
Measuring the Social and Externality Benefits of
Influenza Vaccination ∗

Corey White
California Polytechnic State University, San Luis Obispo

cwhite46@calpoly.edu

This Version: March 28, 2018

Abstract

Vaccination represents a canonical example of externalities in economics, yet there are
few estimates of their magnitudes. I provide evidence on the social and externality
benefits of influenza vaccination in two settings. First, using pre-existing differences
in state-level vaccination rates interacted with exogenous annual variation in vaccine
quality, I estimate of the impacts of aggregate vaccination rates on mortality and work
absences in the United States. Scaled nationally, I find that a one percentage point
increase in the vaccination rate results in 1,134 fewer deaths and 8.9 million fewer work
hours lost due to illness each year. The mortality reductions are concentrated among
individuals 75 and older, but over half of the effect is attributable to the vaccination
of people under 75, suggesting a considerable externality effect. Second, I examine
a setting in which vaccination is targeted at a group with extremely high externality
benefits: vaccination mandates for health care workers. I find that mandates lead
to reductions in hospital diagnoses for influenza in affected counties, consistent with
substantial externality impacts. For both the general population and the population
of health care workers, the estimates suggest that programs increasing vaccine take-up
are likely to be cost-effective under reasonable assumptions about the costs.
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC), between 5% and 20% of

the U.S. population are infected with influenza each year; these infections result in an average

of approximately 200,000 hospitalizations and over 20,000 deaths.1 Influenza is considered to

be a vaccine-preventable disease, yet vaccination rates for influenza are substantially lower

than vaccination rates for other vaccine-preventable diseases. This is largely due to the fact

that the vaccine has to be received annually (and thus the cost of maintaining immunity is

relatively high) and due to the lack of public policy incentivizing vaccination.

Vaccination serves as a canonical example of positive externalities in economics. Those

who receive the vaccine incur some cost (monetary or otherwise) and experience a private

benefit through the reduced risk of becoming ill; the externality benefit comes through the

reduced risk of spreading the disease to others and the social benefit is the sum of the two.

Because the benefits of vaccination are not fully internalized by the recipient, vaccines will

be under-utilized relative to the social optimum in the absence of policy. This feature of

vaccination has long been recognized by economists, and many theorists have considered

how the socially optimal level of vaccination can be reached.2 Achieving a social optimum

requires information on both the marginal cost and the marginal social benefit of vaccination.

While the private benefits of vaccination can be measured to some extent through the use of

randomized controlled trials (RCTs), estimating the full extent of the social benefits requires

an analysis at the population level.

This paper measures the marginal social benefit of influenza vaccination in two settings.

First, I estimate the effects of state-level vaccination rates on influenza-related mortality and

work absences in the United States. This portion of the analysis addresses the social benefits

of vaccination in the general population. Second, I consider the efficiency gains to be had

through targeted vaccination by examining a situation in which the externality benefits of

vaccination are likely to be especially large. I analyze the impacts of county-level influenza

vaccination mandates that apply to health care workers (HCWs) in California.

I measure the causal impacts of state-level vaccination rates by interacting pre-existing

state-level differences in vaccination rates with year-to-year variation in the efficacy of the

vaccine. Vaccine efficacy is measured as the extent to which the strains included in the

season’s vaccine match the strains that end up circulating. Mis-matches occur because of

unpredictable genetic changes in the virus, and the prominence of these mis-matched viruses

is not known until after vaccines have been distributed. Mis-matches provide an exogenous

1Source: http://www.cdc.gov/flu/about/qa/disease.htm.
2For example: Stiglitz (1988); Brito et al. (1991); Francis (1997); Geoffard and Philipson (1997); Francis

(2004); Boulier et al. (2007); Althouse et al. (2010); Manski (2010, 2017).
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source of variation in effective vaccination while allowing for actual vaccination rates to be

held constant.

I find that higher vaccination rates lead to significant reductions in influenza-related mor-

tality. Scaled nationally, I find that a one percentage point increase in the U.S. vaccination

rate would result in approximately 1,134 fewer deaths per year in expectation. The mortality

benefits primarily accrue to individuals 75 and older, but 66% of the benefits are attributable

to the vaccination of people under 75, suggesting substantial externality benefits. I also find

that influenza vaccination significantly reduces the probability of illness-related work ab-

sences and hours lost due to illness. The estimates indicate that a one percentage point

increase in the U.S. vaccination rate would result in approximately 9.2 million fewer work

hours lost due to illness annually, in expectation. I find no impacts on either outcome dur-

ing periods in which there is no influenza circulating and no impacts on outcomes that are

implausibly related to influenza.

I translate these impacts into monetary estimates of the marginal social benefits of vacci-

nation. Using an age-adjusted value of statistical life (VSL), I estimate that each vaccination

confers at least $74 in benefits due to reduced mortality among individuals 75 and older.

This benefit grows considerably if younger individuals are considered as well, though the

estimates are only statistically significant for the 75 and older population. On the dimension

of illness absences, I find that each vaccination confers benefits of approximately $57.

Because the first component of the analysis exploits existing state-level variation in vac-

cination rates, the estimates can be interpreted as the impacts of increasing vaccination

among individuals who are on the margin of the decision to vaccinate. The social benefits

of vaccination are likely to be heterogeneous depending on who is vaccinated, and it is not

necessarily those who are on the margin whose potential externality benefit is largest. In

the second component of the analysis, I consider vaccination policy targeted at individuals

with large potential externalities by exploiting the roll-out of county-level influenza vaccina-

tion mandates that apply to health care workers in California. This setting also provides a

distinct advantage in measuring externality impacts as there exists clear link between those

who receive the treatment (health care workers) and those who benefit from the external-

ity (their patients). Most of these mandates apply to all licensed health care facilities in a

county, and thus there is potential for these mandates to reduce the spread of influenza both

within the hospital (the unit of analysis) and in other health care settings (e.g., long-term

care facilities). I find that these mandates increase hospital worker vaccination rates by 10.6

percentage points, reduce the number of influenza diagnoses for inpatient visits by 21.4%,

and reduce the number of influenza diagnoses for outpatient emergency department visits

by 9.4% during seasons with an effective vaccine. For inpatient visits, the impact is twice as
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large for influenza diagnoses that were not present at the time of admission (i.e., hospital-

acquired infection). I estimate the marginal benefit of HCW vaccination in terms of health

care cost savings to be $143 per vaccination.

An exercise comparing the two components of the analysis suggests that health care

worker vaccination is approximately seven times more effective at reducing the spread of

influenza in comparison to vaccination in the general population.3 For both vaccination

of the general population and of health care workers, the estimated marginal benefits of

vaccination are large in comparison to the cost of vaccine administration, suggesting that

programs that would increase vaccination at reasonable cost in either population are likely

to be cost-effective.

The primary contribution of this paper is to provide causal estimates of the social and

externality benefits of influenza vaccination. While a large medical literature evaluates the

benefits of influenza vaccination, much of the existing evidence on these benefits is derived

from RCTs in which vaccination is randomized across individuals within a group, leaving

no method for capturing externality effects.4 There are a limited number of studies in the

RCT literature that directly evaluate externality effects by randomizing across groups rather

than individuals (i.e., cluster RCTs). For example, Loeb et al. (2010) employ such a design,

randomizing across isolated communities in Canada. In their study, influenza vaccinations

were provided to children in the treatment communities and placebo vaccinations were pro-

vided to children in control communities. The authors find that vaccinating children led

to reductions in laboratory-confirmed influenza for both children and adults in the treated

communities, providing evidence of an externality benefit.

While it is possible to identify the presence of externalities in the context of an RCT, it is

exceedingly difficult to identify the effects of vaccination on severe and economically impor-

tant outcomes such as mortality. The relative infrequency of the outcome would necessitate

an extremely large-scale study; furthermore, ethical concerns over providing placebo vac-

cinations to high risk groups essentially relegates the study of any benefits (i.e., not only

mortality) of influenza vaccination in the elderly population to an observational setting. The

potential for bias in existing observational studies is large: a review of the evidence on vac-

cination in the elderly population noted implausibly large effects of vaccination on all-cause

mortality, explaining that these results were likely due to, “systematic differences between

3This figure should be taken with caution as it is not possible to use the same identification strategy and
outcomes for both components of the analysis, and thus the calculation relies on a number of fairly strong
assumptions.

4Reviews of this evidence are available from several sources, including the annual Recommendations of the
Advisory Committee on Immunization Practices provided by the CDC (Grohskopf et al., 2014), a number of
Cochrane reviews (Jefferson et al., 2010, 2012; Demicheli et al., 2014), and others (Osterholm et al., 2012).
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the intervention and control arms” (Jefferson et al., 2010).

To my knowledge, there are few examples of papers that effectively circumvent this

endogeneity issue; Ward (2014) is a notable exception. Ward (2014) uses exogenous variation

in vaccine efficacy to evaluate the impacts of a regional influenza vaccination campaign in

Ontario, Canada. The author finds that the program increased vaccination rates for non-

elderly adults by approximately 10.8 percentage points (the post-treatment vaccination rate

was approximately 33.3%) and resulted in a near elimination of influenza infection, a 92%

reduction. The results suggest that Ontario reached a threshold level of vaccination beyond

which the marginal benefits of vaccination fall to near zero. Models of influenza dynamics

suggest the existence of such a threshold (Boulier et al., 2007), but the fact that an annual

epidemic is still experienced each year in the U.S. despite vaccination rates well above those

during the study period in Ontario suggests that such a threshold has not been reached

in the U.S. and that the results of the program in Ontario may have been specific to the

location or period of analysis.

Similar to Ward (2014), my identification strategy relies on exogenous year-to-year varia-

tion in vaccine efficacy. My strategy has the advantage of exploiting variation in vaccination

rates and outcomes across 51 states and 22 influenza seasons. As such, the average impacts

that I estimate are not unduly influenced by the experience in any one region or time pe-

riod. Compared to many other studies of the social benefits of influenza vaccination, the

estimates presented here are smaller in magnitude. That being said, the magnitude of the es-

timates presented here are plausible and still suggest that the social and externality benefits

of vaccination are substantial.

This paper also provides the first large-scale evidence on the impacts of influenza vacci-

nation mandates for health care workers. This is an important contribution as such policies

are actively being considered by regional public health departments. This is underscored by

editorial articles published in several prominent medical journals that call for the adoption of

such requirements (Stewart, 2009; Caplan, 2011; Hooper et al., 2014). The existing evidence

on the benefits of such policies is derived from a small number of studies that assess the

impacts of vaccination requirements primarily for employees of long-term care facilities. One

recent paper critiques the findings of four recent studies by noting the implausibility of esti-

mates based on non-specific outcomes (De Serres et al., 2017). Another meta-analysis rates

the overall quality of evidence on the subject as either “low” or “very low” (Thomas et al.,

2016). This study has the advantages of using a highly specific outcome (hospital diagnoses

for influenza), extremely large scale (over 75% of hospitals in California were subject to the

mandates at the end of the sample), and the ability to identify impacts in settings other

than long-term care facilities.
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While the specific contributions of this paper are described above, this paper also con-

tributes to an empirical literature within economics that seeks to identify the economic

impacts of influenza infection more generally. Much of this literature has focused on the

effects of in-utero exposure to influenza on human capital development. Within this lit-

erature, most research has examined pandemic influenza (Almond and Mazumder, 2005;

Almond, 2006; Kelly, 2011; Lin and Liu, 2014; Brown and Thomas, 2016), though exposure

to seasonal influenza (the focus of this study) has been found to negatively impact health at

birth and later-life outcomes as well (Currie and Schwandt, 2013; Schwandt, 2017). There

are fewer studies that focus on the more contemporaneous impacts of influenza in the adult

population, with notable exceptions studying vaccination (Ward, 2014) and other factors

that can influence the spread of influenza (Adda, 2016; Stoecker et al., 2016).

This paper also contributes to a recent set of empirically-focused papers within economics

that study various questions related to vaccination. For example, Carpenter and Lawler

(2017) find that state requirements that children receive a tetanus, diphtheria and pertussis

(Tdap) booster vaccine prior to middle school entry result in higher vaccination rates for

Tdap, and lower rates of pertussis among the treated age group (private benefits) and other

age groups (externality benefits). They also find evidence of behavioral spillovers in that

the Tdap requirement increased vaccination for other diseases. Lawler (2017) finds that

both non-binding recommendations and mandates for Hepatitis A vaccination are effective

at increasing vaccination rates and decreasing morbidity for the disease in the aggregate

(social benefits). Oster (2018) examines the vaccination-disease relationship in the opposite

direction, and finds that pertussis outbreaks in a county decrease the share of unvaccinated

children entering kindergarten in subsequent years.

Finally, this paper contributes more generally to a literature in economics that seeks

to empirically identify externality impacts in a variety of settings. This literature is espe-

cially prominent in environmental economics, where many papers have sought to measure

the impacts of pollution on a variety of outcomes (see Graff Zivin and Neidell (2013) for a

review). Other examples include the evaluation of externality impacts of de-worming pro-

grams on health and schooling outcomes (Miguel and Kremer, 2004) and the estimation of

displacement effects in job placement programs (Crépon et al., 2013). Notably, there are few

papers (exceptions above) that seek to empirically identify externality or social impacts of

vaccination, despite the fact that vaccines are often regarded as the “textbook” example of

a positive externality (Stiglitz, 1988).

The remainder of the paper is structured as follows. Section 2 provides background in-

formation on influenza and influenza vaccination, as well as a conceptual discussion that

is helpful for interpreting the results of the empirical analysis to follow. Section 3 (Part
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I) describes the analysis of aggregate vaccination rates in the general population, and Sec-

tion 4 (Part II) describes the analysis of health care worker mandates in California. Finally,

Section 5 offers a discussion and concludes.

2 Background

In this section, I provide a brief overview of several points regarding influenza and influenza

vaccination that are necessary for interpreting the results of the empirical analysis. I also

provide a conceptual discussion of the benefits of vaccination, focusing on the theoretical

shape of the marginal benefit curves in the specific case of influenza vaccination.

2.1 Influenza and Influenza Vaccination

There are three key points regarding influenza for which I provide an overview in this section.

First, I discuss the burden of influenza; specifically, it is important to understand the ways

in which different groups are affected by the disease. Second, I discuss influenza vaccination,

summarizing the current state of knowledge regarding vaccine efficacy. Third, I discuss

in more detail the importance of vaccine match, as an understanding of the causes and

consequences of vaccine mis-match are key to understanding the identification strategy used

in the analysis to follow.

The total burden of influenza illness is large and crosses all demographic groups, though

there is substantial heterogeneity in how groups are affected. I focus on age as the primary

dimension of heterogeneity. This discussion reflects the findings of the CDC’s Recommenda-

tion of the Advisory Committee on Immunization Practices, which summarizes the general

findings from an extensive list of references (Grohskopf et al., 2014).

For children, influenza is responsible for large number of outpatient visits and hospital-

izations, and this is especially true for infants (children under one). Neuzil et al. (2000) find

that influenza was responsible for an annual average of 6-15 outpatient visits per 100 children

under 15. Additionally, Zhou et al. (2012) estimate annual influenza-related hospitalization

rates (per 100,000) equal to 151 for infants, 38.8 for children aged 1-4, and 16.6 for individ-

uals 5-49. While outpatient visits and hospitalization are fairly common, death attributable

to influenza among children is relatively rare. For non-elderly adults, influenza infection is

typically less severe and less likely to result in hospitalization or death. While severe out-

comes are less likely, the burden of influenza is still significant, often resulting in outpatient

visits and worker absenteeism (Molinari et al., 2007). Influenza infection in elderly adults

is the most severe. The majority of deaths related to influenza occur in individuals at least
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65 years old. The CDC estimates that in 1976-2007, average annual deaths attributable to

influenza were 21,098 for individuals 65 and older, 2,385 for individuals 19-64, and 124 for

individuals under 19 (Thompson et al., 2010). As such, these estimates indicate that the

65 and older population account for approximately 90% of all influenza-related deaths. It

should be noted that due to difficulties in reporting and diagnosis, there is no consensus on

the number of deaths that are caused by influenza in each year. Other evidence suggests

that the true number could be much larger: Dushoff et al. (2006), for instance, estimate

annual average deaths equal to 41,400 for the period 1979-2001.

Influenza vaccine efficacy – the extent to which vaccination protects against laboratory-

confirmed influenza – is determined by several factors. Vaccine match is an especially im-

portant factor, but it is important to note that even when the vaccine is perfectly matched

it is not 100% effective. Vaccine efficacy also varies with age; diminished immune response

among the elderly means that they are less able to create the antibodies needed to gain

immunity. Estimates of vaccine efficacy in the prime-age population vary, though several

studies find values in the range of 50-60% in a well-matched season (Demicheli et al., 2014;

Grohskopf et al., 2014). Estimates of vaccine efficacy in the elderly population are more con-

tentious, primarily due to the fact that ethical concerns over providing placebo vaccinations

to high-risk populations limit the ability of researchers to use RCTs. There is some debate

as to whether the vaccine provides any protective benefits among the elderly (Simonsen et

al., 2007), though a recent study reported by the CDC indicated efficacy of approximately

26% among people 65 and older (McLean et al., 2014) during a well-matched season.

Vaccine match – the degree to which the strains included in the vaccine match the

strains that end up circulating – is an especially important determinant of vaccine efficacy;

studies of vaccine efficacy find that the vaccine is much less effective when at least one

of the dominant circulating strains is not included in the vaccine (Jefferson et al., 2010).

Understanding the identification strategy in the main analysis requires understanding the

process by which a vaccine mis-match occurs. For the North American vaccine, this process

begins in early Spring, when the World Health Organization convenes a meeting in order to

make recommendations on the composition of the following season’s vaccine. The vaccine

includes three (trivalent) or four (quadrivalent) strains, and the decision as to which strains to

include in the vaccine is primarily based on which strains were circulating most recently.5 The

Food and Drug Administration makes the ultimate decision regarding vaccine composition

in the U.S., and vaccine composition is common across all states. Due to the time it takes

to produce and distribute the vaccine, this decision must be made in early Spring so that

vaccines can be administered in the Fall. The influenza virus itself undergoes constant

5The quadrivalent vaccine was introduced in 2012.
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genetic change (“antigenic drift”) such that there are always viruses in existence that are

genetically distinct from the dominant strains; vaccines may not provide protection against

these genetically distinct viruses. Significant mis-matches occur when one or more of these

genetically distinct viruses becomes a dominant strain in a given season. Vaccine mis-matches

are unpredictable prior to the start of influenza season. When a mis-match occurs, the non-

matched virus strain is typically included in the following year’s vaccine. This means that

matched and mis-matched strains do not represent a different set of virus strains, since mis-

matched strain become a matched strains in following seasons. It is also important to note

that not only is the vaccine formulated well before influenza season begins, but individuals

typically have no information on vaccine match at the time of vaccination. I provide direct

evidence of this in Section 3.2.

2.2 Marginal Social Benefits of Vaccination

The goal of this paper is to estimate the marginal social benefits and marginal externality

benefits of influenza vaccination. Before moving on to the estimation, it is useful to consider

a simple economic framework of externalities in the specific case of influenza. In this frame-

work, there is a marginal private benefit of vaccination (MPB) and a marginal social benefit

of vaccination (MSB). The MSB is assumed to be at least as large as the MPB at all points

(i.e., the externality is non-negative). In a competitive equilibrium, consumers purchase

vaccines such that the MPB equals the marginal private cost (MPC), and the vaccine is

under-provided relative to a social optimum. The economic intuition is straightforward and

is the basis for the analysis conducted in this paper. Considering the shape of the benefit

curves in the specific context of influenza provides additional insight.

Boulier et al. (2007) combine basic externality theory with a workhorse model of disease

dynamics (the susceptible-infected-removed model) and parameterize the model to the case

of influenza in order to derive theoretical predictions for the shape of the marginal benefit

curves. Figure 1 produces a version of their result, allowing the MPB and MSB to depend

on vaccine efficacy. I have plotted each assuming either 100% or 50% efficacy (denoted E).

Recall that even when the vaccine is well-matched, estimates of vaccine efficacy are typically

in the range of 50-60%. Consider first the case of a perfectly effective vaccine. The gap

between the MPB and MSB represents the marginal externality. The y-axis measures the

number of infections such that at a vaccination rate of zero, the model predicts that an

additional vaccination will prevent more than 1.5 infections in expectation; 0.5 infections are

prevented in private benefits and the remainder are prevented in external benefits. Measuring

infections is equivalent to measuring the cost of disease if it assumed that the cost of infection
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is homogeneous and equal to one.

As the vaccination rate increases, the MPB decreases but the MSB stays relatively flat (or

increases) until a threshold is reached. This threshold represents the point at which a seasonal

epidemic fails to emerge (“herd immunity”). The shape of these curves prior to the threshold

is important as they imply that neither the externality nor the social benefit of vaccination

decreases prior to this point. Furthermore, it can be inferred that the U.S. is not beyond the

threshold, as an influenza epidemic does emerge in each season. Current vaccination rates

(approximately 43% in 2014) in combination with the persistence of an annual epidemic is

at odds with the model that assumes E = 100% and predicts a threshold level of vaccination

between 30% and 40%. If we consider a lower E, the benefits of vaccination fall and the

threshold increases. At a more realistic E = 50%, the vaccination threshold beyond which

there would be limited marginal benefits of vaccination is approximately 60%.

I caution that this model depends on a number of parameter choices that are difficult

to estimate accurately, but considering the general shape implied by the model helps to

guide the interpretation of the results to follow.6 Importantly, the model predicts that

the externality makes up the majority of the social benefits of vaccination. The model

also predicts relatively constant marginal social benefits of vaccination below the threshold,

implying that estimates of the social benefits are unlikely to depend strongly on the level

of vaccination. In other words, we should expect that the relationship between vaccination

rates and the outcome of interest is roughly linear. This of course applies only until the

threshold is reached, though reaching the threshold would be obvious as a seasonal epidemic

would fail to form and very few infections would occur.

Discussion of this framework also presents the opportunity to discuss potential heteroge-

neous impacts of vaccination (though heterogeneity is not explicitly built into the model).

It is worth considering how two groups in particular may differ from the remainder of the

population: the elderly population and health care workers. For the elderly, the cost of

infection is high and vaccine efficacy is relatively low. These factors combined imply that

the elderly benefit substantially from the vaccination of others and that a particularly large

portion of the benefits to the elderly will operate through an externality. Health care workers

(HCWs) are particularly interesting for two reasons. First, HCWs come in relatively frequent

contact with infected individuals and thus vaccination is more likely to prevent infection in

this group. Second, HCWs come in relatively frequent contact with individuals who have a

high cost of infection (e.g., individuals with a compromised immune system), and thus the

vaccination of HCWs may reduce the spread of infection precisely to those who would suffer

6Important parameters include vaccine efficacy and the “contact number”, which is the number of addi-
tional infections that result from a single infection when the entire population is susceptible.
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the most severe consequences. These potential heterogeneous impacts motivate the focus on

these groups in the empirical analyses to follow.

3 Part I: Aggregate Vaccination Rates

3.1 Data

This analysis requires data on mortality by cause of death, illness-related work absences,

influenza vaccination rates, the timing and magnitude of influenza activity, and the vaccine

match rate. The unit of analysis is the state-year-month and the data cover the years

1994-2016. Because the analysis centers around influenza seasons, years will be redefined

to represent “flu-years”, defined as running from July through June so that each flu-year

represents a distinct influenza season. Note that I often use “flu-years” and “influenza

seasons” interchangeably. The data coverage is ultimately July 1994 through June 2016.

In most specifications, the two flu-years affected by the 2009 H1N1 pandemic are omitted

(2008/09 and 2009/10) so that the estimates represent seasonal influenza. Summary statistics

for all data described here are provided in Table 1.

3.1.1 Outcomes: Mortality and Work Absences

Mortality data are derived from the multiple cause of death files from the National Vital

Statistics System (NVSS). This is the restricted version of this data that includes state iden-

tifiers beyond 2005. It is important to note the use of multiple causes of death in classifying

mortality as influenza-related. Dushoff et al. (2006) find that a large number of influenza-

related deaths are excluded when only the underlying cause of death is used. Accordingly,

deaths are classified by diagnosis if any of the (up to 21) diagnosis codes fall into the relevant

category. Even using multiple causes of death, it is very rare for a death to be classified as

specifically due to influenza. As such, the category with the highest level of specificity used in

the analysis of mortality is deaths with any diagnosis for pneumonia/influenza (PI). Because

deaths due to influenza often occur as a result of complications or the exacerbation of pre-

existing conditions, even PI deaths may exclude deaths that occurred as a result of influenza

infection. As such, I also analyze deaths in two higher levels of aggregation: deaths with

any respiratory or circulatory diagnosis, and all-cause deaths. Because it is highly unlikely

that deaths without a respiratory or circulatory diagnosis occurred as a result of influenza
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infection, these non-respiratory/circulatory deaths are used as a falsification test.7 Finally,

estimates are also presented that use only the primary cause of death instead of multiple

causes for each of 34 mutually exclusive cause-of-death categories.

Data on illness absences and hours absent due to illness are derived from the Current

Population Survey (CPS) basic monthly files. Similar to Stearns and White (2018), the

measure of illness absences is constructed using two questions posed to all individuals who

report being employed. First, individuals who report being employed but absent from work

for the entire reference week (i.e., worked zero hours) are asked the main reason for their

absence. Second, individuals who are employed and at work during the reference week report

both their usual hours worked and the number of hours actually worked in the reference week.

Those who work less than 35 hours during the reference week but report that they usually

work at least 35 hours per week are asked the main reason for working less than usual.

Each of these two questions lists “own illness” as one possible reason for missing work and is

the reason given for approximately 19% of absences (for both entire-week and partial-week

absences). For each worker reporting an absence, the survey also asks the number of hours

missed. The mean number of hours missed due to illness (at the state-year-month level)

is the main outcome of interest for work absences. In addition to illness-related absences,

absences for other reasons are analyzed as falsification tests.

All measures of absence can be constructed only for individuals who work at least 35 hours

per week and thus represent only full-time workers. A standard set of individual covariates

are regressed out at the individual level prior to collapsing the residuals to the state-year-

month level; covariates are indicators for gender, age (<20, 20-30, 30-40, 40-50, 50-60, >60),

marital status (married, widowed/divorced/separated, never married), and education (less

than high school, high school diploma, some college, college graduate).

3.1.2 Vaccination Rates

Data on state-level vaccination rates are obtained through the Behavioral Risk Factor Surveil-

lance System (BRFSS). The BRFSS is a large-scale telephone survey that has been conducted

at the national level since 1993.8 The BRFSS asks whether each participant has received an

influenza vaccination within the past 12 months.9 Due to the phrasing of the question, there

are several months wherein the season to which the vaccine applies is ambiguous. I drop

7The ICD9 and ICD10 codes used to classify these diagnoses are as follows: Influenza (ICD9: 487-488,
ICD10: J9-J11), Influenza/Pneumonia (ICD9: 480-488, ICD10: J9-J18), Respiratory/Circulatory (ICD9:
390-519, ICD10: I00-I99, J00-J99).

8The survey began in 1984, though it was conducted in a limited number of states.
9The exact phrasing of this question varies slightly from year to year. In more recent years, for instance,

the survey asks about various types of vaccination (i.e., flu shots or spray). I classify each individual as having
received an influenza vaccination if they received at least one dose of any type of influenza vaccination.
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all survey responses taken from September through December since these are the months in

which the vast majority of influenza vaccinations are received and as such are the months

with substantial ambiguity as to which season the reported vaccination applies. Vaccina-

tion rates for the 2012/13 influenza season, for example, are calculated as the percentage

of respondents surveyed between January and August of 2013 who report having received

an influenza vaccination within the past 12 months. Information on vaccination was not

collected in the survey years 1994, 1996, 1998 or 2000. To fill in these gaps, vaccination rates

are linearly interpolated in missing flu-years for each state. Because vaccination rates evolve

relatively smoothly over time, and because the identification strategy used in this analysis

relies not on year-to-year changes in vaccination rates but on baseline differences in the level

of vaccination across states, such a procedure is not a concern for identification.10

3.1.3 Match Rates

Data on the vaccine match are derived from annual influenza season summaries, which consist

of data compiled from the CDC’s virologic surveillance system.11 This system consists of

laboratories located throughout the country that test respiratory specimens for the presence

of any influenza virus and characterize viruses according to the exact strain. The data

contain information on the number of viruses by strain and information indicating which

strains the season’s vaccine protects against. The match rate for each season is defined as

the percentage of characterized viruses that match the strains contained in that season’s

vaccine. It is possible that the vaccine can offer some level of protection against strains that

are not perfectly matched if the strain in the vaccine and the strain circulating are similar,

and this information is indicated in the data. I construct two versions of the match rate,

one in which strains are characterized as matched only if it is the exact strain contained in

the vaccine, and one in which strains are characterized as matched if the vaccine offers some

level of protection. The main specification uses the average of these two measures.12

10Furthermore, the estimates are not sensitive to the exclusion of these years.
11These data are available at: http://www.cdc.gov/flu/weekly/pastreports.htm.
12The exact process by which I calculate the match rate is slightly more complicated than I have laid out

above. Each positive test received by the CDC is classified as either influenza A or influenza B. A subset of
influenza A viruses are sub-typed (H1N1 or H2N3) and a subset of each subtype are then characterized to
determine the exact strain. A subset of influenza B viruses are characterized to determine the exact strain.
The annual summaries contain information on the number of total tests, the number of positive tests, the
number of A and B viruses, the number of viruses sub-typed, the number of each subtype characterized, and
the number of viruses belonging to a specific strain. Though relatively straightforward, I have developed a
calculator that takes these numbers as inputs and outputs the match rate for each season. This calculator
(along with all input data) is available upon request.

12
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3.1.4 Influenza Activity & Other Data

Data on the timing and magnitude of influenza activity are also obtained from the CDC’s

virologic surveillance system. The primary measure of influenza activity is the percentage

of tests that are positive for any type of influenza. I re-scale this variable to range between

zero and one within the sample by dividing by the maximum observed value such that the

measure can be interpreted as an index with a value of one representing severe (but observed)

influenza activity.

Population data is required to construct mortality rates. Population by state, year and

age are derived from the U.S. Census Bureau. Controls for temperature, humidity, and

precipitation are included and derived from the Global Summary of the Day files.

3.2 Empirical Framework

Estimating the impacts of population-level vaccination rates is an empirically difficult task.

To illustrate this difficulty, consider the following empirical equation:

Ysmy = βVsy +Wsmy + δmy + εsmy (1)

Ysmy measures the outcome in state s, flu-year y, and month m. The outcomes are either

the PI mortality rate (per 100,000) or the average number of work hours lost due to illness.

Vsy is the vaccination rate for state s and flu-year y, and δmy are month-year fixed effects.

Wsmy represents flexible controls for temperature, humidity and precipitation.13 The benefit

of relating state-level vaccination rates to outcomes at the state-level is that all within-state

externalities are captured. The issue of course is that regressor of interest in this equation

(Vsy) is endogenous. It is certainly plausible, for example, that individuals in states that are

more affected by influenza are more likely to get vaccinated. Indeed the estimate of β from

the naive regression described above is 0.11 (s.e. = 0.031); taken causally, this would imply

that higher vaccination rates lead to more influenza-related mortality. Controlling for state-

specific factors may ameliorate this endogeneity issue: the inclusion of state-by-month fixed

effects in the above equation produces a coefficient estimate of -0.03 (s.e. = 0.014). That

being said, it is reasonable to argue that if fixed differences in vaccination rates across states

are endogenous, then changes in vaccination rates are likely to be endogenous as well. This

would be the case if, for example, states with rapidly increasing vaccination rates are more

(or less) likely to pass effective health policy, or have individuals that are more (or less) likely

13Temperature is expressed as the number of days in one of seven 10-degree mean temperature bins from
<20F to >80F (60-70 omitted). Humidity is expressed as the number of days in three 5g/kg specific humidity
bins from <5 to >20 (<5 omitted). Precipitation is expressed as a cubic in total monthly precipitation.
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to adopt other beneficial health behaviors. Such possibilities are far from implausible, and as

such the strategy described below does not rely on potentially endogenous fixed differences

or changes in vaccination rates for its identifying variation.

The strategy I use is to interact differences in vaccination rates with year-to-year vari-

ation in vaccine efficacy to generate plausibly exogenous variation in effective vaccination,

while controlling for the actual vaccination rate. This strategy is illustrated in Figure 2.

The top panel plots vaccination rates for two groups of states over time: a group of low-

vaccination states (the five states with the lowest mean vaccination rate over time) and a

group of high-vaccination states (the five states with the highest mean vaccination rate).

The figure also plots the match rate in each influenza season. Note that vaccination rates

in both groups evolve relatively smoothly over time, and that the gap in vaccination rates

evolves smoothly over time as well. Further note that there is no visual evidence indicating

that vaccination rates are systematically different during high or low match seasons. The

bottom panel plots the effective vaccination rate over time (i.e., the product of the actual

vaccination rate and the match rate). During seasons in which the match is close to one, the

gap in effective vaccination between low- and high-vaccination states is preserved. During

seasons in which the match is poor, however, there is little difference between these states

in effective vaccination. The identification strategy compares the difference the outcome

between low- and high-vaccination states in flu-years with a highly effective vaccine against

the same difference in flu-years with a relatively ineffective vaccine. Equation (2) describes

this difference-in-differences approach:

Ysmy = γ1(Vsy ∗My) + γ2Vsy +Wsmy + δsm + δmy + εsmy (2)

In this equation, My is the match-rate, measured nationally for each flu-year. A match

rate of zero implies that the vaccine is minimally effective whereas a match rate of one implies

maximum efficacy.14 γ2 represents the potentially endogenous component of the relationship

between vaccination rates and the outcome of interest: this measures the relationship be-

tween vaccination rates and the outcome in seasons in which the vaccine is minimally effective

(i.e., zero match rate). γ1 is the object of interest, and represents the differential effect of an

increased vaccination rate between flu-years when the vaccine is at maximum versus min-

imum efficacy. Intuitively, γ1 picks up the impact of effective vaccination (i.e., the causal

effect of vaccination), but not the component of the relationship between vaccination rates

14A zero match rate does not necessarily imply that the vaccine is completely ineffective as vaccination
can provide some level of protection against non-matched strains (especially if the strain is similar to that
included in the vaccine). Similarly, maximum efficacy does not imply that the vaccine is perfectly effective.
In fact, maximum efficacy is approximately 60%.
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and the outcome that persists in seasons when the vaccine is ineffective.

Identification relies on the assumption that the match rate is exogenous from year to year

and that unobserved factors that are correlated with vaccination rates are unrelated to the

match rate. One potential concern is whether it is possible for individuals to respond to the

match rate in terms of vaccination behavior (e.g., choose not to receive a vaccine if the match

is poor). Such behavior would introduce bias if there are differential responses across states

with different vaccination rates. The process by which the strains are chosen for inclusion

in the following season’s vaccine formulation, described in Section 2.1, supports the notion

that the match rate is effectively random from year to year. Also supporting this notion is

the fact that I find no evidence of serial correlation in the match rate, and no evidence of a

trend in the match rate over time.15 Furthermore, evidence described below suggests that

there is limited scope for individuals to respond to the vaccine match.

From 2007 onward, the BRFSS has asked respondents not only whether they received

a vaccination, but the month in which they were vaccinated. Figure A1 plots the average

cumulative vaccination rate (across flu-years) by month for the flu-years in which this data is

available. Additionally, this figure displays average influenza intensity by month. Together,

this figure shows that in a typical influenza season, nearly all vaccinations are administered

before the onset of the season’s influenza outbreak. Because information on the vaccine’s

match cannot be determined until a significant number of individuals are infected, this

plot suggests that there is limited scope for responding to the match rate at all, much less

differentially across states. That being said, while there is little scope for responding to

match rates, it is not impossible.

Table 2 provides more direct evidence on the question of whether individuals are respond-

ing to match rates in terms of vaccination behavior. Column one reports estimates from a

regression of the vaccination rate in a given state and influenza season on the match rate.

The estimate is small and statistically indistinguishable from zero at conventional levels.

The estimate implies that vaccination rates are 0.31 percentage points higher in 100% match

seasons compared to 0% match seasons. The 95% confidence interval rules out an effect

size larger than 0.69 percentage points. In a more direct test of the identifying assumption,

Column 2 presents estimates of a test for differential responses to vaccine match by inter-

acting the match rate with the mean vaccination rate (over time) for each state; the results

indicate no evidence of a differential response among states that tend to have higher or lower

vaccination rates. To the extent that any concerns remain over the possibility of responses

15Both serial correlation and trends are tested at the flu-year level (the level at which the match rate is
defined). A regression of My on My−1 yields a coefficient estimate of -0.051 (s.e. = 0.263), and a regression
of My on a time trend (flu-year) yields a coefficient estimate of 0.004 (s.e. = 0.010).
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to the match rate in terms of vaccination behavior, additional specifications are estimated

wherein only pre-existing variation in vaccination rates is employed. More specifically, the

vaccination rate and each of its interactions are instrumented using vaccination rates from

prior seasons. The estimates are insensitive to the choice of prior season, including the aver-

age vaccination rate over the prior three seasons, or a time-invariant vaccination rate defined

as the average vaccination rate in the first three seasons of the sample.

Further supporting a causal interpretation of the estimates is their robustness to a variety

of specifications and falsification tests, described in detail in Section 3.3. One falsification

test uses the idea that influenza vaccination will only have a causal effect on mortality

and work absences during periods in which influenza is circulating. This idea is explicitly

built into the main estimation strategy (described below), in which within-year variation in

the timing and magnitude of influenza activity is exploited as a third source of variation.

This can be done either by estimating Equation (2) separately for periods of high and low

influenza activity, or more formally in a triple-difference approach. While both versions are

presented, the advantage of the triple-difference approach is that it allows for the use of

a continuous measure of influenza activity, which more precisely focuses on the periods in

which the largest impacts would be expected relative to a more arbitrary classification of

months into “high” and “low” influenza activity.

Ysmy = φ1(Vsy ∗My ∗ Amy) + φ2(Vsy ∗My) (3)

+ φ3(Vsy ∗ Amy) + φ4Vsy +Wsmy + δsm + δmy + εsmy

Influenza activity, Amy, can be defined in different ways. One option is to take more of

an “intent-to-treat” approach and define Amy as an indicator representing months in which

influenza activity tends to be the highest (i.e., December-March). Another approach is to

more precisely focus on periods in which the largest impacts are expected, and define Amy as

a measure of influenza activity. Although these two methods obtain similar results in terms

of magnitude, the latter is preferred for precision. The influenza activity measure is an index

that is scaled to equal one during the month in the sample with maximum influenza activity,

and the measure is common to all states.16 Note that the main effect for match (My), the

main effect for activity (Amy), and their interaction (My ∗Amy) are implicitly included in the

16Even though the measure of influenza activity is at the national level, there is still the concern that
the measure is endogenous to the extent that it is determined by local conditions. This is addressed in two
alternative specifications in Section 3.3.4: (1) by defining Amy as an indicator for typically high influenza
months, and (2) by using regional variation in influenza activity for seasons in which this is available (1998-)
and defining Asmy as influenza activity in all census divisions other than the one that contains state s.
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month-by-year fixed effects. In Equation (3), φ1 measures the difference in the causal effect

of vaccination (γ1 from Equation (2)) between periods of maximum influenza activity and

periods of zero activity. The coefficient φ2 represents a falsification test: the causal effect of

vaccination during periods in which essentially zero influenza is circulating (and as such φ2

should equal zero).

Equation (3) includes both month-by-year fixed effects and state-by-month fixed effects.

The state-by-month fixed effects not only account for any fixed state-specific factors, but

allow seasonality in the outcome to vary by state. Note that the identification strategy does

not rely on the inclusion state fixed effects, but inclusion of state-by-month fixed effects is

preferred for precision. All models also include flexible controls for temperature, precipita-

tion, and humidity (Barreca and Shimshack, 2012). No state-level covariates that vary at

the annual level are included; instead, I recognize that Equation (3) allows for the inclusion

of state-by-year fixed effects and demonstrate that the results are not sensitive their inclu-

sion. These results are presented alongside a range of other specifications in Table A1. In

all specifications, standard errors are clustered at the state level.

3.3 Results

In interpreting the estimates, note that the three regressors (Vaccination, Match, and Ac-

tivity) are all continuous measures. Vaccination is measured on a scale of zero to 100 such

that the estimates can be interpreted as a one percentage point increase in the vaccination

rate, while the other two regressors are measured on a scale of zero to one.

3.3.1 Main Results

Table 3 provides estimates of the difference-in-differences equation described in Equation (2).

These estimates are presented for both the all-age PI mortality rate per 100,000 population

(Panel A) and average work hours lost due to illness absence (Panel B). Column 1 includes

all months, Columns 2-3 compare influenza season months (December-March) to non-season

months (April-November), and Columns 4-5 compare months with high influenza activity

months (activity index ≥ 0.5) and low activity months (activity index < 0.5).

First, let us consider the coefficient estimates for “Vacc”, which represent the relationship

between vaccination rates and the outcomes when the match rate is zero. These estimates

are generally positive, and typically larger during influenza season months or periods of

high influenza activity. This suggests that states with higher influenza-related mortality or

more influenza-related work absences tend to have higher vaccination rates. In other words,

these estimates pick up the potentially endogenous component of the relationship between
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vaccination and the outcomes.

The coefficient estimates for the interaction term are the objects of interest. These esti-

mates represent the differential effect of higher vaccination rates between flu-years in which

the match is equal to one relative to flu-years in which the match is equal to zero. For PI

mortality, the all-month estimate in Column 1 is negative and significant; the point estimate

of -0.047 implies that a one percentage point increase in the vaccination rate decreases PI

mortality by 0.047 per 100,000 in flu-years when the vaccine is perfectly matched relative

to flu-years when the match is zero. Magnitudes will be discussed in greater detail in the

discussion of Table 4 below. For work absences, the all-month estimate in Column 1 is also

negative, but it is not statistically different from zero. The point estimate of -0.0014 implies

that a one percentage point increase in the vaccination rate decreases the average number

of hours lost due to illness for full-time workers by 0.0014 (an approximate 0.5% decrease).

The lack of precision and relatively small magnitude of these estimates in part motivates

analyzing months in which the benefits are expected to be largest.

For both PI mortality and work absences, the general patterns in comparing high in-

fluenza months to low influenza months are similar: the estimates are large in magnitude

and statistically significant during high influenza months (influenza season or high activity

months) and relatively small in magnitude during low influenza months (non-season or low

activity months). Compared to the all-month estimates in Column 1, Column 2 shows that

the estimates are larger during influenza season, when influenza activity is typically higher.

Taking this comparison further, Column 4 shows that the estimates are even larger dur-

ing months with high measured influenza activity. The estimates for low activity months

(Columns 3 and 5) are smaller in magnitude compared to the all-month estimates; these are

negative and significant in some cases, which is not unexpected since the estimates represent

months with relatively little influenza activity rather than zero activity.

The triple-difference model formalizes the comparison between Columns 4 and 5 of Ta-

ble 3. This formalization has the advantages of (1) utilizing the entire distribution of in-

fluenza activity rather than an arbitrary classification of months in to “High” and “Low”

activity, and (2) providing a falsification check in the form of a coefficient estimate that

represents the causal effect of vaccination during periods of zero measured influenza activ-

ity. The triple difference estimates for both PI mortality and work absences are reported

in Table 4. Column 2 in this table represents the main specification, but the table presents

two additional specifications as well: Column 1 represents a more parsimonious specification

that omits the state-by-month fixed effects and Column 3 builds on the main specification

by instrumenting for the vaccination rate (and all interactions) using the average vaccination

rate over three seasons prior (and all interactions). Additional specifications that vary the
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fixed effects and use of the instrument are presented in Table A1, and alternative defini-

tions of the instrument are explored in Table A2.17 Across all specifications in Table 4, and

Tables A1 and A2, the estimates are of comparable magnitude.

Next consider the magnitude of the estimates in Column 2 of Table 4. Note that all

subsequent analyses and calculations are based off of this specification. For both PI mortality

and hours absent for illness, the coefficient on the V acc ×Match × Activity interaction is

negative and significant, while the coefficient on the V acc×Match interaction is small and

indistinguishable from zero. The implication is that influenza vaccination rates decrease both

PI mortality and hours absent during periods of high influenza activity, but have no impact

on the outcomes when measured influenza activity is zero. The point estimate of -0.223

on PI mortality implies that a one percentage point increase in the influenza vaccination

rate will decrease the PI mortality rate by 0.223 per 100,000 individuals during months with

maximum influenza activity relative to months with no influenza activity, and during seasons

in which the vaccine is perfectly matched relative to seasons in which the vaccine is poorly

matched. Similarly, the coefficient estimate of -0.0106 on hours absent implies that a one

percentage point increase in the influenza vaccination rate will decrease the average work

hours lost per week for full-time workers by 0.0106 under the same conditions.

Because these interpretations are somewhat nonintuitive, I also report an estimate of the

“Expected Annual Benefit” of vaccination. To calculate the expected annual benefit, I first

calculate expected monthly benefits and then sum across months (described in table notes).

These estimates imply that in a population of 100,000 individuals, a one percentage point

increase in the vaccination rate (i.e., 1,000 additional vaccines) would decrease PI mortality

by 0.351 and decrease work hours lost to illness among full-time workers by 2,762 hours in

expectation. Put differently, the estimates imply that 2,849 vaccinations are required to save

one life and 2.53 vaccinations are required to save one 8-hour work day. Finally, suppose the

estimates are scaled to the size of the U.S. population: this implies that a one percentage

point increase in the vaccination rate for one year would result in 1,134 fewer deaths and

8.9 million fewer work hours lost in expectation. For mortality, this is a substantial, albeit

plausible number given that estimates of average annual deaths due to influenza lie in the

range of approximately 20,000-40,000.

Before moving on, it is useful to explore alternative definitions of the outcomes for the

purposes of (1) ensuring that the estimated benefits are concentrated in the outcomes that are

17The most important specification check in Table A1 is a model that includes state-by-year fixed effects;
the similarity of the estimates implies that the addition of any state-level annually varying covariates would
not substantially influence the estimates. The most important specification check in Table A2 is a model
that uses only variation in base period vaccination rates (i.e., the average vaccination rate over the first three
flu-years of the sample).
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expected to be most heavily influenced, (2) testing whether the current definitions capture the

full extent of influenza-related deaths, and (3) providing falsification checks using outcomes

that should not be affected by influenza vaccination. First, we examine mortality by 34

standard cause of death categories in Figure 3. The cause-of-death categorization here uses

the underlying cause of death only so that each category is mutually exclusive (as opposed

to using multiple causes of death to define PI deaths as in the main analysis). As such, it is

possible that deaths in non-PI categories have a secondary diagnosis for PI and so categories

other than PI should not be considered as falsification tests. It is reassuring nonetheless that

the largest and most highly significant coefficient estimate is for the PI category. The first 10

categories (in black, including PI) represent deaths due to respiratory and circulatory diseases

and are thus relatively more likely to be influenced by influenza infection in comparison to

the following 24 categories. The largest declines for non-PI deaths are in the Ischemic Heart

Disease (e.g., heart attack) and Cerebrovascular Disease (e.g., stroke) categories; both of

these conditions represent potential downstream consequences of influenza infection. Also

note that the estimates are presented in levels, so that in relative terms the size of the

estimate for the PI category is especially large in comparison to these other large categories.

Table A3 presents alternate definitions of mortality based on multiple causes of death

as well as alternative definitions for work absences. In both cases, the main estimates are

provided for reference in Column 1. For mortality, Column 2 represents deaths with any

respiratory or circulatory cause, and Column 3 represents all-cause death. Each represents

successively more broad definitions of mortality in comparison to PI deaths. The estimates

grow when these more broad definitions are used, suggesting that using only the PI definition

likely represents a lower bound on the total mortality benefits. That being said, there is

substantial loss of precision using these broad categories, and as such the precision affording

by the more specific PI definition is preferred for the main analysis. Column 4 represents

deaths with no respiratory or circulatory diagnosis, and can be considered a falsification

test; the estimate is small and indistinguishable from zero. Alternative definitions for work

absences are provided as well. In Column 2, the outcome is the proportion of workers absent

due to illness rather than the average number of hours absent due to illness. This estimate

is negative and significant, and of similar magnitude.18 Columns 3-4 examine both average

hours absent and the proportion absent for reasons other than illness as falsification checks;

these estimates are small (relative to the mean) and insignificant.

18To compare the proportion-absent estimate with the hours-absent estimate, the proportion-absent esti-
mate is scaled by the average number of hours per absence in the data (10.2), resulting in an estimate of
-0.0066 which is comparable to the hours-absent estimate of -0.011.
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3.3.2 Age Heterogeneity and Decomposing Externality Effects

To this point, all estimates have represented the social benefits of vaccination. We next

consider evaluating mortality benefits by age with the ultimate goal of disentangling private

and external benefits. Age-specific estimates for mortality are provided for five age groups

(infants under 1, 1-9, 10-64, 65-74, and ≥75) in Panel A of Table 5. Age-specific mortality

rates are calculated using the total state population in the denominator rather than the

age-specific population so that the estimates can be interpreted as an accounting of the total

benefits. The numbers in brackets represent the percentage of total mortality reductions

that accrue to each age group.19

The age-specific estimates indicate that the vast majority of the mortality benefits accrue

to the elderly population. This is not a surprising result given that estimates of influenza-

related mortality are heavily concentrated among the elderly population. Grohskopf et al.

(2014) reports that the ≥ 65 population accounted for 90% of all influenza-related deaths

between 1976 and 2007. The estimates presented here accord with these findings: I estimate

that 92% of the reduction in mortality due to influenza vaccination is experienced among

the 65 and older population, and 85% is experienced in the 75 and older population.

To evaluate the extent to which the mortality benefits of influenza vaccination operate

through an externality effect, I use the fact that the vast majority of benefits accrue to

individuals who are at least 75 years of age and separately estimate the effects of vaccination

rates for individuals who are either within or outside of that age group.20 More specifically,

the following equation is estimated:

Y O75
smy = ψ(V O75

sy ∗My ∗ Amy) + ω(V U75
sy ∗My ∗ Amy) (4)

+ Other Interactions & Controls + εsmy

In Equation (4), the full set of interactions described in Equation (3) for both people

under 75 and people at least 75 are included. As such, ψ represents a combination of direct

and externality effects, where the externality effects are limited to capturing the spread of

influenza among people within the 75 and older group. The coefficient ω represents the effect

of vaccination among people under 75 on influenza-related mortality for individuals who are

at least 75; this represents a pure externality effect. The results of this exercise are presented

19This is calculated as the corresponding coefficient estimate divided by the all-age estimate in Column
2 of Table 4. I provide an additional set of estimates in Table A4 that uses the age-specific population in
constructing mortality rates with very similar results.

20Age-specific vaccination rates are constructed using the BRFSS, which is individual-level data with
information on each respondent’s age.
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in Panel B of Table 4. The figures in brackets represent the proportion of the total effect

attributable to each age group, and indicate that 66% of the total mortality reductions in

the ≥ 75 age group are attributable to the vaccination of those under 75. In other words,

the results suggest that over half of the mortality benefits of influenza vaccination operate

through an externality channel. This finding accords with theoretical predictions presented in

Figure 1 which indicate the majority of the social benefits of vaccination operate through an

externality, and given the relatively low efficacy of influenza vaccination in older individuals,

this is an important though not necessarily surprising finding.

3.3.3 Monetizing Benefits

Any policy aimed at increasing influenza vaccination take-up should weigh the costs and

benefits of doing so; the goal of this section is to provide monetary estimates of the marginal

social benefits of vaccination in terms of both mortality and work absences.

The monetary benefits of influenza vaccination in terms of mortality depend on the

value of a statistical life (VSL). Because the mortality benefits are concentrated among

individuals at least 75 years of age, it is especially important that the VSL is age-adjusted.

I use the method of Murphy and Topel (2006), who develop a framework for estimating the

value of remaining life given a standard VSL figure that is evaluated using mortality risk

reductions from working-age adults. I apply two such figures: estimates from Ashenfelter

and Greenstone (2004) of $2.3 million (denoted “AG”) as a lower bound, and the current

EPA standard of $8.8 million as an upper bound.21 The Murphy and Topel (2006) framework

provides VSL estimates for single years of age; I follow the method of Barreca et al. (2016) to

calculate a VSL estimate for the age groups presented in Table 5, taking a weighted average

of single-year VSL estimates where the weight is the share of deaths from each single-year age

group. These VSL estimates, along with estimates of the monetary benefits of vaccination

are presented in Table 6.

For each age group, I consider the expected annual benefits of a policy that increases the

national influenza vaccination rate by one percentage point. I use estimates of age-specific

reductions in mortality from Table 5 to estimate the expected annual number of deaths

avoided for each age group, and multiply by the age-adjusted VSL.22 Benefits per vaccination

are determined by dividing the total benefit by 3.23 million (1% of the 2016 U.S. population),

as that is the number of additional vaccinations required to achieve the corresponding total

benefit. While the reductions in mortality are concentrated among individuals at least 75,

21Each VSL figure is reported in 2016$.
22This calculation is similar to the “Expected Annual Benefits” calculation in Table 4. Specifically, the

expected annual number of age-specific deaths avoided per 100,000 population (
∑

m φ̂1×Match×Activitym)
is scaled to the U.S. population by multiplying by a factor of (323,100,000/100,000).
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the monetary benefits are more equally distributed given the relatively low VSL for elderly

individuals. Considering all ages, I find the benefit of an additional vaccination to be either

$146 (AG VSL) or $555 (EPA VSL). That being said, the only age-specific estimates that

are statistically significant are the estimates for the at least 75 group. As such, my preferred

estimates of the marginal social benefits of vaccination in terms of mortality are limited to

this group: $74 using the AG VSL, and $282 using the EPA VSL. As a lower-bound estimate

of the marginal externality benefits, these numbers can be multiplied by 0.66 (the estimated

proportion of externality benefits from the previous section), resulting in estimates of $49

using the AG VSL and $186 using the EPA VSL.

Because monetary benefits of mortality reductions are inherently controversial among the

general public, and because the mortality reductions in this specific case are concentrated

among the elderly population who may already be suffering from other illnesses, it is ad-

vantageous to also present benefits of vaccination that are subject to less controversy and

require fewer assumptions in monetizing. The process of calculating monetary benefits for

work absence reductions is somewhat more straightforward: the expected annual number of

hours saved for the U.S. population is multiplied by the median hourly wage.23 The cal-

culation suggests that each vaccine confers benefits equal to $57 in terms of reduced work

absences among full-time workers, in expectation.

3.3.4 Robustness Checks

This section provides a very brief summary of a number of robustness checks. All results are

presented in the Online Appendix, and specifications are discussed more fully in table and

figure notes.

First note that a number of these robustness checks that have already been mentioned.

Table A1 presents a series of specifications demonstrating that the estimates are insensitive

to the choice of fixed effects and the use of the instrumental variables strategy. Table A2

demonstrates that the estimates are insensitive to various definitions of the instrument,

including defining the instrument as a time-invariant vaccination rate in a base period (the

average over the first three seasons). Table A4 demonstrates that the age-specific estimates

are not sensitive to defining mortality rates using the age-specific population.

Potential nonlinearities in the marginal effect of vaccination are explored in Figure A2.

This exercise shows little evidence that the marginal benefit of vaccination changes sub-

stantially over the observed distribution of vaccination rates (consistent with the theoretical

23This calculation is also similar to the “Expected Annual Benefits” calculation in Table 4. Specifically, the
expected annual number of hours saved in the U.S. is

∑
m φ̂1×Match×Activitym× (30.5/7)×126, 000, 000,

where the final term is the approximate number of full-time workers in the U.S.
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model in Figure 1). The possibility of lagged effects on mortality or work absences is exam-

ined in Table A5. The reported estimates represent the sum of contemporaneous and lagged

impacts (for multiple lag lengths), and the stability of the estimates suggest that the vast

majority of the impacts operate contemporaneously.

Table A6 presents several additional checks, all of which demonstrate the insensitivity of

the main estimates. Column 1 excludes flu-years that use interpolated data on vaccination.

Column 2 includes the two flu-years affected by the H1N1 pandemic. Column 3 uses a limited

sample that ends in the 2007/08 flu-year to ensure that the estimates are not substantially

influenced by three factors (1) the H1N1 pandemic, (2) the development of the high-dose

vaccine in 2009, and (3) the development of the quadrivalent vaccine in 2012. Columns 4-5

use the sample 1998/99-2014/15 in which region-specific information on the match rate and

influenza activity are available. Column 4 allows the match rate to be defined as region-

specific. Column 5 defines influenza activity to be the average influenza activity in all census

divisions except that which contains the corresponding state in order to ease concerns over

the possibility that nationally-defined influenza activity is endogenous. Finally, Column

6 uses an influenza season indicator in place of influenza activity in the triple difference

specification in order to further assuage such concerns.

4 Part II: Health Care Worker Mandates

The analysis conducted in Section 3 was intended to estimate the benefits of influenza vacci-

nation in the general population. The estimates are relevant to a policy that would increase

vaccination among those who are closest to the margin of the decision to receive a vacci-

nation. In this section, I recognize that there is likely to be substantial heterogeneity in

benefits depending on who receives the vaccine. Health care workers (HCWs) come in rel-

atively frequent contact with infected individuals and individuals whose cost of infection is

high. As such, HCWs are a group for whom the external benefits of vaccination are likely

to be particularly large. I examine the effects of mandates requiring health care workers be

vaccinated against influenza on the outcomes of hospital patients in counties and hospitals

subject to the mandates. To begin, I describe the institutional background.

4.1 Institutional Background

On September 28, 2006, the Governor of California signed into law Senate Bill 739, requiring

that health facilities implement various measures to protect against the spread of infection

within these facilities. One component of this law required all hospitals to report to the
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California Department of Public Health (CDPH) on the percentage of HCWs vaccinated

against influenza in each season; this allows for the measurement of hospital-worker vaccina-

tion rates. This law also required that all health facilities offer free vaccinations to employees

and required that they sign a statement declaring that he or she had declined vaccination

if that was the case. Though detailed data on vaccination rates prior to this policy are not

available, it is likely that these policies increased vaccination rates of HCWs. This means

that baseline levels of vaccination are relatively high by the time the first mandates go into

effect in 2009.

In May of 2009, the H1N1 pandemic began. In response to the pandemic, several in-

dividual hospitals began requiring influenza vaccination for their workers. Because these

mandates were implemented in response to the crisis, the timing of vaccination relative to

the timing of the pandemic is unclear. For this and other reasons, I treat flu-years affected

by H1N1 differently than others and I will elaborate on this in more detail in the following

section. After the 2009 pandemic, these hospitals continued requiring annual influenza vac-

cinations for their workers and in following influenza seasons several other hospitals began

introducing their own mandates. Beginning in the 2011/12 influenza season, counties im-

plemented county-wide vaccination mandates, and in each season since more counties have

followed.24 In the 2015/16 season, over 75% of hospitals were subject to a mandate.

The county-level policies were not all implemented in exactly the same fashion. Specifi-

cally, a limited number of these policies only applied only to hospitals, while most mandates

applied much more broadly. Typically, all licensed health care facilities would be subject

to these more broad mandates. Figure A3 maps the implementation of both hospital and

county-level mandates over time and distinguishes between the type of county-level mandate.

Because the vast majority of mandated hospitals are subject to county-level mandates that

apply beyond the hospital, these are the policies on which I focus. The main outcomes are

measured at the hospital level, but because these mandates apply more broadly, it is not

necessarily the case that an observed infection was transmitted within the hospital. It is

possible that these mandates affect the transmission of influenza in non-hospital health care

settings and in the community at large if HCWs act as important vectors for disease.

4.2 Data

To estimate the effects of HCW vaccination mandates on patient outcomes, I make use of

data on the timing of the mandates, vaccination rates for HCWs and hospital-level outcomes.

In the main analysis, the data cover flu-years 2007/08 through 2015/16.

24Implementation dates for all hospital- and county-level policies are described in Table A7.

25



4.2.1 Mandates & Vaccination Rates

Data on the timing of mandates is compiled from several sources. Information on hospital-

level mandates comes largely from the Immunization Action Coalition (IAC), a non-profit

immunization activist group that lists health care organizations across the U.S. that mandate

influenza vaccination and the dates of implementation.25 CDPH maintains a list of county-

level mandates with implementation dates, but the list is not completely accurate with

respect to the implementation dates. Through a process of searching for county-level public

health orders and identifying the initial date of implementation, I have either verified or

amended the dates of nearly all counties on the list provided by CDPH.26 Summary statistics

in Table 1 indicate the number of hospitals subject to mandates in each flu-year.

As required by California law, all licensed hospitals report information on the vaccination

status of their workers to CDPH for each season. This information is compiled in their annual

Hospital Employee Influenza Vaccination Reports. Though all hospitals provide information

on vaccination rates, the within-hospital response rate is not 100%. Reporting in the first

season in which reporting was required (2008/09) was particularly poor, and so data from

this season was omitted. For the remaining flu-years, the main first-stage estimates use only

hospitals that have response rates of at least 90% in all flu-years, though the estimates are

not sensitive to this restriction.

4.2.2 Hospital Patient Outcomes

The primary data source on outcomes are two restricted data files on the universe of inpatient

hospital admissions and outpatient ED visits in California between 2005 and 2016, obtained

through California’s Office of Statewide Health Planning and Development (OSHPD). In the

analysis to follow, inpatient admissions and outpatient ED visits are analyzed separately,

though I refer to any visit to the hospital (inpatient admission or ED visit) simply as a

“visit”. Note that ED visits often result in hospital admission; to avoid double-counting,

ED visits are dropped if the patient is transferred to another health care facility (i.e., all ED

visits are outpatient).

Unlike the mortality data, in which influenza is rarely indicated as a cause of death,

hospital patients routinely receive diagnoses specifically for influenza, allowing the outcome

measure to be more specific. The primary outcomes of interest are the number of inpa-

tient admissions and the number of outpatient ED visits with any diagnosis for influenza;

admissions are classified as such if any of up to 25 diagnoses are for influenza.

25Source:http://www.immunize.org/honor-roll/influenza-mandates/.
26I have compiled these public health orders and these documents are available upon request.
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The inpatient data include a number additional features that are utilized. One partic-

ularly useful feature is that each diagnosis includes an indicator for whether it was present

at the time of admission, allowing me to focus specifically on hospital-acquired infection.

Certain outcomes are less specific to influenza, but may be significantly affected during pe-

riods of very high influenza activity. These include average length of stay, average hospital

charges, and the in-hospital death rate. Summary statistics for all outcomes are presented

in Table 1. In addition to these hospital-level measures, I also examine PI mortality, which

is observed at the county level using restricted data files from the NVSS.

4.3 Empirical Framework

I estimate the impacts of vaccination requirements using a standard difference-in-differences

(DD) framework that exploits quasi-experimental variation in the timing of mandates. Simi-

lar to the aggregate analysis, I also use a triple-difference framework that additionally exploits

the timing and magnitude of influenza activity for outcomes that are not necessarily specific

to influenza (and thus exhibit variation throughout the year). Because HCW vaccination

rates are measured annually, the triple-difference strategy is not necessary or possible in

estimates of the first-stage. Furthermore, the primary outcomes of interest are influenza-

specific, and because there is no variation in these outcomes in months with no influenza

circulating, the triple-difference strategy is not appropriate for these outcomes.27 Consider

the following DD equation to be estimated at the annual level:

Yhy = α + πRequiredhy + δh + δy + εhy (5)

In Equation (5), Yhy represents either vaccination rates (first stage), or the number of

influenza diagnoses (reduced form) at hospital h in flu-year y. Requiredhy is a variable indi-

cating whether there is a vaccination requirement in effect; δh and δy are hospital and flu-year

fixed effects. The coefficient of interest, π, is identified under the assumption that variation

in the timing of the mandates is uncorrelated with other unobserved time-varying deter-

minants of the outcomes. While the identifying assumption is fundamentally un-testable,

I provide evidence from indirect tests that support the assumption. Importantly, in the

discussion of results I provide an event study version of Equation (5); this exercise indicates

that changes in the outcomes coincide with the implementation of the policy, and that the

treatment effects are not identified off of differential trends between treatment and control

hospitals. Furthermore, the event study provides information on the necessity of county- or

27Estimation of the triple-difference specification is technically possible, but results in extremely large
standard errors.
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hospital-specific time trends, which are included in some specifications.

Because influenza diagnoses represent a highly specific outcome, there are many hospital-

by-flu-year cells with the outcome equal to zero. Given the count nature of the data, and the

over-dispersion indicated in Table 1 (i.e., the variance is greater than the mean), a negative

binomial model is used to estimate Equation (5).28 With a count model it is important to

allow the probability of an event to occur (i.e., an influenza-related diagnosis) to differ by

hospital size, which varies considerably across the sample. This is done through the use

of an exposure variable, which is set to be the mean annual number of all-cause visits in

2005/06-2006/07 (prior to the period of analysis). Note that the first stage is estimated via

OLS.

For outcomes that vary across all months of the year, the preferred specification is a

triple difference, estimated at the monthly level and taking the following form:

Yhmy = α + θ1(Requiredhmy ∗ Activitymy) + θ2Requiredhmy + δh + δmy + εhmy (6)

In Equation (6), the policy indicator is interacted with an index of influenza activity,

Activitymy. This measure, described previously, is an index that measures influenza activity

at any particular time and ranges from zero to one (where one is the maximum observed

value in the sample). The main effect for activity is absorbed by the month-year fixed

effects. θ1 measures the effect of influenza vaccination mandates during a time of peak

influenza activity relative to a period with zero influenza activity. Furthermore, θ2 measures

the effect of influenza vaccination mandates during times of very low influenza activity and

is expected to be near zero. Because the outcomes of interest here (average charges, average

28There are several possible count models available, and in the case of panel data requiring fixed effects
(as here) the choice is not trivial (See Cameron and Trivedi (2013a,b) for a review of count models in general
and specifically for panel data.). The workhorse count model that allows for fixed effects is the Poisson
fixed effects estimator (Hausman et al., 1984; Wooldridge, 1999); this estimator, unlike many nonlinear
models, provides consistent estimates of the slope parameters in the presence of fixed effects. A deficiency
of the Poisson model, however, is that it assumes that the variance and mean of the outcome are equal
(i.e., equi-dispersion). The usual solution is to use a negative binomial in place of a Poisson model, which
allows for over-dispersion in the data. Hausman et al. (1984) offer a fixed-effects version of the negative
binomial, but subsequent work has pointed out that this model requires an additional and often unrealistic
assumption regarding the relationship between the fixed effects and the over-dispersion parameter (Allison
and Waterman, 2002; Guimaraes, 2008). An alternative strategy is to estimate a standard negative binomial
model with a full set of indicators as fixed effects. In nonlinear models using short panels, this leads to biased
and inconsistent estimates of the slope parameters due to an incidental parameters problem. That being
said, Allison and Waterman (2002) provide evidence from Monte Carlo simulations that suggests little bias
resulting from the incidental parameters problem in the case of the negative binomial model with indicator
as fixed effects. I adopt the negative binomial with indicators as fixed effects as the main specification,
though the results are not sensitive to the choice of count model.
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length of stay, and the in-hospital death rate) are not counts, Equation (6) is estimated via

OLS.

Finally, the data on mortality are derived from a different data source than the hospital-

level measures. The mortality data are only available at the county level and as such es-

timates are conducted at the county level (with county fixed effects), and the outcome is

PI deaths per 100,000 population (estimated via OLS). In all models, standard errors are

clustered at the county level.

4.4 Results

4.4.1 First Stage

The main result for the first stage is illustrated as an event study in Figure 4. This figure

shows that there is little evidence of differential trends between hospitals that do and do not

adopt vaccination mandates prior to implementation. In the first flu-year of implementa-

tion, vaccination rates increase sharply and remain relatively flat thereafter. There is some

evidence of catch-up in that the effect fades slightly over time. This is likely a result of

adopting hospitals reaching a near maximum vaccination rate while non-adopting hospitals

still see increases in vaccination rates over time. The result is shown using a single treatment

indicator in Table A8, revealing a highly significant coefficient estimate of 10.6 percentage

points in the preferred specification.29

It is important to keep in mind that the first-stage estimates only represent vaccination

rates for hospital workers. This is especially important in considering the county-level re-

quirements, which apply far more broadly than to just hospital workers. Because vaccination

rates for other HCWs are not observed, results are displayed in the remainder of the paper

as reduced-form policy estimates rather than in an IV framework. That being said, there is

reason to believe that the first-stage effect for non-hospital HCWs may be larger than that

of hospital HCWs. The CDC conducts an online survey that provides national estimates of

influenza vaccination for HCWs by place of work. The 2014/15 survey indicated vaccination

rates of 78.7%, 66.3%, 54.4% and 55.7% for HCWs in hospital, ambulatory care, long-term

care, and other settings, respectively. Because hospital workers tend to have the highest

baseline vaccination rate, it is likely that influenza vaccination requirements have a larger

effect on workers in settings with a lower baseline level. That being said, it is also possible

that enforcement is weaker in non-hospital settings and unfortunately this cannot be tested

this with the data available.

29This table also shows that the estimate is robust to using less restrictive sample selection criteria on
data quality, or even using all hospitals regardless of data quality.
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To get a rough estimate of the number of additional vaccinations received as a result

of these mandates, consider a hypothetical state-wide mandate that affected all workers in

licensed health care facilities in California. Figures from the Bureau of Labor Statistics

indicate there were approximately 1.18 million workers in industries plausibly affected by

these mandates in California during 2015.30 Assuming the mandates affected all HCWs in

the same way hospital workers were affected, multiplying by the first-stage estimate of 0.106

implies 125,053 additional vaccinations (approximately 0.3% of the California population).

4.4.2 Influenza Diagnoses

Before discussing magnitudes, first consider a number of specifications for the reduced-form

estimates presented in Table 7; Panel A represents inpatient admissions and Panel B rep-

resents outpatient ED visits. Column 1 represents estimates from Equation (5) with no

included trends or sample restrictions. The estimates are in the expected negative direction

for both outcomes, but only marginally significant for inpatient admissions and insignificant

for ED visits. While there is not enough variation in vaccine efficacy over the sample period

to incorporate this into the model as in Part I, there is one flu-year in the sample (2014/15)

that had a poor vaccine match and thus an ineffective vaccine. Dropping this flu-year from

the sample results in larger coefficient estimates, reported in Column 2. This flu-year is omit-

ted from all following specifications, which is preferable as it increases the ability to identify

a statistically meaningful result, but it does change the interpretation of the results: the

estimates represent the effect of HCW mandates during a well-matched season as opposed

to the effects of the mandates in expectation.

Columns 3 and 4 include county-specific and hospital-specific linear time trends, respec-

tively. In both cases, the magnitude of the estimates grow substantially. The event studies

presented in Figure 5 illuminate this result. It is clear that the result is substantially stronger

for inpatient admissions compared to ED visits, although the patterns are similar. Diagnoses

for influenza are increasing in adopting hospitals relative to non-adopting hospitals in years

prior to mandate implementation. In the first year of implementation, however, there is a

sharp decrease in the number of visits that persists subsequently. The inclusion of hospital-

specific linear time trends appears to fully correct any pre-existing trends that were present

in the model that did not include trends. Models that include trends are preferred, but in

models for inpatient admissions that include hospital-specific trends, the maximization algo-

rithm failed to converge. The same is true of models that exclude H1N1 pandemic flu-years

(a nontrivial portion of the sample), presented in Column 5 of Table 7. In both cases, the

30Employment in NAICS industries: 656211, 656214, 656216, 656219, 656221, 656222, 656223, 656231,
656232, 656233, 656239.
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resulting point estimates from these non-convergent models are quite similar to the estimates

for the (convergent) model that includes county-specific time trends, presented in Column

3.31 For this reason, the estimates in Column 3 are preferred.

These estimates indicate that in seasons with a well-matched vaccine, HCW vaccination

mandates are associated with a statistically significant 21.4% decrease in inpatient admissions

with an influenza diagnosis and a marginally significant 9.4% decrease in outpatient ED visits

with an influenza diagnosis. In interpreting these results, there are at least two differences

between inpatient and outpatient visits to consider. First, for inpatient visits it is possible

that the individual in question was infected with influenza during their hospital stay. This

means that policy-induced changes in diagnoses in an inpatient setting likely result from a

combination of hospital-acquired influenza as well as influenza acquired in a non-hospital

health care setting or in the community at large. For outpatient ED visits, the hospital-

acquired channel is highly unlikely. Second, influenza may be less likely to be correctly

diagnosed in an outpatient setting in which there is less time acquire laboratory confirmation

(Dugas et al., 2015). Both of these differences would lead to smaller point estimates for

outpatient visits.

Consider next a comparison between the effects of vaccination mandates on hospital- and

non hospital-acquired influenza. Again, hospital-acquired influenza is only a possibility for

inpatient visits. The final two columns of Table 7 examine the distinction between influenza

diagnoses that were present on admission (POA) and those that were not (Not-POA). Diag-

noses that were present on admission are more likely to represent influenza acquired outside

of the hospital, whereas Not-POA diagnoses likely represent hospital-acquired infection. In-

fluenza diagnoses are coded as present on admission for the vast majority of visits, although

there is some question as to how accurate POA coding is, especially since hospitals have

financial incentives to avoid coding hospital acquired conditions (Goldman et al., 2011).32

The point estimate for POA influenza diagnoses is very similar to the estimate for all in-

fluenza diagnoses presented previously. Focusing on Not-POA diagnoses reveals an effect

almost twice as large in relative terms: vaccination mandates lead to an approximate 40.2%

reduction in hospital-acquired influenza.

31Note that there are 58 counties in California and approximately 450 hospitals (depending on the year);
this means that estimating models with hospital-specific time trends requires estimating a substantial number
of additional parameters.

32The Deficit Reduction Act of 2005 stipulated that hospitals would not receive higher payments for certain
secondary conditions that were not POA. Influenza is not one of these specific conditions, but it could still
be the case that hospitals develop a habit of under-reporting all hospital acquired conditions.

31



4.4.3 Additional Results & Discussion

A brief discussion of several additional results provides additional insight. Age-specific im-

pacts of HCW mandates on both inpatient and outpatient visits are provided in Table A9.

The estimates are negative for all age groups. While the differences tend not to be statis-

tically meaningful, the magnitudes in relative terms tend to be largest for children (infants

and children 1-9). This is worth noting in at least one respect: since vaccination of children

should not have been affected by these policies, the implication is that much of the identified

impacts operate through an externality effect.

Estimates for four additional outcomes that exhibit variation throughout the year are

presented in Table A10, estimated using Equation (6). The first three outcomes (average

length of stay, average charges, and the in-hospital death rate) are hospital-level outcomes

constructed using inpatient data. The estimates indicate small reductions in average length of

stay (1.3%) and average charges (2.0%), and no impact on in-hospital deaths during months

of peak influenza activity. These outcomes are distinct from influenza-specific outcomes in

that they may be viewed as measures of how well the hospital is functioning more generally.

In other words it may be that these outcomes are due to changes the number influenza

infections, but it may also reflect improvements in the health of the hospital staff, improving

the quality of their work. Column 4 presents estimates with the PI mortality rate as the

outcome, and represents estimates at the county level. While it would be advantageous to

examine the same outcome in Parts I and II of this paper, these estimates are underpowered

to do so given the non-specific nature of this outcome. It is perhaps worth noting that the

point estimate (-0.243), while not statistically significant, is of comparable magnitude to a

one percentage point increase in the vaccination rate of the general population estimated in

Part I, yet the number of vaccinations associated with a county-level HCW mandate is one

third as large at most.

Finally, similar to Part I, I provide an estimate of the monetary benefits of vaccination.

Note that the observed decreases in influenza diagnoses do not necessarily represent decreases

in the actual number of visits if a substantial number of the affected visits are for other

diseases that influenza infection complicated. To the extent that at least some of the observed

reductions in influenza diagnoses represent a change in the number of visits, it is possible to

provide a back-of-the-envelope calculation for the monetary benefit of a HCW vaccination

in terms of hospital cost savings. Focusing only on visits most likely to be avoided by

the mandates, I re-estimate Equation (5) using only visits with a primary diagnosis for

influenza (as opposed to any diagnosis) for outpatient visits, and only visits with a primary

diagnosis for influenza that was present on admission for inpatient admissions. I consider

a hypothetical statewide vaccination mandate for California (relative to no mandate) that
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affects all HCWs in the state. A number of assumptions are required to make this calculation,

and a conservative approach is taken in applying each. I estimate that, in terms of reduced

health care costs, each vaccine confers benefits of $121.73 through reduced inpatient visits,

and $21.43 through reduced outpatient visits, for a total of $143.17.33 An estimate of the

marginal social benefit would of course be larger if other outcomes such as mortality or work

absences could be considered in this context as well.

5 Discussion and Conclusion

In this paper, I estimate the marginal social benefits of influenza vaccination for the general

population (henceforth, GP) and for the population of health care workers (HCWs). Because

it is not possible to use the same identification strategy and outcomes for both analyses, a

direct comparison of the marginal benefits in each population requires fairly strong assump-

tions. I believe that such a comparison is still quite useful with this caveat in mind.34 To

compare vaccination in these two populations, I calculate the number of GP vaccinations or

HCW vaccinations required to achieve a 1% reduction in influenza-induced mortality (for

GP) or a 1% reduction in influenza-induced outpatient visits (for HCW) in a population

33This calculation is described in more detail here. First, the mean annual number of inpatient and
outpatient visits are 4,190 and 34,221, respectively (excluding the H1N1 flu-years). The estimated coefficients
using only primary diagnoses for inpatient and outpatient visits are -0.259 and -0.105, implying 1,085 fewer
inpatient visits and 3,593 fewer outpatient visits each year. The OSHPD data include information on charges
for inpatient visits, but not outpatient visits. Average charges for visits with a POA primary diagnosis for
influenza are $48,719. The Nationwide Emergency Department Sample has information on ED outpatient
charges for some states, and the average charges for visits with a primary diagnosis for influenza are $1,472.
Since charges do not represent hospital costs, this figure is multiplied by the national average cost-to-charge
ratio (0.507) for outpatient visits and a California-specific cost-to-charge ratio (0.288) for inpatient visits. As
such, the hypothetical statewide policy achieves annual savings of $15.22 million through reduced inpatient
visits and $2.68 million through reduced outpatient visits. To arrive at a per-vaccination figure, I divide
by the number of additional vaccinations (125,053) received in a hypothetical statewide policy, derived in
Section 4.4.1.

34This calculation is described in more detail here. For GP, the main estimates indicate that 1,000
additional vaccinations are required to reduce annual influenza mortality by 0.35 per 100,000. To get this
in relative terms, I require an estimate of annual influenza mortality, and use the nationwide 23,607 figure
estimated by Thompson et al. (2010). Using the 2007 US population (to reflect the period of study in
Thompson et al. (2010)), this implies 7.8 influenza deaths per 100,000 population. As such, my estimates
indicate that 1,000 additional vaccinations result in a 4.49% decrease in influenza mortality for a population
of 100,000; turning this around, 222.7 vaccinations are required to achieve a 1% reduction. For HCW
vaccinations, I use only outpatient visits with a primary diagnosis for influenza as this provides a lower bound
(the smallest relative impacts) and I consider the same hypothetical statewide policy as in Section 4.4.3,
but scaled to a population of 100,000 instead of the 2016 California population (39.3 million). For the
entire state, I found that 125,053 vaccinations are required to achieve a 10.5% reduction in outpatient visits,
implying that 11,910 vaccinations are required to achieve a 1% reduction. Scaling this down to a population
of 100,000 implies that 30.3 HCW vaccinations are required to achieve a 1% reduction in outpatient ED
visits.
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of 100,000 individuals. I find that 222.7 GP vaccinations are required to achieve a 1% re-

duction in mortality and 30.3 HCW vaccinations are required to achieve a 1% reduction in

outpatient visits. Under the assumption that influenza mortality and influenza outpatient

visits are proportional to each other (or to the number of influenza cases), the implication

is that HCW vaccinations are 7.3 times more effective at quelling the spread of influenza

in comparison to vaccinations in the general population. While this may seem large, it is

not unreasonable to argue that HCWs are many times more likely to come in contact with

infected individuals and much more likely to come into contact with individuals who would

suffer severe consequences from being infected (e.g., a hospital visit).

For both vaccination in the general population and health care workers, I have provided

policy-relevant estimates of the marginal social benefits in terms of the outcomes analyzed:

these benefits are estimated to be $74 per GP vaccination in terms of reduced mortality

(at minimum), $57 per GP vaccination in terms of work hours gained, and $143 per HCW

vaccination in terms of reduced health care costs. For mortality, I find that the majority of

the social benefits operate through an externality. For HCW vaccination, I do not explicitly

estimate the size of the externality, but it is likely that the vast majority of the social benefit

operates through the externality given that the largest relative benefits exist in a group

whose vaccination status is not affected (children).

How do these benefits compare to the marginal cost of vaccination? Prosser et al. (2008)

estimate that the cost of administering a vaccine (including the medicine, labor, overhead,

promotion, and other expenses) ranges from $15 in a mass vaccination setting to $37 in a

schedule doctor’s office visit.35 Administration costs, however, may only represent a portion

of the total private costs of vaccination if there are significant non-monetary costs such as

inconvenience or discomfort. Indeed, many choose not to vaccinate despite monetary costs

equal to zero (influenza vaccination is covered under Medicare, and many health plans cover

vaccination with zero copay). Recognizing these non-monetary costs of vaccination is critical

in the development of policies that encourage influenza vaccination.

What do the estimates presented in this paper suggest for vaccination policy? The

answer to this question depends on the type of policy under consideration. Let us consider

two prospective vaccination policies in turn: a policy to increase vaccination in the general

population and a policy to increase vaccination among health care workers.

The analysis of aggregate vaccination rates is relevant to a policy that would increase

vaccination among the general population by targeting those on the margin of the decision

to vaccinate. Such a policy could be accomplished through a number of mechanisms: by

providing monetary incentives or by reducing non-monetary costs through increasing ac-

35Dollar estimates are converted to 2016$.
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cessibility to vaccine providers, for instance. The marginal social and externality benefits

estimated here suggest that vaccination policy resulting in marginal increases in the vac-

cination rate above current levels is beneficial so long as the marginal cost curve does not

increase steeply at the current level of vaccination. While a steep increase in the cost curve

is conceivable at some level of vaccination, as some individuals are opposed to vaccination

on religious grounds or concerns over vaccine safety, that level is likely to be quite high as

those individuals represent only a small portion of the total population (Kennedy et al.,

2005). Furthermore, Bronchetti et al. (2015) show that a relatively small financial incentive

can result in large increases in vaccine take-up, suggesting the existence of low-cost policies

that would increase vaccination in at least some segments of the population.

For health care workers, the estimates presented here are large in comparison to admin-

stration costs. It is worth noting that many health care facilities employ mass vaccination

campaigns that not only reduce the administrative costs of vaccination, but likely reduce

any inconvenience costs through making vaccination highly accessible (Prosser et al., 2008;

Nowalk et al., 2013). The estimates in this paper are derived from policies that mandate

influenza vaccination, creating an extremely high cost for those choosing not to vaccinate.36

It is possible that other incentive-based programs could achieve a more efficient result if there

are individuals for whom the marginal cost of vaccination is very high, yet still choose to

vaccinate under a mandate given an even higher cost of choosing not to do so. In any case,

the social benefits of health care worker vaccination estimated here are large enough to sug-

gest that any policy increasing vaccination among health care workers would be cost-effective

under reasonable assumptions about the costs.

In summary, I estimate that the social benefits of influenza vaccination are substantial

and that much of the total benefits operate through externality effects. Determining the

socially optimal level of vaccination depends critically on the marginal cost of vaccination –

under reasonable assumptions about these marginal costs, the results of this study indicate

that policies increasing take-up of influenza vaccination in either the general population or

in the population of health care workers are likely to be cost-effective.

36Most mandates do allow for medical exemptions and for those choosing not to vaccinate to wear a
surgical mask through the remainder of influenza season.
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Figures & Tables

Figure 1: Marginal Benefits of Vaccination
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This figure presents a version of a model derived by Boulier et al. (2007) that describes the theoretical
marginal social benefit (MSB) and marginal private benefit (MPB) curves for the case of influenza vacci-
nation. These benefits are allowed to depend on vaccine efficacy. Here, two levels of vaccine efficacy are
presented: 100% (E=1) and 50% (E=0.5).
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Figure 2: Actual and Effective Vaccination Rates
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Note – There was a vaccine shortage in the 2004/05 season, accounting for the dip in vaccination rates during that season.
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Figure 3: DDD Effect by Cause of Death
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Note – Estimates represent the coefficient estimates (in levels) on the triple interaction in Equation (3)
where the outcome is the mortality rate in various cause of death categories. Bars represent 95% confidence
intervals. The mean monthly death rate (per 100,000 population) for each category is shown in parentheses.
Cause of death is categorized by primary cause of death, so that each category is mutually exclusive. Cause
of death categories are based on the 34-cause recode used by the NCHS for the period 1971-1998; deaths in
the 1999- period were mapped from the updated 39-cause recode. Note that the mean PI death rate (1.88) is
approximately one third of the death rate used in the measure for the main analysis that is based on multiple
causes of death; this implies that approximately two-thirds of deaths categorized as PI in the main analysis
are categorized as such based on a secondary diagnosis. The nine categories following PI (in black) are for
respiratory and circulatory diseases and are plausibly related to influenza infection (more often having a
secondary diagnosis for PI); the remaining categories are less likely to be related to influenza infection.
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Figure 4: First Stage Event Study (HCW Vaccination Rates)
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Points on this plot represent the point estimates from an event-study version of Equation (5) with HCW
vaccination rates as the outcome. Shaded regions represent 95% confidence intervals. The event-study is
estimated by replacing the policy indicator (Requiredhy) with a series of variables indicating years relative

to the policy:
∑−2

j=−4 γjRequiredhyj +
∑3

j=0 γjRequiredhyj . The indicator representing one year prior to
the policy is omitted as the reference group. “-4 or Earlier” represents four or more years prior to policy
implementation; “3 or Later” represents three or more years after policy implementation. In both cases,
these are aggregated because any estimates beyond this window would be identified off of a very small set
of hospitals.
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Figure 5: Reduced Form Event Study (Influenza Diagnoses)
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Points on the plots represent the point estimates from event-study versions of Equation (5) with influenza-
related inpatient admissions or outpatient ED visits as the outcome. The plot labelled “Hospital Trends”
includes hospital-specific linear time trends. Shaded regions represent 95% confidence intervals. The event-
study is estimated by replacing the policy indicator (Requiredhy) with a series of variables indicating years

relative to the policy:
∑−2

j=−4 γjRequiredhyj +
∑3

j=0 γjRequiredhyj . The indicator representing one year
prior to the policy is omitted as the reference group. “-4 or Earlier” represents four or more years prior to
policy implementation; “3 or Later” represents three or more years after policy implementation. In both
cases, these are aggregated because any estimates beyond this window would be identified off of a very small
set of hospitals.
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Table 1: Summary Statistics

National Data Mean SD

Vaccination Rate 0.351 (0.061) -
Vaccination Rate ≥ 75 0.712 (0.077) -
Vaccination Rate < 75 0.322 (0.062) -
Match Rate 0.726 (0.288) -
Influenza Activity (1993-2015) 0.185 (0.214) -
PI Mortality Rate 6.13 (2.12) -
R&C Mortality Rate 35.43 (11.33) -
Non-R&C Mortality Rate 36.71 (9.42) -
All-Cause Mortality Rate 72.14 (12.57) -
Hours Absent (Illness) 0.245 (0.119) -
% Absent (Illness) 0.025 (0.009) -
Hours Absent (Other) 0.928 (0.523) -
% Absent (Other) 0.093 (0.045) -

California Hospital Data Mean SD # Hospitals Affected

HCW Vaccination Rate (All Hospitals/Years) 0.801 0.142 -
HCW Vaccination Rate (No Mandate) 0.744 (0.141) -
HCW Vaccination Rate (Mandate) 0.902 (0.069) -
# PI Diagnoses (Inpatient) 21.81 (36.68)
# PI Diagnoses (Inpatient POA) 21.28 (35.67)
# PI Diagnoses (Inpatient Not POA) 0.51 (1.57)
# PI Diagnoses (Outpatient ED) 135.3 (170.6)
Average Length of Stay 5.43 (4.04) -
Average Charges 42,294 (23,057) -
Required 2009-10 - - 13
Required 2010-11 - - 18
Required 2011-12 - - 45
Required 2012-13 - - 116
Required 2013-14 - - 251
Required 2014-15 - - 335
Required 2015-16 - - 341

Zero hospitals had vaccination mandates prior to the 2009-10 season. In the 2015-16
influenza season, the total number of hospitals in California was 450 (so that 75.8% were
subject to a vaccination mandate). The total number of hospitals fluctuated between
444 (2011) and 456 (2007) over the sample period.
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Table 2: Effect of the Match Rate on Vaccination Rates

(1) (2)

Match 0.310 -0.163
(0.195) (1.923)

Match × Mean Vacc. - 0.014
(0.055)

N 969 969
The outcome in these regressions is the vaccination rate
(which varies at the state-by-flu-year level), and the
regressor is the match rate (which varies only at the
flu-year level). The regressions are estimated at the
state-by-flu-year level. The interaction with mean vac-
cination rates is intended to test whether high- and low-
vaccination states respond differentially to match rates.
Regressions include state fixed effects and a linear time
trend. Standard errors in parentheses are clustered at
the state level.
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Table 3: Mortality and Absences – Diff-in-Diff

Panel A: Pneumonia/Influenza (PI) Mortality Rate (per 100,000)
All Months Flu Season Non Season High Flu Months Low Flu Months

Vacc × Match -0.047 -0.088 -0.027 -0.175 -0.024
(0.011) (0.020) (0.009) (0.037) (0.009)

Vacc 0.004 0.029 -0.006 0.105 -0.014
(0.015) (0.021) (0.014) (0.036) (0.014)

N 12,240 4,080 8,160 1,530 10,710

Panel B: Average Work Hours Absent for Illness
All Months Flu Season Non Season High Flu Months Low Flu Months

Vacc × Match -0.0014 -0.0045 0.0001 -0.0095 -0.0002
(0.0009) (0.0016) (0.0009) (0.0029) (0.0010)

Vacc 0.0026 0.0058 0.0012 0.0088 0.0016
(0.0008) (0.0014) (0.0007) (0.0024) (0.0007)

N 12,240 4,080 8,160 1,530 10,710

“Flu Season” represents December-March; “Non Season” represents April-November. “High Activity” is defined as months where
the influenza index is at least 0.5, and “Low Activity” is months where the influenza index is less than 0.5. Standard errors in
parentheses are clustered at the state level.
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Table 4: Mortality and Absences – Triple Difference

Panel A: Pneumonia/Influenza (PI) Mortality Rate (per 100,000)
(1) (2) (3)

Vacc × Match × Activity -0.184 -0.223 -0.199
(0.059) (0.052) (0.061)

Vacc × Match 0.027 -0.009 -0.011
(0.017) (0.008) (0.010)

Expected Annual Benefit -0.289 -0.351 -0.313
(Deaths per 100,000 population)

N 12,240 12,240 10,404

Panel B: Average Work Hours Absent for Illness
(1) (2) (3)

Vacc × Match × Activity -0.0098 -0.0106 -0.0099
(0.0042) (0.0042) (0.0039)

Vacc × Match -0.0001 0.0004 0.0003
(0.0011) (0.0010) (0.0011)

Expected Annual Benefit -2,563 -2,762 -2,578
(Hours per 100,000 population)

N 12,240 12,240 10,404

Month-Year Fixed Effects X X X
Weather Controls X X X
State-Month Fixed Effects - X X
IV - - X

All regressions also include the V acc×Activity interaction and the main effect for V acc;
not included are the Match × Activity interaction and the main effects for Match and
Activity as these are absorbed by the month-year fixed effects. The “Expected Annual
Benefit” for mortality is equal to

∑
m φ̂1×Match×Activitym, where φ1 is the coefficient

on the triple interaction. This measures the expected annual reduction in mortality that
would be expected to result from a one percentage point increase in the vaccination rate
for a population of 100,000 (i.e., 1,000 additional vaccinations). For hours absent, the

“Expected Annual Benefit” is equal to
∑

m φ̂1×Match×Activitym×(30.5/7)×(126/323)×
100, 000. (30.5/7) represents the number of weeks per month, since the coefficient measures
the change in mean weekly hours lost, and (126/323) represents the ratio of full time
workers to the population in the U.S. Finally, the calculation for the “Expected Annual
Benefit” for absences requires multiplying by 100,000 since the outcome is mean hours
lost rather than a rate per 100,000 population (as in the mortality specification). This
measures the expected annual reduction in hours lost among full time workers that would
be expected to result from a one percentage point increase in the vaccination rate for a
population of 100,000 (i.e., 1,000 additional vaccinations). The “IV” specification indicates
that the average vaccination rate over the three years prior is used as an instrument for
the current year’s vaccination rate. Standard errors in parentheses are clustered at the
state level.
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Table 5: Mortality by Age & Decomposing Externality

Panel A: All-Age Vaccination Rates & Age-Specific Mortality
Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect -0.002 -0.000 -0.017 -0.015 -0.189
(0.002) (0.001) (0.011) (0.014) (0.043)

[1%] [0%] [8%] [7%] [85%]

N 12,240 12,240 12,240 12,240 12,240

Panel B: Age-Specific Vaccination Rates & Age-Specific Mortality
Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect (75+) - - - - -0.058
(0.028)

[34%]

D-D-D Effect (<75) - - - - -0.113
(0.045)
[66%]

N 12,240
Age-specific mortality rates are calculated as the number of deaths per 100,000 all-age population (i.e., the
denominator is not age-specific). As such, these estimates represent an accounting of the total mortality
benefits of increased vaccination – the sum of the mutually exclusive age categories equals the total effect.
The percentage of total benefits is reported in brackets (the age-specific coefficient here divided by the
all-age coefficient in Table 4). I report additional estimates in Table A4 in which the denominator is age-
specific. In Panel A, coefficient estimates represent estimates of the triple-interaction from Equation (3).
In Panel B, coefficient estimates represent estimates of the triple-interactions from Equation (4). The
percentage of total mortality reductions attributable to vaccination in each age group is reported in
brackets (the corresponding coefficient divided by the sum of the two coefficients). Standard errors in
parentheses are clustered at the state level.
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Table 6: Monetized Benefits

Panel A: Mortality (EPA VSL)
Age-Adjusted VSL Number of Deaths Monetized Value Value Per Vaccination

(Scaled Nationally) (Scaled Nationally)

Age Under 10 $8,705,051 13.1 $114,036,168 $35.30
Age 10-64 $6,470,611 86.1 $557,119,607 $172.43
Age 65-74 $2,866,840 73.1 $209,566,004 $64.86
Age Over 74 $975,689 933.9 $911,195,957 $282.02
Total - 1,106.2 $1,791,917,736 $554.60

Panel B: Mortality (AG VSL)
Age-Adjusted VSL Number of Deaths Monetized Value Value Per Vaccination

(Scaled Nationally) (Scaled Nationally)

Age Under 10 $2,285,076 13.1 $29,934,495 $9.26
Age 10-64 $1,698,535 86.1 $146,243,863 $45.26
Age 65-74 $752,545 73.1 $55,011,039 $17.03
Age Over 74 $256,118 933.9 $239,188,600 $74.00
Total - 1,106.2 $470,377,997 $145.58

Panel C: Work Absences
Median Hourly Wage Number of Hours Monetized Value Value Per Vaccination

(Scaled Nationally) (Scaled Nationally)

All Ages $20.80 8,925,508 $185,650,574 $57.46

Value of a Statistical Life (VSL) estimates are generated using the EPA’s figure of $8.8 million or the estimate from Ashenfelter and Greenstone
(2004) of $2.3 million (denoted “AG”), applied to the method of Murphy and Topel (2006) to calculate age-adjusted VSL figures for each age
group. Estimates correspond to a one percentage point increase in the vaccination rate, and correspond to the specification in Column 2 of
Table 4. The median hourly wage is calculated as the median weekly wage in 2016 ($832) divided by median hours worked (40) for full-time
workers; these figures are derived from the Bureau of Labor Statistics https://www.bls.gov/news.release/wkyeng.t07.htm.
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Table 7: Effects of HCW Mandates on Influenza Diagnoses

Panel A: Inpatient Admissions with Influenza Diagnosis
Specification Checks Present on Admission

(1) (2) (3) (4) (5) POA Not-POA

Required -0.0708 -0.1000 -0.214 -0.234 -0.207 -0.209 -0.402
(0.0389) (0.0459) (0.0687) (0.0699) (0.0674) (0.0685) (0.0984)

N 3,609 3,208 3,208 3,208 2,406 3,208 3,208
Converged Yes Yes Yes No No Yes Yes

Panel B: Outpatient ED Visits with Influenza Diagnosis
Specification Checks

(1) (2) (3) (4) (5)

Required -0.0168 -0.0243 -0.0944 -0.122 -0.0928 - -
(0.0470) (0.0458) (0.0544) (0.0538) (0.0594)

N 2,700 2,400 2,400 2,400 1,800
Converged Yes Yes Yes Yes Yes

Exclude 2014-15 - X X X X X X
County Linear Trends - - X - X X X
Hospital Linear Trends - - - X - - -
Exclude H1N1 Years - - - - X - -

Reported coefficient estimates are derived from negative binomial regression models, and as such the estimates can be approximately
interpreted as percent changes. Regressions are estimated at the hospital-by-year level. The smaller number of observations for outpatient
ED visits is due to the smaller number of emergency departments relative to inpatient hospitals. “Converged” indicates whether the
maximization algorithm converged; non-convergent specifications are those that require the estimation of many variables (i.e., hospital-
specific trends) or have relatively few observations. Standard errors in parentheses are clustered at the county level.
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Online Appendix

Figure A1: Vaccination and Influenza Timing
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Note – This plot displays average monthly influenza activity and the average cumulative vaccination rate
across years. Data on the timing of vaccination is available beginning in 2007. The year of the H1N1 influenza
pandemic (2009) was excluded from the averages represented in this figure as it was a highly abnormal year
in terms of the timing of both influenza activity and vaccination.
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Figure A2: Nonlinearities
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Note – These plots test for nonlinearities in the effects of state-level vaccination rates by allowing for higher order polynomials in the triple interaction
specification described in Equation (3). The plots represent the marginal effects of vaccination at various vaccination rates; note that larger negative
numbers imply larger social benefits. Dashed lines represent the 1st and 99th percentiles in the distribution of vaccination rates, and dotted lines
represent the 10th and 90th percentiles. Shaded regions represent 95% confidence intervals.
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Figure A3: California Mandates
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These plots display the roll-out of influenza vaccination mandates. Circles represent policies implemented
at the hospital level and shaded regions represent policies implemented at the county level. The lighter
shaded regions represent county-level policies that apply only to hospitals, and the darker regions represent
county-level policies that apply more broadly.
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Table A1: Mortality and Absences – Specification Checks

Panel A: PI Mortality
(1) (2) (3) (4) (5) (6) (7)

D-D-D Effect -0.131 -0.178 -0.146 -0.164 -0.127 -0.226 -0.211
(0.079) (0.052) (0.066) (0.050) (0.062) (0.050) (0.056)

N 10,404 12,240 10,404 12,240 10,404 12,240 10,404

Panel B: Hours Absent for Illness
(1) (2) (3) (4) (5) (6) (7)

D-D-D Effect -0.011 -0.010 -0.009 -0.010 -0.010 -0.011 -0.011
(0.004) (0.005) (0.004) (0.005) (0.005) (0.005) (0.005)

N 10,404 12,240 10,404 12,240 10,404 12,240 10,404

Month-Year Fixed Effects X X X X X X X
State Fixed Effects - X X - - - -
State-Year Fixed Effects - - - X X X X
State-Month Fixed Effects - - - - - X X
IV (t-3) X - X - X - X

Estimates are reported for a variety of specifications distinct from those presented as the main results in Table 4. Standard
errors in parentheses are clustered at the state level.
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Table A2: Mortality and Absences - IV Specification

Panel A: PI Mortality
t-1 t-1 to t-2 t-1 to t-3 t-1 to t-4 Base Period

(Avg.) (Avg.) (Avg.) (3 Year Avg.)

D-D-D Effect -0.201 -0.201 -0.199 -0.197 -0.171
(0.059) (0.057) (0.061) (0.065) (0.061)

N 11,628 11,016 10,404 9,792 10,404

Panel B: Hours Absent for Illness
t-1 t-1 to t-2 t-1 to t-3 t-1 to t-4 Base Period

(Avg.) (Avg.) (Avg.) (3 Year Avg.)

D-D-D Effect -0.011 -0.011 -0.010 -0.008 -0.007
(0.005) (0.005) (0.004) (0.005) (0.005)

N 11,628 11,016 10,404 9,792 10,404

IV X X X X -
Reduced Form - - - - X

These estimates test the sensitivity of the IV estimates to the definition of the instrument for vacci-
nation rates. Columns 1-4 use the vaccination rate in the prior year, the average vaccination rate over
the prior two years, the average vaccination rate in the prior three years (the specification presented
in Table 4), and the average vaccination rate in the prior four years. Column 5 uses a time-invariant
base period vaccination rate (the average vaccination rate over the first three years of the sample).
Because the IV strategy requires instrumenting for three interactions plus main effect of vaccination,
using a time-invariant instrument in the presence of state-by-month fixed effects means that one of the
required instruments drops out. As such, these estimates are reported as reduced-form estimates (i.e.,
the effect of base period vaccination on the outcome at time t), and the magnitudes are not directly
comparable. Standard errors in parentheses are clustered at the state level.
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Table A3: Mortality by Cause and Absences by Reason

Panel A: PI Mortality
PI Mortality R&C Mortality All Mortality Non-R&C Mortality

(Falsification)

D-D-D Effect -0.223 -0.320 -0.365 -0.045
(0.052) (0.106) (0.147) (0.083)

N 12,240 12,240 12,240 12,240
Mean Dep. Var. 6.07 35.43 72.14 36.71

Panel B: Hours Absent for Illness
Hours Absent - Illness % Absent - Illness Hours Absent - Other % Absent - Other

(Falsification) (Falsification)

D-D-D Effect -0.01061 -0.00065 -0.01120 -0.00051
(0.00421) (0.00024) (0.01256) (0.00097)

N 12,240 12,240 12,240 12,240
Mean Dep. Var. 0.245 0.025 0.928 0.093

All estimates are from models that use the main triple-difference specification (described in column 2 of Table 4). For both mortality and work
absences, the first column duplicates the main estimates as reference. “R&C” refers to respiratory & circulatory mortality, which is a level of
aggregation higher than pneumonia and influenza (PI). Deaths with no respiratory or circulatory diagnosis are unlikely to be related to influenza
infection (column 4 of Panel A). “% Absent” provides an alternate definition for work absence: the proportion of workers reporting any work absence
rather than the number of hours lost. In columns 3-4, estimates are reported for non-illness work absences (e.g., vacation). Standard errors in
parentheses are clustered at the state level.
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Table A4: Mortality – Age Specific Mortality Rates

Under 1 Age 1-9 Age 10-64 Age 65-74 Age 75+

D-D-D Effect -0.195 -0.001 -0.024 -0.206 -2.184
(0.137) (0.011) (0.015) (0.216) (0.620)

Mean Dep. Var. 1.35 0.08 1.20 13.11 71.09
N 12,240 12,240 12,240 12,240 12,240

in Table 5, age-specific mortality rates are calculated as the number of deaths per 100,000 total
individuals in the population to facilitate straightforward accounting of the total mortality benefits
of vaccination. Here, mortality rates are calculated as the number of deaths per 100,000 population
in the relevant age group. These results confirm the main findings that the benefits are concentrated
in the 75+ age group. Standard errors in parentheses are clustered at the state level.
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Table A5: Mortality and Absences - Lagged Impacts

Panel A: PI Mortality
Baseline (One Month) Two Month Three Month Four Month Five Months

D-D-D Effect -0.2209 -0.2509 -0.1755 -0.1995 -0.1918
(0.0513) (0.0571) (0.0545) (0.0612) (0.0648)

N 12,036 12,036 12,036 12,036 12,036

Panel B: Hours Absent for Illness
Baseline (One Month) Two Month Three Month Four Month Five Months

D-D-D Effect -0.01124 -0.01185 -0.00970 -0.01565 -0.01432
(0.00481) (0.00504) (0.00592) (0.00690) (0.00748)

N 12,036 12,036 12,036 12,036 12,036
These estimates test whether the contemporaneous month is sufficient to capture the full extent of influenza-related mortality. The
column labelled “Two Months” reports estimates that replicate the main estimates, but include a one month lag in the interactions
that include influenza activity. The reported coefficients are the sum of the contemporaneous and lagged impact. The column labelled
“Three Months” adds one and two month lags in the relevant interactions and the sum of all three coefficients are reported, and so
on for columns four and five. Standard errors in parentheses are clustered at the state level.
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Table A6: Mortality and Absences – Robustness

Panel A: PI Mortality
Exclude Interp. Include H1N1 1993-2007 Regional Match Leave-One-Out Flu Season

Years Years Sample (1998-2014) (1998-2014) Triple

D-D-D Effect -0.225 -0.216 -0.174 -0.200 -0.202 -0.061
(0.056) (0.048) (0.059) (0.053) (0.057) (0.017)

Scaled Effect - - - - - -0.188

N 10,404 13,464 8,568 9,180 9,180 12,240

Panel B: Hours Absent for Illness
Exclude Interp. Include H1N1 1993-2007 Regional Match Leave-One-Out Flu Season

Years Years Sample (1998-2014) (1998-2014) Triple

D-D-D Effect -0.00974 -0.00892 -0.01423 -0.00873 -0.01021 -0.00470
(0.00455) (0.00433) (0.00629) (0.00428) (0.00406) (0.00194)

Scaled Effect - - - - - -0.01450

N 10,404 13,464 8,568 9,180 9,180 12,240
All estimates are variants on models that use the main triple-difference specification (described in column 2 of Table 4). Years refer to flu-years;
for example, “1993” refers to the 1993-94 flu-year. In column 1, four influenza seasons with interpolated vaccination rates are excluded. Column 2
includes the two flu-years affected by the H1N1 pandemic. Column 3 represents a sample period prior to the H1N1 pandemic and two technological
developments in the influenza vaccine (high-dose vaccines and the quadrivalent vaccine). Columns 4 uses regional variation in the match rate (also
included in this regression are the main effect for Match and the Match×Activity interaction, which are no longer absorbed by fixed effects). Column
5 uses average influenza activity in all census divisions other than that which includes the corresponding state (also included in this regression are the
main effect Activity and the Match×Activity interaction, which are no longer absorbed by fixed effects). Column 6 uses an influenza season indicator
in place of influenza activity in the triple difference; for this specification a “Scaled Effect” is provided for comparability with the other estimates in
which the point estimate is scaled by a factor of 1/(Āseason − Āoff ), where Āseason and Āoff represent average influenza activity during influenza
season and during the off-season, respectively. Standard errors in parentheses are clustered at the state level.

61



Table A7: HCW Vaccination Policy Timing

Hospital Season County Season
Children’s of Orange 2009 (H1N1) Sacramento 2011-12
Community Hospital of LB 2009 (H1N1) San Francisco 2011-12
Hoag Hospitals 2009 (H1N1) Alameda 2012-13
Long Beach Memorial 2009 (H1N1) Amador 2012-13
Miller Children’s 2009 (H1N1) Contra Costa 2012-13
Orange Coast Memorial 2009 (H1N1) El Dorado 2012-13
Pacific Hospital of LB 2009 (H1N1) Mono 2012-13
St. Joseph (Orange) 2009 (H1N1) Nevada 2012-13
St. Jude (Fullerton) 2009 (H1N1) San Joaquin 2012-13
UC Davis 2009 (H1N1) Santa Clara 2012-13
UC Irvine 2009 (H1N1) Stanislaus 2012-13
UC San Diego 2009 (H1N1) Sonoma 2012-13
Saddleback Memorial 2009 (H1N1) Tehama 2012-13
Santa Rosa Memorial 2010-11 Santa Cruz 2013-14
Sierra Vista (SLO) 2010-11 Los Angeles 2013-14
Tri-City (Oceanside) 2010-11 Marin 2013-14
Petaluma Valley Hospital 2010-11 Monterey 2013-14
Oroville Hospital 2012-13 Napa 2013-14
Banner Lassen Medical Center 2012-13 Shasta 2013-14
Barton Memorial 2012-13 Trinity 2013-14
UCSF (Children’s - Oakland) 2012-13 Alpine 2014-15
Cottage Hospitals 2013-14 Calaveras 2014-15
Salinas Valley Hospital 2013-14 Fresno 2014-15
- - Mariposa 2014-15
- - Modoc 2014-15
- - Placer 2014-15
- - San Benito 2014-15
- - San Bernardino 2014-15
- - Santa Barbara 2014-15
- - Siskiyou 2014-15
- - Tuolomne 2014-15
- - Ventura 2014-15
- - Solano 2015-16
- - Yolo 2015-16
- - Humboldt 2016-17
- - Mendocino 2016-17
- - Butte 2017-18
- - Merced 2017-18
- - San Luis Obispo 2017-18

Note: Hospitals that implemented their mandates in 2009, labelled “2009
(H1N1)”, did so in response to the H1N1 pandemic. All other mandates
were implemented prior to the beginning of an influenza season.
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Table A8: Effects of HCW Mandates on Hospital Worker Vacc. Rates

(1) (2) (3)

Required 0.106 0.0928 0.0960
(0.0145) (0.0115) (0.0119)

N 707 1,391 2,568
# Hospitals 101 202 387

The three columns represent different levels of stringency
in selecting the sample for the first stage, based on data
quality. Hospitals are required to report the percentage of
workers vaccinated in each influenza season; poor quality
data emerges when hospitals do not collect this information
for every worker (the response rate for a particular hospital
and influenza season may be less than 100%). Column 1
reports estimates only from hospitals with a response rate
of at least 90% in all years (2009/10-2015/16); column 2
reports estimates only from hospitals with a response rate
of at least 90% in all but one year (typically the first year);
column 3 reports estimates from all hospitals regardless of
data quality. Standard errors in parentheses are clustered
at the county level.
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Table A9: Effects of HCW Mandates by Age

Influenza Diagnoses – Inpatient Admissions
Under 1 1-9 10-64 65-74 75+

Required -0.249 -0.242 -0.171 -0.118 -0.121
(0.0716) (0.0898) (0.0845) (0.0933) (0.0655)

N 1,936 1,576 3,192 3,032 2,912

Converged Yes No Yes No Yes

Influenza Diagnoses – Outpatient ED Visits
Under 1 1-9 10-64 65-74 75+

Required -0.109 -0.217 -0.0819 -0.0700 -0.0704
(0.0867) (0.0854) (0.0534) (0.0614) (0.0980)

N 2,384 2,384 2,400 2,376 2,360

Converged Yes Yes Yes Yes No

Exclude 2014-15 X X X X X
County Linear Trends X X X X X

Reported coefficient estimates are derived from negative binomial regression models, and as such the
estimates can be approximately interpreted as percent changes. Regressions are estimated at the
hospital-by-year level. Hospitals with zero age-specific influenza diagnoses in all years are automat-
ically omitted, accounting for the difference in sample size across age groups. “Converged” indicates
whether the maximization algorithm converged. Standard errors in parentheses are clustered at the
county level.

64



Table A10: Effects of HCW Mandates – Other Outcomes

ln(Avg. Length of Stay) ln(Avg. Charges) In-Hospital Death Rate PI Mortality Rate

Required×Activity -0.0126 -0.0203 -0.0000842 -0.243
(0.00568) (0.0105) (0.000442) (0.280)

Required -0.00108 0.0103 0.0000462 0.0746
(0.00326) (0.00674) (0.000423) (0.0947)

Exclude 2014-15 X X X X
County Linear Trends X X X X
Hospital-Level X X X -
County-Level - - - X
N 36,184 32,448 36,192 5,504

The estimates presented in columns 1-3 represent average outcomes for inpatient hospital admissions at the hospital-year-month level. The estimate in
column 4 uses data on mortality at the county-year-month level. The coefficient estimate for “Required×Activity” represents the impact of HCW vaccination
mandates during periods with high influenza activity relative to zero activity, and the estimate for “Required” represents the impact during periods with zero
influenza activity. The distributions for length of stay and charges at the micro-level (i.e., before collapsing to the hospital-year-month level) have extremely
long tails. To ensure that the estimates are not driven by these outliers, I exclude micro-level observations that are above the 99th percentile of each variable’s
distribution before calculating monthly averages. Additionally, charges are not reported for all inpatient visits. Some hospitals in particular consistently fail
to report charges. Because these observations are unlikely to be missing randomly, I exclude hospitals that do not report charges for at least 95% of their
patients over the sample period in the analysis of average charges (approximately 13% of the hospitals in the sample). This accounts for the smaller number
of observations for the estimates of charges. Furthermore, length of stay is unreported for approximately 1% of admissions; averages cannot be calculated for
these outcomes when all hospital-year-month outcomes are missing – this typically only occurs when there is a single observation in that cell. All models are
estimated via OLS. Standard errors in parentheses are clustered at the county level.
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