elasticity separately for stars who:
  - Switch employers vs. stay with same employer (between *t* and *t+1*)
  - Multi- vs. single-state firms
- Full Logit estimation of destination choice
  - Interact taxes with individual characteristics (scientific field, productivity/patent-count, distance, etc.)

### Extra Slides

# Robustness

|                   | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio              | Log Odds Ratio    | Log Odds Ratio          |
|-------------------|----------------|----------------|----------------|-----------------------------|-------------------|-------------------------|
|                   | (1)            | (2)            | (3)            | (4)                         | (5)               | (6)                     |
|                   | 95 perc. Stars | 99 perc. Stars | 90 perc. Stars | Weighted by 1977 State Pop. | Through 2006 Only | Disambiguation Data Set |
| MTR, 99.9th Perc. | $2.8785^{***}$ | 4.4607***      | $2.6193^{***}$ | 2.5356***                   | 2.7483***         | 3.9293***               |
|                   | (0.5027)       | (0.7576)       | (0.4622)       | (0.5952)                    | (0.5031)          | (0.6144)                |
| MTR, 99th Perc.   | 2.6980***      | 4.3100***      | 2.4893***      | 2.2988***                   | 2.5453***         | 3.8580***               |
|                   | (0.5170)       | (0.8004)       | (0.4762)       | (0.6154)                    | (0.5152)          | (0.6648)                |
| MTR, 95th Perc.   | 2.6811***      | 4.3279***      | 2.4498***      | 2.2964***                   | 2.5765***         | 3.6919***               |
|                   | (0.5212)       | (0.8028)       | (0.4881)       | (0.6321)                    | (0.5207)          | (0.6865)                |
| MTR, 50th Perc.   | 1.6461***      | 2.7011***      | 1.4589**       | 0.2052                      | 1.5121***         | 1.8600**                |
|                   | (0.6357)       | (0.9080)       | (0.5795)       | (0.6488)                    | (0.6465)          | (0.7611)                |
| State CIT Rate    | 2.4772***      | 3.3926***      | 1.9292***      | 3.0445***                   | 2.8030***         | 1.8203**                |
|                   | (0.6899)       | (1.0925)       | (0.6650)       | (0.7572)                    | (0.7575)          | (0.8501)                |
| State ITC         | 2.1736***      | 2.0801***      | 2.0479***      | 2.6135***                   | 2.1736***         | 1.6139***               |
|                   | (0.4564)       | (0.6379)       | (0.3998)       | (0.6105)                    | (0.4564)          | (0.4989)                |
| R&D Credit        | 0.5382**       | 0.6412*        | 0.3980**       | 0.8541***                   | 0.5264**          | 0.3571                  |
|                   | (0.2247)       | (0.3827)       | (0.1995)       | (0.2962)                    | (0.2246)          | (0.2633)                |
| No. Observations  | 11933          | 6255           | 14157          | 11933                       | 11545             | 7916                    |

### Alternative Tax Variables

|                                          | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio                  | Log Odds Ratio | Log Odds Ratio | Log Odds Ratio   |
|------------------------------------------|----------------|----------------|---------------------------------|----------------|----------------|------------------|
|                                          | (1)            | (2)            | (3)                             | (4)            | (5)            | (6)              |
|                                          |                |                | Origin Region <sup>*</sup> Year | Origin State   | Dest. State    | Region Pair*Year |
| User Cost of Capital                     | 6.6428***      | 6.6837***      | 4.0240***                       | 7.8452***      | 6.5524***      | $3.0406^{***}$   |
|                                          | (0.8363)       | (0.9171)       | (0.7773)                        | (1.3894)       | (1.4697)       | (0.7932)         |
| R&D User Cost                            | 0.2793         | 0.2671         | $0.2704^{*}$                    | 1.3469***      | -1.0850***     | -0.0102          |
|                                          | (0.1737)       | (0.1892)       | (0.1548)                        | (0.2488)       | (0.2693)       | (0.1482)         |
| ASTR, 99.9th Perc.                       | 3.0656***      | 3.0702***      | 2.6381***                       | 2.0468***      | 3.7360***      | 2.4819***        |
|                                          | (0.5326)       | (0.5645)       | (0.4050)                        | (0.7546)       | (1.0012)       | (0.3963)         |
| ASTR, 99th Perc.                         | 3.6885***      | 3.5917***      | 2.8378***                       | 2.4522***      | 4.6565***      | 2.5853***        |
|                                          | (0.6071)       | (0.6547)       | (0.4576)                        | (0.8986)       | (1.1277)       | (0.4372)         |
| ASTR, 95th Perc.                         | 5.0984***      | 4.9491***      | 3.6310***                       | 3.6187***      | 6.4582***      | 3.1667***        |
|                                          | (0.6977)       | (0.7652)       | (0.5468)                        | (1.0288)       | (1.2912)       | (0.5257)         |
| ASTR, 50th Perc.                         | 6.9121***      | 6.5517***      | 6.0718***                       | 2.5100**       | 10.8234***     | 5.5426***        |
|                                          | (1.1430)       | (1.2441)       | (0.9445)                        | (1.0906)       | (1.9156)       | (0.9994)         |
| No. Observations<br>Origin & Destination | 11511          | 11511          | 11511                           | 11511          | 11511          | 11511            |
| State Fixed Effects                      | Yes            | No             | No                              | No             | No             | No               |
| Origin <sup>*</sup> Destination          |                |                |                                 |                |                |                  |
| Pair Fixed Effects                       | No             | Yes            | Yes                             | Yes            | Yes            | Yes              |
| State*Year                               |                |                |                                 |                |                |                  |
| Fixed Effects                            | No             | No             | No                              | Yes            | Yes            | No               |

#### More Moves from High-Tax to Low-Tax States than Vice-Versa





#### But for Individual Income MTR, distribution is symmetric

