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Abstract

Centralized assignment mechanisms based on the deferred acceptance algorithm (DA) are

used by many school districts around the world to assign students to schools. Theoretical

analyses of the DA consider that students are allowed to list all the alternatives of the choice

set in their application rankings. However, in virtually all places where these mechanisms are

implemented, students are restricted to list only a small number of choices. As a consequence,

students need to take into account their admission chances to the programs, and be strategic in

their choice. This paper uses administrative data from Tunisia, where high school graduates are

assigned to university programs using a sequential variant of the DA, to empirically examine the

effect of enabling students to update their expectations about their admissions probabilities. The

sequential implementation induces quasi-experimental variation in the information available to

students about remaining vacancies, and grounds the identification of students’ preferences and

expected admission probabilities. When students cannot revise their expectations, and relative

to a benchmark situation in which students are given perfect information about which programs

would admit them, their average indirect utility is decreased by the equivalent of a 41km-increase

in the distance home-university –40% of the median distance traveled by students in the data.

While easy to implement, the sequential implementation of the DA procedure reduces this

expected utility loss by 67% in Tunisia. The increase in expected welfare is driven by a decrease

in the share of students rejected by all their listed choices. Gains disproportionately accrue

to low-ability and low-SES students, and counterfactuals suggest that a better targeting of

low-priority students by the information provision would increase welfare gains.
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1 Introduction

New York City, Paris, Spain, Finland, Turkey, Chile, Norway, Ghana, Tunisia all use a similar

centralized procedure to assign students to public schools or university programs. This mechanism

is based on the deferred acceptance (henceforth, DA) algorithm (Gale and Shapley, 1962), and has

been recommended to policy-makers by the school choice market design literature (Abdulkadiroğlu

and Sönmez, 2003; Balinski and Sönmez, 2003) on the grounds of its desirable theoretical prop-

erties. The mechanism involves students submitting to a clearing house an ordered list of schools

they would like to attend, schools giving priorities to students over admission offers, and the al-

gorithm processing application lists and priorities to assign students to programs. If they all use

a similar assignment mechanism, all these places also implement it with the same departure from

the theoretical design. While theoretical analyses of the algorithm are based on students being

able to apply to all schools in their choice set, in practice, applicants in all these places are only

allowed to list a restricted, and often small, number of programs in their preference report –for

instance, twelve in New York, six in Ghana, ten in Tunisia, out of more than six or seven hundreds

of alternatives.

This paper examines the students’ application portfolio choice problem when they are not able to

apply to all academic programs in their choice set, and investigates the effects of enabling applicants

to update their expectations about their admission chances. When students are not restricted in

the number of applications they can make, mechanisms based on the DA ensure that it is dominant

for applicants to simply report schools by order of preference in their application list (Dubins and

Freedman, 1981; Roth, 1982). List-size restrictions break this property (Haeringer and Klijn, 2009).

When they can only apply to a subset of programs, students face the possibility to be rejected from

all their listed choices. To avoid rejection, students need to choose their application portfolio tak-

ing into account not only their preferences for academic programs, but also their probability to be

admitted to these programs. Students’ expectations about their probabilities of admission are then

a crucial determinant of where they apply and are ultimately accepted.

Taking restrictions on the number of applications as fixed1, this paper also investigates how pro-

viding students with information can improve the quality of school-student matches. Focusing on

guiding the formation of expectations about admission chances, I consider the provision of updated

information about programs filling up and vacancies remaining, at various points in time in the

assignment process. I examine an information provision design that can be easily embedded in

commonly implemented DA-based assignment mechanisms.

This paper uses administrative data from Tunisia, where college applications and assignments are

made using a nationwide centralized assignment mechanism based on the DA. A unique institu-

tional feature, the Tunisian mechanism is implemented in a sequential way, and involves different

pools of applicants having different information about the available vacancies. This special imple-

mentation yields a quasi-experimental setting that enables me to empirically document three facts.

1There is evidence that many policy-makers are reluctant to let students submit lists as large as their choice set
when the choice set is large, as this quote from Roth (2015) about the New York City match illustrates: “[I]n my
description [. . . ] students can list as many schools as they like. We economists recommended that students be allowed
to do just that, but on this important detail we did not prevail. So New York City students today can list only up to
twelve programs among the hundreds that the city offers. Students who want to list more than that face a strategic
choice of which twelve to list.” See also Pathak and Sönmez (2013).
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First, I use the quasi-experiment generated by the implementation of the mechanism to show ev-

idence that students behave strategically when forming application lists. Despite the increasing

number of school systems implementing the restricted-list DA, there is little empirical evidence on

the performance of DA-based assignment procedures when the number of applications students can

submit is restricted. This paper shows evidence that, under such restrictions, students may not

find it optimal to truthfully apply to their most preferred schools.

Second, I show that application list size restrictions can decrease student welfare and increase in-

equality, relative to a setting in which students are freed from the need to form expectations about

their admission chances and to engage in strategic behavior. I consider a context in which stu-

dents’ expectations about their admission chances may not coincide with their true probabilities of

admission. I estimate a model of application portfolio choice, and use a counterfactual analysis to

compare assignment outcomes resulting from the implementation of the restricted-list DA, to those

obtained under a strategy-proof setting. Taking advantage of the quasi-experimental variation in

information available to students, and in line with findings in the literature, the model allows for

differences in expectations formation and use of public information across socioeconomic status

(SES) and related variables (e.g. Hoxby and Turner, 2015).

Third, I find that a simple modification in the implementation of restricted-list DA can improve

student welfare. A sequential implementation of the DA, as done in Tunisia, permits the provision

of updated information to students about programs filling up and remaining vacancies. The effect

of additional information on expected welfare is a priori ambiguous. On the one hand, more infor-

mation about the vacancies that have been taken and remain may prevent students from applying

to programs that turn out to be all full, and it may increase the quality of the matches made. On

the other hand, it may decrease applicants’ ability to signal the magnitude of their preference for

the different alternatives (Abdulkadiroğlu, Che and Yasuda, 2015).

I find that, when applying under the most common implementation of the restricted-list DA, and

relative to the strategy-proof benchmark, students’ average expected indirect utility is decrease.

In magnitude, the average decrease in indirect utility is equivalent to the counterfactual decrease

induced by, keeping all other things equal, having students attend a university 41km (25 miles)

further away from home –about 38% of the median distance traveled by students in the data. While

easy to implement, the 2010 Tunisian three-phase implementation of the restricted-list DA reduces

by 67% this welfare loss. The increase in expected welfare is essentially driven by enabling a larger

share of students to be assigned to an element of their application list –rather than to assigned stu-

dents improving their match. Gains disproportionately accrue to low-ability, unsophisticated, and

low-SES students. In fact, providing information about vacancies, even through a small number

sequential of sequential phases, reduces the expected indirect utility gap existing between high- and

low-SES students. Finally, while the 2010 Tunisian implementation of the three-phase procedure

does increase welfare and the average match rate, I show that a better targeting of low-priority

students by the information provision –through a different sequential partition of the cohort of

applicants– could increase gains to students.

Performing the analysis leading to these results, I face two main challenges. The first is an identifi-

cation challenge generally faced by the empirical literature on matching mechanisms. The mapping
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from students’ preferences to their application choices depends on their expectations about which

schools may be available for them. With most school applications datasets, the econometrician

cannot separately identify students’ preferences and expectations about admission chances (Agar-

wal and Somaini, 2014). The quasi-experiment induced by the Tunisian sequential procedure helps

me circumvent this identification problem. I argue that the sequential design induces a subset

of students to truthfully report their most-preferred programs. For this subset of students, per-

ceived admission chances can be ignored, and I can identify and estimate students’ preferences

for post-secondary programs. In a second step, I characterize students’ expectations about their

admission chances as those rationalizing other students’ observed application lists, given identified

preferences. The second challenge is computational. Given a student’s preferences and expectations

about her admission chances, finding the optimal application portfolio –that is the expected-utility

maximizing ordered list of up to ten programs among more than 600 alternatives– is intractable.

The two-step approach, that identifies and estimates separately preferences parameters and expec-

tations about admission chances, partially alleviates this issue.

This paper contributes to three branches of the literature. It adds evidence to the small empirical

literature on the DA. The theoretical literature on mechanism design is large and influential. In

the context of school choice, it is part of an active dialogue between economists and policy-makers

that has highlighted strategy-proofness as a way to pursue “transparency, fairness, and equal access

to public facilities” (Abdulkadiroğlu, Pathak, Roth and Sönmez, 2006). The use of the strategy-

proof DA has been recommended over other mechanisms (e.g. the Boston mechanism) that reward

strategic behavior. It avoids penalizing students and families who do not strategize or do not do it

well –which has been showed to be correlated with socioeconomic background (Kapor, Neilson and

Zimmerman, 2016). Despite the widespread use of the DA, there is little empirical evidence of the

consequences of a central feature of its implementation –the restriction imposed on the number of

schools students can apply to.2 Ajayi and Sidibé (2016) is, to my knowledge, the only empirical pa-

per that addresses this question. Using data from Ghana, where the DA is used to assign students

to high schools, they quantify the effect of changing the number of programs students are allowed

to apply to. Fack, Grenet and He (2015) also document strategic behavior in assignment systems

based on the (restricted-list) DA. In their analysis of the Paris high-school match, they actually

test and reject the null hypothesis that students are truth-telling. These two recent analyses deliver

an empirical counterpart to the experimental findings in Calsamiglia, Haeringer and Klijn (2010).

In contrast, though, Abdulkadiroğlu, Agarwal and Pathak (2017) provide empirical evidence from

the high-school match in New York City (NYC) that students may find it optimal to truthfully

report their preferences, even when constrained to submit a application list strictly smaller than

their choice set.

My paper differs from these empirical papers in two respects. First, it is the only one to document

the effects of a practical and simple policy that provides decision-makers with updated information

about vacancies, and enables them to update their expectations about their admission chances.

Second, the analysis of students’ preferences for academic programs and expectations about their

admission chances does not a priori constrain students to be all strategic, nor to all truthfully apply

to their most-preferred programs. Rather, the two-step identification strategy used in this paper

allows me to recover the share of students engaging in each type of behavior.

2A number of studies have compared the unrestricted-list DA to alternative mechanisms (e.g. Agarwal and
Somaini, 2014; Calsamiglia, Fu and Güell, 2014; Dur, Hammond and Morrill, 2016; He, 2016). A number of studies
have also analyzed other less common assignment mechanism (e.g. Carvalho, Magnac and Xiong (2014).
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This paper naturally relates to studies on the role of information and students’ imperfect sophisti-

cation in the context of centralized school choice systems. The questions tackled in my paper are

very similar to those Kapor, Neilson and Zimmerman (2016) explore using a survey of about 200

parents of kindergartners and ninth-graders participating in the New Haven school choice mech-

anism. They show that subjective beliefs about their child’s admission chances differ from true

admission probabilities, and that the magnitude of the deviation depends on parental effort and

demographics. Mitigated empirical evidence about the effect of information on applications was

earlier provided by Hasting, Van Weelden and Weinstein (2007) and Hastings and Weinstein (2009)

using a field experiment conducted in the Charlotte-Mecklenburg Public School District in 2006.

My work complements these studies, as it considers application in a DA framework, while they

focus on variants of an alternative assignment mechanism, the so-called Boston mechanism.

More generally, beliefs about admission chances are part of a larger set of expectations students

form about variables entering their application decisions and educational choices in general, and

which have been of interest for the literature.3 Recent studies have acknowledged that the expec-

tations students and families form about the outcomes of their investment and application choices

may be inaccurate (for instance on future wages, see, among others, Wiswall and Zafar, 2013;

Jensen, 2010; Stinebrickner and Stinebrickner, 2014b). More broadly, studies have shown as well

that agents need to form beliefs about the features of their educational decisions they do not have

perfect knowledge of, and that providing them with additional information may actually affect

their choices –whether it is information about schools and/or curricula characteristics over which

the decision-makers may have preferences (e.g. on school quality, see Hasting, Van Weelden and

Weinstein, 2007; and Hastings and Weinstein, 2009); or information about one’s own ability in the

curriculum or taste for these characteristics (see Pistolesi, 2016; Arcidiacono, Hotz and Kang, 2012;

Stinebrickner and Stinebrickner, 2014a).

The rest of this paper is organized as follows. The next section reviews the theoretical properties

of the deferred-acceptance algorithm, illustrates the inefficiencies susceptible to arise when it is im-

plemented with application list size restrictions, and presents the alternative sequential procedure.

Section 3 introduces the empirical setting of this paper. It presents the post-secondary assignment

procedure in Tunisia, describes the data, and highlights reduced-form effects of the sequential in-

formation revelation on application behaviors. Section 4 describes my strategy to recover students’

preferences for university programs, and shows my estimates. Section 5 describes my strategy to

characterize students’ expectations about their admission chances, and shows that not all students

truthfully list their most-preferred programs. Finally, Section 6 compares students’ outcomes un-

der the sequential DA procedure and the standard implementation of the restricted-list DA, and

discusses the value of information in a centralized school choice system. Section 7 concludes.

2 Theoretical background

In this section, I review the theoretical properties of the DA; I describe the consequences of its

implementation in a school choice context in which applications are constrained or costly; and I

present the alternative sequential procedure at the center of this paper. This section serves two

3See Altonji, Blom and Meghir (2012), and Altonji, Arcidiacono and Maurel (2015) for a review.
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main purposes. First, it establishes key properties of the mechanism that will ground the identi-

fication strategy in later parts of the paper. Second, it highlights the questions and trade-offs of

interest for the policy-maker that will guide the counterfactual analysis presented at the end of this

paper.

2.1 The deferred-acceptance algorithm: theoretical properties and tradeoffs.

School choice problems. Formally, a school choice problem (Abdulkadiroğlu and Sönmez, 2003)

consists of two finite sets: a set of N students, and a set of J schools (or programs). Each school

has a finite capacity that determines how many students it can enroll. Students have preferences

over schools, while schools rank students by order of priority for admission.4 Priority orders can

be common or differ across schools, may or may not be known to students, and are taken as

given. In the empirical setting of this paper, priority is merit-based and determined as a function

of past academic performance5; it is known to students. A solution to a school choice problem

–that is, an allocation in which each student is assigned to at most one school and no school is

assigned more students than its capacity– is called a matching. A mechanism is a systematic rule or

procedure that, given any school choice problem, selects a matching. In general, centralized school

choice mechanisms involve (1) students simultaneously submitting an ordered list of academic

programs to attend; and (2) a central authority assigning students to programs according to a

pre-specified rule or algorithm. Because it determines the school or academic program students

attend, a centralized mechanism can have significant consequences on students’ outcomes such as

their academic achievement (e.g. Kapor, Neilson and Zimmerman, 2016). A substantial theoretical

literature has been guiding policy-makers in their choices of what mechanism to use by studying

their properties, and highlighting some of them as desirable.

Desirable properties for matching mechanisms. Three properties have acquired a central

place in the theoretical literature on matching –stability, strategy-proofness and efficiency. Here, I

define them and discuss their desirability. In the context of school choice, a matching is stable if no

student is matched to a school over which she prefers not being matched (it is individually rational);

and if no student prefers to her assignment a school which has a vacancy in the final match (it is

non-wasteful), or which admitted a student with lower priority than her (it is justified-envy free).

A mechanism is stable if it always selects a stable matching. A mechanism being stable means

that the outcome will be fair, in the sense that no student will lose a seat at a desired school to

a student with lower priority than her at this school. It also means that the implementation of

the outcome will be successful, in the sense no student-school pair will be willing to block the final

assignment –empirical evidence indeed seems to suggest that failure of stability is a key reason why

some mechanisms have been abandoned in practice (Roth, 2008).

A mechanism is strategy-proof if for all agents, truthfully reporting one’s preferences over schools

is always a weakly dominant strategy. A mechanism being strategy-proof means that the appli-

cation game is easy to play for families. Mechanisms in which manipulating one’s preferences

4School choice refers to one-sided many-to-one matching problems; while college admissions refer to two-sided
many-to-one matching problems. In the context of college admissions, students and schools both have preferences
over the other side of the market.

5In particular, the priority ranking is fine, rather than coarse. When ties occur, they rarely involve more than a
handful of students.
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can be profitable may put at a disadvantage students who are not able to strategize, or do not

strategize well (Abdulkadiroğlu, Pathak, Roth and Sönmez, 2006b). Moreover, there is empirical

evidence that students’ ability to play the game induced by the assignment mechanism depends on

demographics, such as their socioeconomic background (Kapor, Neilson and Zimmerman, 2016). A

manipulable mechanism can then possibly foster the persistence of inequalities from one generation

to the next. By contrast, strategy-proofness enables the policy-maker to purse “transparency, fair-

ness, and equal access to public facilities” (Abdulkadiroğlu et al., 2006b). In addition, application

lists submitted by students under a strategy-proof mechanism constitute reliable data on families’

preferences, which can inform broader policy-making (Abdulkadiroğlu et al., 2006b).

A matching µ Pareto-dominates another matching ν if every student weakly prefers her assignment

under µ over her assignment under ν, and at least one student strictly prefers her assignment under

µ over her assignment under ν. A matching is Pareto-efficient if it Pareto-dominates all other

matchings. A mechanism is Pareto-efficient if the matching it selects always Pareto-dominates the

matching selected by other mechanisms. A mechanism being Pareto-efficient means that no welfare

is wasted, in the sense that no student could be made better off without hurting someone else.

The deferred-acceptance algorithm. The deferred-acceptance algorithm (DA) is strategy-

proof, stable, and Pareto-dominates6 all other strategy-proof and stable mechanisms (Gale and

Shapley, 1962; Dubins and Freedman, 1981; Roth, 1982). Based on these theoretical properties,

its use has been recommended over other mechanisms (e.g. the Boston mechanism) in the school

choice context (Balinski and Sönmez, 2003; Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et

al., 2006b).

The DA algorithm introduced by Gale and Shapley (1962) takes in two sets of inputs. For each

school, a priority ranking of all students over admission offers; and for each student, a preference

ranking (the application list) of all schools of the choice set, from most to least preferred. In the

simple case when a unique priority ordering is used by all schools, the DA proceeds as follows, once

all students have submitted application lists:7

DA

Step 1/ The first-ranked student is assigned to her first-listed program.

Step (k+1)/ For any k ≥ 1, once the kth student in the priority ranking has been assigned,

the student ranked (k + 1)th is assigned to the highest-ranked element of her list that still

has a vacancy. If all of her listed choices are full at that point, she is left unassigned and the

algorithm proceeds to the next student.

Stop/ The algorithm stops after all students have been processed.

Trade-offs. While Pareto-efficient among stable and strategy-proof mechanisms, DA is not effi-

cient (Abdulkadiroğlu and Sönmez, 2003). Elimination of justified envy requires, when two students

6The matching produced by the DA Pareto-dominates all other stable matches if priorities are strict (i.e. there
are no ties). If ties must be broken, the resulting match may not be Pareto-optimal among stable matches (Erdil and
Ergin, 2008).

7This simple case is the one relevant for the empirical analysis in this paper. When a unique priority ordering
is used by all schools, the DA boils down to the so-called serial dictatorship algorithm. A more general version of
the DA allows for school-specific priorities. It is not directly relevant for the empirical analysis in this paper; it is
described in Appendix A.
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have the same ordinal preferences over two seats, the higher-priority student to be assigned his more-

preferred school, regardless of the cardinal intensities of students’ preferences. If, for instance, the

lower-priority student likes more the preferred seat (or dislikes more the less-preferred seat) than

the higher-priority student does, elimination of justified envy can create a welfare loss. Hence, when

choosing to implement the DA, the policy-maker demonstrates her willingness to pursue elimination

of justified envy and strategy-proofness, and to pay the cost of foregoing efficiency.

2.2 List restrictions, uncertainty: implementation constraints and consequences

Versions of the DA are used in many places to assign students to schools (e.g. in NYC, Chicago,

Paris but also nationwide in Turkey, Ghana) or colleges (e.g. in Turkey, Taiwan, Tunisia). Most

implementations feature one common departure from the theoretical set-up: the size of application

list students may submit is restricted to be strictly smaller than the size of the choice set. For

instance, in NYC students can list 12 of the 500+ public high schools programs offered in the city;

in Ghana, students can apply to 6 of the 1,900+ high school programs in the country.8 Under such

list-size restrictions, the DA a priori not strategy-proof. In a restricted-list application setting,

students face the possibility of not being assigned to any school, if they get rejected from all the

schools they apply to. A student who expects her most-preferred schools to be popular among

higher-priority students, may then decide not to submit an application list that truthfully reflects

her ordinal preferences over programs, and instead include less-preferred, safer schools. As a con-

sequence of strategic reporting, the final matching may not be stable (with respect to the students’

true preferences), and some welfare may be lost. For instance, a student may decide not to apply

to a preferred program if she thinks her chances of receiving an offer are low, and then end up

being assigned to a less-preferred school, while, ex post, the preferred program would have had a

seat available for her.

In the paragraphs below, I describe the student’s problem in a restricted-list setting, and illustrate

consequences of the uncertainty faced by students on their incentives to be truthful and on welfare

by an example. As they will be useful in the rest of this paper, I also review a couple of simple

theoretical results on truth-telling and dominant strategies in the restricted-list setting.

2.2.1 Uncertainty and strategic incentives

The students’ problem. At the time of application, i is assumed to know the flow utility she

would derive from any element of her list. The only uncertainty she faces is due to her not knowing

which element of her list (if any) she will gain admission to. While she does not know which program

she will be offered admission to, she has (subjective) beliefs about her probability to be admitted

to the different programs. She maximizes her subjective expected utility –the weighted sum of

the flow utilities of elements of her ordered application list, with weights equal to her perceived

admission chances to these programs –within the set of all ordered lists of up to M alternatives:

EUi(Li) =
M∑
k=1

[
πi(Li(k))× ui(Li(k))

]
+ πi × Vi(0) (1)

8Implementations in Boston and Romania are exceptions. For more examples and details on restrictions, see
Appendix E in Fack, Grenet and He (2015), or matching-in-practice.eu.
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where πi(Li(k)) denotes i’s expectations about her admission chances to the kth-ranked element

of her application list, ui(Li(k)) denotes the flow utility derived from admission to this kth-ranked

element, and Vi(0) denotes the option value of being left unassigned.9 πi denotes student i’s prob-

ability to be rejected from all her listed choices.10

Example 1 below shows that when they face uncertainty about their admission chances and can

only apply to a subset of their choice set, it may be optimal for students to submit an ordered list

that does not coincide with their most-preferred programs.

Example 1. Suppose there are two programs A and B, each with two seats. Suppose there are

three students, ranked from 1 to 3 by strict priorities. Students know their priority ranking; and

that there are twice two seats to be apportioned. Preferences for programs are private information,

but their distribution is common knowledge:

uiA = 6.35 + εiA

uiB = 5 + εiB

where εiA, εiB ∼ i.i.d. N(0, 1).11 Suppose students can only apply to one program, and that

students who do not get assigned to any program obtain the outside option, that yields a value of

0.

Student 1 knows she has highest priority, and that, hence, she will be assigned by the DA to the

program she ranks first in her list. It is strictly dominant for her to (truthfully) list her most-

preferred program in her application list. Student 2 knows she is ranked second. She knows she

will be assigned to her first-ranked element since no matter which school Student 1 gets assigned to,

both schools still have at least one remaining vacancy. It is strictly dominant for her to (truthfully)

list her most-preferred program in her application list. Student 3 knows that two seats are taken,

and one program may be full by the time the algorithm processes her list. If she happens to list

a program that is full, she will be left unassigned and get utility 0. She solves the maximization

problem:

u3 = max
s∈{A,B}

{p3A · u3A; p3B · u3B}

where her eligibility chances to A and B respectively, are given by the distribution of preferences:

p3A = 1 − .75 × .75 = .4375; and the probability that there is a seat available in Program B is

9If a student who fails to be assigned to any element of her list is left unassigned, the value of unassignment Vi(0)
simply corresponds the value of the outside option. Alternatively, if students who fail to be assigned to any element
of their list then participate in a secondary application procedure, the option value Vi(0) is equal to the i’s expected
utility to be derived when participating to this secondary procedure.

10πi corresponds to the joint probability of inot clearing, ex-post, the admission cutoff of all her listed choices.
I call Student i (ex-post) eligible to program ` if program ` has at least one open seat when it is i’s turn to be
considered for assignment by the DA algorithm –that is, after all students with higher priority score than i have
been assigned (or kept aside for a leftover spot), and none of the students with lower priority score than i has been
considered for assignment. When assignments are made via the DA algorithm, the admission of Student i to program
` requires that (i) i has listed ` in her application ranking; (ii) i is eligible to program `; (iii) i is non-eligible to all
programs ranked above ` in i’s ordered application list. Hence, the need to distinguish between between eligibility
and admission probabilities.

11Note that 6.35 = 5 + 2× αN (.75), with αN (.75) such that: Pr(X < αN (.75)) = .75 if X ∼ N(0, 1).
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p3B = 1− .25× .25 = .9375. Denote s∗3 the school Student 3 applies to:

s∗3 =

{
A if ε3B ≤ p3A

p3B
× (6.35 + ε3A)− 5

B otherwise

There is no general dominant strategy in the application game when one can only apply to M < J

alternatives, and little can a priori be said about students’ behavior in such setting. The next two

propositions give partial characterizations of students’ behavior that will be useful in the rest of

the paper. While reporting on one’s list a vector of programs that differs from one’s most-preferred

vector may be dominant, Proposition 1 (Haeringer and Klijn, 2009) establishes that one never

benefits from ranking the reported alternatives differently than by decreasing order of preference.

Proposition 1. [Haeringer and Klijn (2009)] (a) If a student finds at most M schools acceptable,

then she can do no better than submitting her true preferences.

(b) If a student finds more than M schools acceptable, then she can do no better than employing

a strategy that selects M schools among the acceptable schools and ranking them according to her

true preferences.

The next proposition establishes a sufficient condition for truth-telling to be a dominant strategy.

A proof is given in Appendix A.

Proposition 2. (a) Condition 1 (below) is a sufficient condition for students not to have a strict

incentive to misreport their preferences over their choice set.

(b) Under Assumption 1 (below), Condition (1) is a sufficient condition for students not to misreport

their preferences over their choice set.

Condition 1. Student i has a perceived eligibility probability 1 for (at least) one of her M most-

preferred programs.

Assumption 1. When indifferent between doing so or not, a student does not mis-represent her

unconstrained preference ranking. In other words, a student does not report her most-preferred

programs in her application list only when it is strictly profitable to do so.

2.2.2 Uncertainty and welfare

Example 1 illustrates the way in which uncertainty can generate inefficiencies ex post. Student 3

may not be assigned to her most-preferred program ex post available if she does not apply to it

–even though not applying to it may be optimal ex ante. For instance, consider a case in which

−2.037 < ε3B − ε3A < 1.35,12 and ε2B ≥ 1.35 + ε2A. Student 3 prefers A to B, but finds it ex ante

optimal to apply to B. Student 2 prefers B to A, therefore applies to B and gets in. In this case,

Student 3 gets either assigned to B (if Student 1 got in A) or is left unassigned (if Student 1 got in

B) while she prefers Program A to both these alternatives.

2.3 Sequential implementation and information revelation

In this subsection (and in the rest of this paper), I take as given and fixed any restriction on the

size M of the list to be submitted. I describe a simple alternative implementation of the DA in

12that is, ε3B < 1.35 + ε3A, and ε3B > −5 + p3A
p3B
× (6.35 + ε3A)
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which information about available seats is regularly publicly updated. I explain how this version

of the DA, while easy to implement, may partially restore incentives for truthful reporting and

increase welfare, relative to the standard single-phase, restricted-list DA.

Sequential implementation of the DA. The standard (one-phase) implementation of the DA

involves the whole cohort of N students simultaneously submitting their application lists, and then

being assigned via the DA. In contrast, a sequential implementation involves first dividing the

cohort in K ≤ N assignment groups that successively submit lists and are assigned. In the case in

which the same priority order is used by all schools, as is relevant for the empirical analysis in this

paper, the division of the cohort can be straightforwardly made along this priority order. Suppose

the N students are ranked by a strict priority order from 1 to N . Let K1, K2, . . . ,KK be the sizes

of each of the K groups to be created. Assign students with priority ranks 1 to K1 to Group 1,

students with priority ranks K1 + 1 to K1 +K2 to Group 2, etc. Priority order is preserved within

groups. Given these groups, the assignment procedure goes as follows:

K-phase DA

Phase 1/ The number of seats open in each program is publicly revealed. Group 1 students

submit application lists, and are then assigned using the DA algorithm.

Phase (n+1)/ For any 1 ≤ n ≤ (K − 1), vacancies remaining after the assignment of Group n

students are publicly revealed. Unassigned Group n students are added at the top of Group

n + 1 according to their initial priority order. Group n + 1 students submit application lists,

and are then assigned using the DA algorithm.

In the limit, if K is equal to the number of students, sequentially implementing the DA puts

students in a perfect information setting and is equivalent to allowing for the submission of an

unrestricted list.

2.3.1 Information can restore incentives for truthful reporting

Example 2 illustrates the sequential implementation of the restricted-list DA and how it can restore,

for some students, incentives for truthful reporting.

Example 2. Consider again the setting of Example 1, keeping unchanged the programs, vacancies,

priority order and preferences. Suppose however that the pool of applicants is divided into two

groups {1, 2} and {3}. The application procedure is ran sequentially, in two phases, and the

information about vacancies is updated between the two phases. In Group 1, Student 1 and

Student 2 face the exact same application problem as in Example 1. They both submit their list

as described in Example 1. Before Student 3 submits her application list, the information about

vacancies is updated, and Student 3 knows she will be assigned first in Group 2. It is therefore

dominant for her to truthfully report in her application list her most-preferred program among

those that have not been publicly declared full.

In each group, the student ranked first faces perfect information when applying. She knows exactly

which programs have available seats, and therefore optimally apply by truthfully listing her most-

preferred programs among those that have not been publicly declared full. Proposition 2 shows

that other students at the top of each group, beyond the very first student, may also face incentives

to be truthful after information is revealed.

11



2.3.2 Information and welfare

Example 2 illustrates one way in which revelation of information, via a sequential implementation

of the assignment procedure, can improve welfare. It restores, for some students (e.g. Student 3),

a choice situation similar to perfect information. Thereby, it ensures that these students always

apply and get assigned to their most-preferred programs among those with remaining seats, rather

than possibly being assigned to ex post suboptimal programs, or failing to be assigned.

More generally, the revelation of information can (weakly) increase welfare even if it does not fully

restore incentives for truth-telling. From a revelation of information about remaining seats, rational

students update their expectations about their eligibility chances to the true conditional (on the

information received) distribution governing unobservables. Expected utility maximization based

on this conditional distribution allows them to choose an application list that is better ex ante

(given the pre-information revelation realizations of unobservables) than the list they would choose

without the information. This is illustrated by Example 3.

Example 3. Consider again the setting of Example 1, keeping unchanged the programs, vacancies,

priority order and preferences. Suppose however that the pool of applicants is divided into two

groups {1} and {2, 3}. The application procedure is ran sequentially, in two phases, and the

information about vacancies is updated between the two phases. In Group 1, Student 1 faces the

exact same application problem as in Example 1, and applies truthfully. Student 2 faces a similar

application problem as in Example 1, and applies truthfully. The information revelation allows

Student 3 to update her beliefs, but does not fully restore incentives for her to be truthful. Student

3 chooses her application list by solving:

Ṽ3 = max
s∈{A,B}

{p̃3A · u3A; p̃3B · u3B}

where p̃3A and p̃3B are Student 3’s expected eligibility chances to A and B, conditional on the

information she received about Student 1’s assignment:

(p̃3A, p̃3B) =

{
(.25, 1) if Student 1 chose A, i.e. u1A > u1B

(1, .25) otherwise.

Denote s̃∗3 the school Student 3 applies to, conditional on the information she received about Student

1’s assignment:

s̃∗3 =

{
s̃
∗(a)
3 if Student 1 chose A, i.e. u1A > u1B

s̃
∗(b)
3 otherwise.

Ex ante welfare under the information scenario of Example 1 writes:

W =

∫
e

[
max{u1A; u1B}+ max{u2A; u2B}+ u3(s∗3)

]
de

=

∫
e1

max{u1A; u1B}de1 +

∫
e2

max{u2A; u2B}de2 +

∫
e
u3(s∗3)de

12



Ex ante welfare under the present information scenario writes:

W̃ =

∫
e

[
max{u1A; u1B}+ max{u2A; u2B}+ u3(s̃∗3)

]
de

=

∫
e1

max{u1A; u1B}de1 +

∫
e2

max{u2A; u2B}de2 +

∫
e
u3(s̃∗3)de

To see why W ≤ W̃ , decompose the expected indirect utility of Student 3 in each case:∫
e
u3(s∗3)de = Pr(u1A > u1B)

∫
e|(u1A>u1B)

u3(s∗3)d[e|(u1A > u1B)]

+ Pr(u1A ≤ u1B)

∫
e|(u1A≤u1B)

u3(s∗3)d[e|(u1A ≤ u1B)]

and

∫
e
u3(s̃∗3)de = Pr(u1A > u1B)

∫
e|(u1A>u1B)

u3(s̃
∗(a)
3 )d[e|(u1A > u1B)]

+ Pr(u1A ≤ u1B)

∫
e|(u1A≤u1B)

u3(s̃
∗(b)
3 )d[e|(u1A ≤ u1B)]

By
(
s̃
∗(a)
3 , s̃

∗(b)
3

)
being solution to the conditional optimization problem faced by Student 3:

∫
e|(u1A>u1B)

u3(s̃
∗(a)
3 )d[e|(u1A > u1B)] ≥

∫
e|(u1A>u1B)

u3(s∗3)d[e|(u1A > u1B)]

and

∫
e|(u1A≤u1B)

u3(s̃
∗(b)
3 )d[e|(u1A ≤ u1B)] ≥

∫
e|(u1A≤u1B)

u3(s
∗(b)
3 )d[e|(u1A ≤ u1B)].

On the other hand, the revelation of information, and the possibly induced incentives for truth-

fullness may have an negative effect on welfare. By restoring incentives for truthful-reporting, the

revelation of information increases the probability that any student gets assigned to her most-

preferred program among those that are available ex post. As explained in Section 2.1, elimination

of justified envy can conflict with welfare maximization.

2.4 The value of information: an empirical question

Beyond perfect knowledge of true admission probabilities. The existence of gains from

information revelation, both in terms of incentives for truthfulness and welfare, crucially depends

on students’ ability to understand the information they are given, to update their expectations

about their admission chances given this information. Example 3 shows that the revelation of

information in the sequential DA (weakly) increases welfare when students are perfectly rational,

that is, able to perfectly update their beliefs to their true conditional eligibility chances, from

the information revealed about remaining seats. While straightforward in this three-student, two-

school example, in which mean utilities and the distribution of unobserved preferences are common

knowledge, the expectations-formation problem can get hard as the choice set gets large. Previous

studies in the empirical school choice literature have recognized that, even given the distribution

of preferences, deducing one’s probability of admission to all programs is a hard problem, which

high-school students and their families may not be able to solve (e.g. Agarwal and Somaini, 2014;

Calsamiglia, Fu and Güell, 2014; Ajayi and Sidibé, 2017; Kapor, Neilson and Zimmerman, 2016).

In practice, assessing the effect on students’ behaviors of providing information about vacancies

requires testing whether students understand the information they are given, and characterizing
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the way they use it to update their expectations about their admission chances.

Magnitude of gains. Students’ preferences over the programs in their choice set are a crucial

determinant of the magnitude of gains, both in terms of incentives for truthfulness and welfare.

Proposition 2 shows that whether a student may find optimal or not to be truthful in a restricted-

list application scenario depends on her expectations about her admission chances to her most-

preferred programs. The change in welfare induced by the change in students’ application behaviors

and assignments when more information is provided naturally depends on students’ utility for the

alternatives. Quantifying the change in welfare induced by the revelation of information therefore

requires recovering students’ preferences for programs.

Heterogeneity in gains. From a policy perspective, and given the a priori ambiguous effect of

information revelation on expected welfare, it is important to characterize who may win or lose from

the sequential implementation of the restricted-list DA. In addition, an empirical analysis allows

to investigate differential effects of information across ability and demographic groups, which have

been documented in other settings (e.g. Hoxby and Turner, 2013).

Frequency of informational updates. Finally, when it comes to implementation of the se-

quential DA, the policy-maker needs to decide on how many phases to implement –that is how

frequently to reveal information. If the revelation of information may have benefits, the sequential

implementation certainly has its costs too. A fully sequential implementation, with a number of

phases equal to the number of students, would give applicants perfect information, and restore the

desirable properties of the unrestricted-list DA. When the number of students is large, though,

updating the number of vacancies after every single assignment can take a prohibitive amount of

time. In addition, as shown by Example 2, a fully sequential implementation may not be needed to

induce perfect information. The characterization of the optimal information revelation structure

is beyond the scope of this paper, and the data does not allow to identify implementation costs of

the assignment mechanism. However, the empirical analysis can provide evidence on the marginal

effects of an extra revelation of information, as a function of the information already revealed. It

can also inform the cost-effectiveness of information updates as a function of the position, in the

priority ranking, at which they are provided.

3 The university match in Tunisia

This section introduces the empirical setting of this paper. It describes the data, and presents

the practical features of the sequential implementation of the DA in Tunisia, to assign high-school

graduates to universities at the nationwide level. Importantly, taking advantage of the cutoffs

generated by the division of the applicant pool in group, it provides reduced-form evidence of the

consequences of the sequential implementation on students’ application behaviors and assignments.

3.1 Institutional background

Every June, high-school seniors in Tunisia take the national end-of-high-school exam. Passing this

exam –that is, scoring at least 10 out of 20 on average over the eight to ten tests of the exam– is

a sufficient and necessary condition to graduate from high school and gain access to public post-

secondary education in Tunisia. Tunisia counts fourteen public universities, each delivering a wide
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range of degrees. Degrees are field-specific; each of them requires the completion of a standard

curriculum approved by the Ministry of Higher Education, which generally involves undergraduate

students specializing in one field of study as soon as their first semester. Hence, when deciding on

her post-secondary education, a student needs to choose a university and a field of study. In this

paper, I refer to such pair (university, field) as a program or track. While graduating from high

school guarantees Tunisian students access to public higher education (graduating seniors are auto-

matically registered in the centralized post-secondary application system), the particular program

they will be allowed to enroll in is determined by a central assignment mechanism. Assignment is

made according to a sequential variant of the DA algorithm, similar to that described in Section

2.3. Context-specific implementation features are presented now.

Priority score. In year 2010, a common priority ranking of students was used by all programs.

A student’s priority score was determined as a function of the student’s grades at the various tests

of the national end-of-high-school exam, which can be viewed as a standardized test. A student

with a higher score is given priority over a student with a lower score for admission offers to the

post-secondary programs. Students know their priority ranking.

Application groups. The application-assignment process is split into three successive phases.

Namely, the cohort of applicants is divided into three groups based on their priority score –in this

particular case: the top 30% of students (“Group 1” students), the middle 40% (“Group 2”), and

finally the bottom 30% (“Group 3”).

Public information. All high school graduates are given a handout containing information about

the available post-secondary programs over the country. The handout indicates, for each existing

program, the number of vacancies open for the next academic year and the past-year admission

cutoff, that is, the priority score of the marginal student admitted in the previous year. After each

group has gone through the assignment algorithm, the number of vacancies in each program is

publicly updated, so next-group students are told which vacancies remain before submitting their

application list.

Application lists. Students may submit an ordered list of up to 10 post-secondary programs.

Unmatched students. Application lists are processed using the DA. Students who fail to be

admitted to any of their listed choices are pooled on top of the next application group –if there

is one– and proceed to submitting a new application list after the information about vacancies is

publicly updated.13 If there is no next application group, unmatched students are administratively

assigned to left-over seats.

3.2 Sample description

I use administrative data from the Tunisian Ministry of Higher Education and Scientific Research.

The database contains the ordered application lists and assignment of all students applying to post-

secondary programs in public institutions in Tunisia in 2010, as well as an identifier of the high

13The new list is formed based on the programs available at the time it is submitted, and not based on the programs
available when the student submitted her initial list. In the data, only the very last list submitted by each student
is recorded.

15



Table 1: Descriptive statistics: students

All Group 1 Group 2 Group 3
Mean S.dev. Mean S.dev. Mean S.dev. Mean S.dev.

Demographics

Female .53 .50 .52 .50 .54 .50 .52 .50

Birth year 1990.8 .91 1991.2 .39 1990.9 .68 1990.2 1.23

High SES .60 .49 .78 .41 .58 .49 .47 .50

From Tunis .30 .46 .33 .47 .30 .46 .27 .44

From Coast (excl. Tunis) .48 .50 .53 .50 .49 .50 .43 .49

From West/Interior .19 .39 .13 .36 .18 .39 .26 .47

From South .03 .17 .01 .11 .03 .17 .05 .22

Priority and academic perf.

Raw priority score 123.16 28.98 160.21 13.23 119.30 11.0 91.1 6.9

Stdized priority score 0 1 1.28 .46 -.13 .38 -1.10 .34

STEM high-school 0 .85 1.04 .39 -.09 .40 -.92 .33

non-STEM high-sch. perf. 0 .79 .75 .54 -.07 .58 -.66 .59

Applications

List 10 choices .70 .46 .67 .47 .76 .43 .65 .48

Number of choices listed 9.02 1.8 8.86 1.9 9.3 1.5 8.86 1.9

List all programs in same field .06 .24 .03 .16 .09 .28 .07 .26

List ≥ 75% prog. in same field .20 .40 .11 .32 .25 .43 .22 .41

List all programs in STEM .36 .48 .19 .40 .46 .50 .40 .49

List all prog. in same university .03 .18 .01 .09 .04 .20 .05 .21

List ≥ 75% prog. in same univ. .08 .27 .02 .13 .09 .29 .12 .33

List all prog. in same region .26 .44 .10 .31 .35 .48 .31 .46

Assignments

Admitted to 1st listed prog. .39 .49 .45 .50 .39 .49 .35 .48

Admitted to 2nd listed prog. .15 .36 .16 .36 .16 .37 .12 .33

Admitted to 3rd listed prog. .10 .30 .11 .31 .11 .31 .07 .26

Admitted to 4th listed prog. .07 .26 .08 .28 .07 .26 .06 .24

Admitted to 5th listed prog. .05 .22 .06 .23 .05 .22 .05 .21

Admitted to 6th listed prog. .04 .19 .05 .20 .04 .20 .03 .18

Admitted to 7th listed prog. .02 .16 .02 .13 .03 .16 .04 .19

Admitted to 8th listed prog. .02 .12 0 .06 .02 .13 .03 .16

Admitted to 9th listed prog. .01 .10 0 .05 .01 .10 .02 .14

Admitted to 10th listed prog. .01 .09 0 .03 .01 .09 .02 .13

Administratively assigned .02 .14 0 .06 0 .07 .06 .23

Admitted in later round .02 .14 .02 .13 .04 .19 0 0

Sample size

10,935 3,299 4,384 3,252

Note: In the second panel, STEM (resp. non-STEM) high-school performance is the unweighted average of the

student’s standardized scores at the Math, Physics, Natural Sciences, and Comp. Sci. (resp. English, French,

Arabic, and Philosophy) tests of the end-of-high-school national exam.

school they graduated from and the grades obtained at the various tests of the national end-of-high-

school exam. It also contains a limited number of demographic characteristics, such as gender, date
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and region of birth, and a category indicator of father’s occupation. In this subsection, I describe

the student sample and students’ choice set of post-secondary programs, as well as patterns in their

applications and assignments.

Students. In 2010, 82,748 students graduated from high school and were registered in the cen-

tralized post-secondary application system. The assignment procedure is run in parallel for each of

the six majors students may graduate from high school with. Here, I focus on students graduating

with the Math major.14 They were 11,029 in 2010. Among them, I drop students for whom high

school information and/or all end-of-high-school test scores are missing,15 as well as the 65 students

recorded in the data as not having submitting any application list16. Table 1 describes the 10,935

students in the final sample, as well as the division of the sample into the three application groups.

The ratio of sexes is roughly constant across groups; and slightly more than half of sample is fe-

male. High-SES students represent 60% of the student sample; and their share decreases along the

priority ranking. The represent 78% of Group 1 students, 58% of Group 2, and 47% of Group 3.

A similar pattern is observed for geographical origin. Students from Tunis, and from the dynamic

coastal regions account for 30% and 48% of the sample, respectively; their respective shares are

highest in Group 1, and decrease along the priority ranking.

Programs. In 2010, 616 post-secondary programs had seats available for students who graduated

high-school with a Math major. 54 of them filled up by the end of the first assignment phase; 326

by the end of the second phase; and 100 (16%) did not get assigned as many students as allowed

by their capacity. Table 2 shows programs characteristics, and illustrates the changes in the choice

set faced by students as the sequential assignment procedure moves from one phase to the other.

Programs are offered in 10 fields of study,17 four of them in STEM. Seats in STEM represent 67%

of initially offered seats; 66% of the seats still available at the beginning of the second phase; and

60% of the seats remaining at the beginning of the third phase. About two thirds of initially offered

seats are in programs preparing to the equivalent of a Bachelor degree (Licence), to be earned after

the successful completion of three years of classes. There are two types of Bachelor degree: ‘Licence

appliquée’ (LA), which prepares students who plan to enter the labor market after graduation; and

‘Licence fondamentale’ (LF), which prepares students who plan to pursue their education (in a

Master’s program) after graduation. The remaining third of initially offered seats are in programs

preparing students to more advanced degrees, essentially in engineering and medical fields. By the

end of the first and second phases, seats in advanced-degree programs represent only 19 and 3%

of the seats still available, respectively. About a third of the seats initially available are offered in

Tunis; they represent only 7% of the seats still available at the end of Phase 2. In contrast, 18% of

14More detail about high school and high school majors in Tunisia is provided in Luflade and Zaiem (2016). The
Math high school major is among those allowing students to pursue the widest range of fields of study in their post-
secondary career. A similar and separate analysis could be made for the other high-school majors. The comparative
analysis of application and updating behaviors across students who graduated from high school with different majors
is part of a future project.

15High school information and/or all end-of-high-school test scores are missing for 25 students. In addition, I drop
32 students, whose application lists comprise only programs out of their choice set (that is, publicly declared full
before these students submit their list) and/or some of the six programs I drop because they did not exist, nor have
an equivalent existing program, in the previous year.

16Among the 65 students recorded not to submit an application list, 3 are in Group 1, 18 in Group 2, and 44 in
Group 3.

17Each post-secondary program is associated a six-digit code that reflects the fields classification defined by the
Ministry of Higher Education. I use this classification. The ten fields are: Humanities; Arts; Education (incl. Phys-
ical Education); Economics/Business/Management; Social Sciences; Law; Health and Life Sciences; Earth Sciences;
Physics/Chemistry/Engineering; and Math/Computer Science.
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Table 2: Descriptive statistics: programs

Phase 1 Phase 2 Phase 3

Mean
Std.dev.

Mean
Std.dev.

Mean
Std.dev.

Filling up in 2010 .84 .36 .83 .38 .67 .47

Filling up in 2009 .90 .31 .89 .32 .80 .40

2009 cardinal cutoff -.47 .79 -.62 .63 -1.07 .44

2009 ordinal cutoff .61 .25 .66 .21 .81 .15

# of seats 22 45 17 27 16 19

# at least 1 applicant .73 .44 .98 .50 .98 .15

# of applicants 77 251 80 123 96 78

# of applicants/seat 2.91 4.9 8.7 16.5 10.0 10.6

Sample size

Total # of programs 616 562 290
Total # of seats 13,580 9,574 4,516

Note: In the second panel, 2009 marginal admission score are shown conditional on programs filling

up in 2009 –hence the change in sample size from 616 to 552. In the rest of the paper, for programs

which did not fill up in 2009, the marginal admission score is set to the score of the very last student

in the priority ranking (1 in percentiles terms).

initial seats are in western and southern regions of the country; while they constitute 36% of the

seats that remain vacant at the beginning of Phase 3.

Application behaviors and assignment patterns. Students included an average of 9.1 pro-

grams in their list out of an allowed maximum of 10. 70% of students rank 10 programs.18 On

average, applicants got admitted to their second or third choice (2.6th choice), with 39% of them

admitted to their first-listed choice, and 76% of them to one of their five first-listed choices. Al-

though shares vary, the pattern is the same across groups –45% of Group 1 students are admitted

to their first-listed choice, against 35% of Group 3; 86% of Group 1 students are admitted to one

of their five first-listed choices, against 65% of Group 3. 4% of the students fail to be assigned

to any element of their initial list. Half of them (and most of Group 1 and Group 2 unassigned

students) were assigned in a later round, to a program they listed when pooled in the next group.

The other half (essentially Group 3 unassigned students) ended up being administratively assigned.

3.3 Local effects of the sequential implementation of the DA on application

behaviors and assignments

Figure 1 illustrates the changes in behaviors observed at the information revelation cutoffs. I plots,

as a function of students’ priority, the rank in their application list of the choice they are assigned

to. Top ranked students, at the left, are assigned to their first-listed choice. As priority goes down

in Group 1, and as popular programs fill up, students get assigned to increasingly lower choices in

18The small and selected share of students listing strictly fewer choices than they are allowed to prevents from
using an identification argument similar to the one used by Abdulkadiroğlu, Agarwal and Pathak (2017) when trying
to recover students’ preferences for programs.
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Table 3: Descriptive statistics: programs

Phase 1 Phase 2 Phase 3
Share of Share of Share of Share of Share of Share of

Programs Seats Programs Seats Programs Seats

Field

Field: Humanities .14 .04 .14 .05 .08 .04

Field: Arts .08 .11 .08 .13 .08 .17

Field: PE & Educ. .02 .05 .01 .01 0 0

Field: Social sciences .05 .01 .05 .01 .07 .01

Field: Economics & Mgmt .15 .11 .02 .01 .20 .02

Field: Law .02 .01 .02 .01 .01 .01

Field: Health & Life sciences .10 .09 .08 .05 .01 .02

Field: Earth sciences .05 .03 .05 .04 .06 .04

Field: Math & Comp. sci. .12 .11 .12 .16 .15 .20

Field: Physics, Chem., Engineering .28 .44 .28 .41 .32 .34

Degree

Degree: Bachelor equiv. (LA) .67 .36 .70 .48 .77 .59

Degree: Bachelor equiv. (LF) .27 .29 .26 .33 .22 .39

Degree: advanced .07 .34 .04 .19 .01 .03

Location

In Tunis .30 .30 .27 .21 .07 .07

In coastal regions (excl. Tunis) .51 .52 .53 .58 .60 .56

In western/interior regions .16 .16 .17 .21 .29 .34

In southern regions .02 .01 .02 .01 .04 .02

Abroad .01 0 0 0 0 0

their application portfolio. When updated information about vacancies is provided, as the limit

between Groups 1 and 2, application behaviors change in such a way that students get assigned to

their top-listed choice again. The cycle starts again until the next revelation of information, at the

limit between Groups 2 and 3.

In this subsection, I further documents local application and assignment changes at the informa-

tion revelation cutoffs. The division of the applicant pool into application subgroups creates cutoffs

(henceforth information revelation cutoffs or group cutoffs) that I use in a sharp regression dis-

continuity (RD) design in order to document the local effects of providing updated information to

applicants.19

The effect of a change in groups on any outcome Y of interest is estimated by local linear regression

min
α,β,τ,γ

N∑
i=1

1[c−h≤Ti≤c+h] ·
(
Yi −

[
α+ β(Ti − c) + ∆1[Ti<c] + γ(Ti − c)1[Ti<c]

] )
(2)

19Standard graphical evidence supporting the sharpness and validity of the RD design can be found in Appendix C.
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Figure 1: Choice assigned as a function of priority

where Ti is student i’s priority score (running variable), c denotes the group cutoff, and h is the

estimation bandwidth.20 1[Ti<c] is a indicator of i being assigned to the ‘informed group’ (that is,

Group 2 at the Group 1/ Group 2 cutoff; and Group 3 at the Group 2/ Group 3 cutoff) or not,

(Ti − c) is the distance of i’s score to the group cutoff, and (Ti − c)1[Ti<c] is an interaction term

that allows the slope (of the outcome as a function of distance to the cutoff) to differ on either side

of the group cutoff. ∆ is the coefficient of interest, it measures the change outcome Y induced by

the revelation of information.

I estimate (2) using as Y various application list characteristics (e.g. length, selectivity measures),

and assignment outcomes (e.g. probability of assignment, rank of the choice assigned). In addition,

to understand further how changes in application rates at the cutoffs correlate with the informa-

tion revealed about programs, I estimate, for each program j, the change in application rate at the

group cutoffs, using the binary indicator of whether or not student i ranked the track in her list as

the dependent variable Y
(j)
i in equation (2). I then regress the estimated change in application rate

on various program characteristics. Results are shown in Tables 4 and 5, and summarized below.

Application behaviors. (1) Marginally informed students submit shorter and less selective ap-

plication lists than marginally uninformed students. The top panel of Table 4 shows that, as

compared to students that are marginally non-informed, marginally informed students list slightly

fewer choices –.26 fewer at the Group 1/ Group 2 cutoff, and .63 fewer at the Group 2/ Group

3 cutoff, with only the latter difference being statistically different from 0 at conventional levels.

Marginally informed students apply to programs that are less selective than their marginally unin-

formed counterparts. For instance, the most selective of their choices, has a past-year cutoff that

20For each outcome and subsample, the ‘optimal’ bandwidth is chosen using the Imbens and Kalyanaraman (2011)
method and may vary from one outcome to another.

20



Table 4: Reduced-form effects of informational updates on application behaviors and assignment
patterms

Groups 1/2 cutoff Groups 2/3 cutoff

Change
Base
level

Change
Base
level

Application behaviors

# listed choices -0.264 9.081 -0.627*** 9.289
(0.256) (1.754) (0.239) (1.506)

Obs. 727 917
PY cutoff of most selective choice -0.389*** 1.239 -0.405*** 0.239

(0.083) (0.516) (0.063) (0.470)
Obs. 702 910
PY cutoff of least selective choice -0.413*** -0.301 -0.211*** -1.135

(0.106) (0.524) (0.054) (0.437)
Obs. 347 917
Avg. PY cutoff over listed choices -0.314*** 0.481 -0.270*** -0.456

(0.058) (0.344) (0.046) (0.376)
Obs. 487 944
PY (ordinal) cutoff of most selective choice -0.094*** 0.845 -0.110*** 0.582

(0.019) (0.101) (0.019) (0.131)
Obs. 535 848
PY (ordinal) cutoff of least selective choice -0.073*** 0.437 -0.078*** 0.132

(0.024) (0.180) (0.027) (0.180)
Obs. 819 944
Avg. (ordinal) PY cutoff over listed choices -0.092*** 0.653 -0.091*** 0.363

(0.017) (0.099) (0.016) (0.116)
Obs. 478 820

Assignment patterns

Proba. to be assigned 0.025 0.961 0.092*** 0.909
(0.022) (0.195) (0.031) (0.288)

Obs. 676 683
# of listed choices eligible to 2.784*** 5.406 4.206*** 4.079

(0.318) (2.397) (0.500) (2.243)
Obs. 767 356
% of listed choices eligible to 0.322*** 0.589 0.583*** 0.444

(0.036) (0.236) (0.047) (0.236)
Obs. 487 323
Rank of choice assigned -1.888*** 2.200 -2.412*** 3.057

(0.365) (2.287) (0.455) (2.630)
Obs. 397 360

The ‘Change’ column gives the estimated average change in outcome at the group cutoff. Std. errors are

reported in parentheses below estimates. The ‘Base level’ column gives control-group statistics about the

outcome. Std. deviations are reported in parentheses below mean values. Cardinal cutoffs correspond to

standardized scores of past-year marginally admitted students. Ordinal cutoffs are expressed in percentiles

(×100) of the previous-year priority score distribution, with 0 indicating the lowest scores, and 1 the

highest scores. Read: The most selective program listed by marginally uninformed students at the Group

1/2 cutoff has, on average, a standardized past-year (PY) cutoff of 1.2 –in ordinal terms, this corresponds to

the 85th percentile of the priority score distribution. The most selective program listed by their marginally

informed counterpart has a standardized past-year cutoff that is .4 std. dev. lower –in ordinal terms, this

corresponds to a decrease of 9 percentiles in the priority score distribution. Estimation bandwidth is 1/8

of Imbens and Kalyanaraman (2011) optimal bandwidth. * p < 0.05, ** p < 0.01, *** p < 0.001

is about .4 standard deviation lower, which corresponds to 9 percentiles of the priority distribution
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at the Group 1/ Group 2 cutoff, and 11 percentiles at the Group 2/ Group 3 cutoff. Interestingly,

the same is true for safe choices as well. The least selective choice listed by marginally informed

students has a past-year cutoff that is about .7 percentiles lower in the priority distribution than

that of their marginally informed counterparts.

(2) Marginally informed students increase their application rate to safer and more popular programs

among those with remaining vacancies. The top panel in Table 5 shows that a program being

declared full (for the first time) at the group cutoff is correlated with a drop in application rate –by

14 and 5 percentage points at the Group 1/ Group 2 and Group 2/ Group 3 cutoffs, respectively.

The middle and bottom panels show that, for programs that are declared full, the magnitude of the

drop in application rates increases with the program’s initial number of vacancies, and its selectivity

level. Symmetrically, for programs that are not full, a larger number of remaining vacancies and a

higher past-year cutoff are correlated with a larger surge in application rates.

Assignment patterns. (3) Marginally informed students are more likely to be assigned to an

element of their list than their marginally uninformed counterparts. The bottom panel of Table 4

shows that students’ probability to be actually assigned to one of their listed choices, rather than

being rejected from all of them, is increased by 9 percentage points at the Group 2/ Group 3 cutoff,

and by 2 percentage points at the Group 1/ Group 2 cutoff (but this latter effect is not statistically

different from 0).

(4) Marginally informed students are assigned to higher-ranked elements of their lists than marginally

uninformed students. The bottom panel of Table 4 also shows that marginally informed students

end up clearing the ex-post admission cutoff of a larger share of their listed choices (+32% at the

Group 1/ Group 2 cutoff, and +58% at the Group 2/ Group 3 cutoff) that marginally uninformed

students do. This induces them to be assigned to a higher-listed element of their list –1.9 and 2.4

ranks higher at the Group 1/ Group 2 and Group 2/ Group 3 cutoffs, respectively.

Discontinuities in application behaviors at the information-revelation cutoffs are evidence of stu-

dents’ lack of perfect foresight and use of information. Validity of the RD design means that the

assignment to students in one group or the next is, locally, as good as random: students on either

side of a group cutoff have, on average, the same observable and unobservable characteristics. In

particular, they also have, on average, the same preferences for post-secondary programs. As a

consequence, if students were not using the information they are given, or if students had perfect

foresight (in which case they would be able to predict the information they are given, which would

then be redundant), application behaviors would not to change discontinuously at the cutoffs. In

addition, Table 5 shows that the changes in application rates are consistent with students under-

standing and using the information they are given at the group cutoffs.

However, this reduced-form analysis does not inform whether students actually benefit from the

informational updates. It does not inform either about the behavior and gains of students located

further away from the information-revelation cutoffs in the priority ranking. Conducting a welfare

evaluation of the effects of information provision requires comparing how students fare (here, in
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Table 5: Correlations between local change in application rates and information

Groups 1/2 cutoff Groups 2/3 cutoff
Regression 1

Just full -.1400∗∗∗ -.0492∗∗∗

(.0079) (.0022)
Constant .0122∗∗∗ .0204∗∗∗

(.0011) (.0013)
R-sqr 0.208 0.257
Obs. 616 616

Regression 2
Remaining vacancies (10s) × Not just full .0006 .0005∗∗∗

(.0001) (.0003)
Earlier vacancies (10s) × Just full -.0018∗∗∗ -.0013∗∗∗

(.0001) (.0001)
Constant -.0007 .0037

(.0180) (.0012)
R-sqr 0.440 0.186
Obs. 616 616

Regression 3
Ordinal past-year cutoff × Just full -.1617∗∗∗ -.0705∗∗∗

(.0094) (.0047)
Ordinal past-year cutoff × Not just full .0303∗∗∗ .0867∗∗∗

(.0066) (.0138)
Constant 0.026 .0071∗∗

(.0022) (.0017)
R-sqr – –
Obs. 616 616

For all regressions, the outcome variable is ‘Estimate change in application rate at the group cutoff’.

Bootstrap std. errors in parentheses, account for two-step estimation.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

terms of indirect utility, which students derive from the program they are assigned to) under al-

ternative counterfactual scenarios of information revelation. Performing the comparison requires

simulating students’ applications and assignment under the alternative scenarios. Generating stu-

dents’ application lists in turn requires to know the flow utility they associate with each program,

and to understand how they derive beliefs about their admission chances from the available in-

formation. In the next section, I recover students’ preferences for post-secondary programs. In

Section 5, I turn to characterizing students’ perceived admission chances. Finally, in Section 6, I

present the results of the counterfactual analysis.

4 Recovering students’ preferences for post-secondary programs

In this section, I present my approach to recover students’ preferences for post-secondary programs.

The identification strategy takes full advantage of local incentives for truth-telling induced by a

sequential implementation of the DA. Using standard discrete choice methods, I am then able to

estimate utility parameters without taking a stand on the way students form their expectations.

At the end of this section, I present estimation results.
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4.1 Identification strategy

When observed choices are the result of expected utility maximization, the econometrician who

does not know the agents’ expectations generally faces an identification problem (in the context of

school choice, see Agarwal and Somaini, 2014). Without additional variation or assumption, it is

not possible to disentangle the extent to which students’ decisions are driven by what they like and

the extent to which they are driven by what they think they can get. The quasi-experimental design

induced by the sequential implementation of the DA enables me to circumvent this identification

problem. My strategy to recover students’ preferences for post-secondary programs directly builds

on the three-group structure of the Tunisian mechanism. First, I show that the particular structure

of information revelation embedded in the Tunisian assignment mechanism gives incentives to a

subset of students to truthfully report their most-preferred programs in their application list (i.e.

to ‘be truthful’). The choices made by these students can be used to recover their preferences

without characterizing their expectations about their admission chances. Then, I argue that this

subset of truthful students is informative about, and identifies, the utility parameters governing

the preferences of the population of students.

4.1.1 A local discrete choice setting

To fix ideas, I first explain how, given a set of truthful students, the preferences of this set of students

can be recovered. In the next paragraph, I characterize such set of students. A student being

truth-telling (or truthful) means that the alternatives listed in her application ranking coincide

with her most-preferred programs among those that have not been declared full. In what follows,

I call student i’s choice set (denoted Ji) the subset of all post-secondary programs that have not

been publicly declared full at the time student i chooses and submits her application list. Then,

precisely, student i being truthful means that (i) her first-listed choice has higher flow utility than

any alternative in her choice set, (ii) her second-listed choice has higher flow utility than any

alternative in her choice set but her first-listed choice, and so on, until her last-listed choice.

For a given subset of truthful students, maximizing Problem (1) is equivalent (in the sense that

the solution sets of the two problems coincide) to the following discrete choice problem:
`i(1) = argmax`

[
ui(`) | ` ∈ Ji

]
`i(2) = argmax`

[
ui(`) | ` ∈ Ji\

{
`i(1)

}]
...

`i(Mi) = argmax`
[
ui(`) | ` ∈ Ji\

{
`i(1), `i(2), . . . , `i(Mi − 1)

}] (3)

where Mi ≤ 10 is the length of the application list submitted by student i,21 and `i(k), k = 1, . . . ,M

denote the ordered elements of i’s application list.

4.1.2 Truthful reports

‘Top’ students. It is natural to assume that the very first-ranked student in each group, who

knows she is ranked first, truthfully reports her most-preferred programs in her application list

(among those that have not been publicly declared full). Indeed, given the information revelations

publicly made before each group submits applications, the very first student in each group is faced

21I do not model the choice of Mi in {1, 2, . . . , 10}, nor do I control for the change of Mi across students.
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with making a choice under perfect information. She knows she has probability one to be assigned

to the first-ranked element of the list she submits (as long as she lists a program that has not been

publicly declared full). It is therefore strictly dominant for her to list her most-preferred program

first in her application ranking. And it is weakly dominant for her to also list her second to tenth

most-preferred programs.22

Because students may apply to up to ten programs and because most programs have more than

one vacancy, not only the first-ranked student, but a subset of applicants at the top of each group

have incentives to truthfully report their most-preferred programs. Proposition 2 and Condition 1

stated in Section 2.2 give a sufficient condition for students to truthfully report their most-preferred

programs. They imply that, when going down along the priority ranking within a group, students

will truthfully report their preferences as long as they think they have probability one to have a

seat in one of their 10 most-preferred programs.

‘Short-list’ students. Regardless of their priority rank, students who submit application list

with strictly less than the allowed 10 programs (henceforth, ‘short-list students’) can be inter-

preted as truthfully reporting their most-preferred programs (Abdulkadiroğlu, Agarwal and Pathak,

201723). On the one hand, submitting a list of size smaller than 10 is a (weakly) dominant strategy

for students who like less than 10 schools. Furthermore, this list will coincide with their preferences.

Indeed, Proposition 1(a) (Haeringer and Klijn, 2009) in Section 2 establishes that it is dominant

for students interested in strictly less than 10 programs to truthfully report their preferences. On

the other hand, it is (weakly) dominant for students who like 10 schools or more to submit a full

list of 10 programs. Indeed, it is always (weakly) profitable for such a student to add a program

to an application list of less than 10 programs.

4.1.3 Extrapolation

I argue that each of the two subsets of students described in Section 4.1.2 is sufficient to identify

preferences parameters representative of those of the whole population of applicants. This result

partially relies on assuming that conditional on observables, students all have the same mean

flow utility for a given program. The available data however allows for enough flexibility in the

specification of the flow utility function to make this assumption reasonable.

Utility specification. I assume flow utilities have the additively separable form:

ui(`) = δ` + vi` + εi`

δ` is a program fixed effect; it corresponds to the mean flow utility students derive from program

`. vi` is the part of i’s demeaned (across i) flow utility for program ` that depends on individual

characteristics observable to the analyst. εi` is an individual- and program- specific utility shock

which is privately known to the student at the time of decision-making, but remains unobserved

to the analyst. I assume the program fixed effect δ` can be written as a linear (in the parameters)

22The possibility to be tied in the priority order may encourage students to list choices beyond the very first rank.
23In the setting of Abdulkadiroğlu, Agarwal and Pathak (2017), 80% of students submit an application list with

strictly fewer schools than the 12 allowed in the NYC high-school match. They use this subset of students to identify
the preferences of NYC eighth-graders for high schools.
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combination of program characteristics. I further assume that vi` can be written as a linear (in the

parameters) combination of individual and individual-program characteristics.24 Specifically:

δ` = Z ′`γ

vi` = W ′i,`β

where Z` are program-specific attributes; Wi,` are characteristics specific to the (individual, pro-

gram) pair; and γ, β are utility parameters of interest, assumed to be invariant across programs

and individuals. All program and individual characteristics Z, W are thought of as observed by

the student at the time of decision-making, and by the analyst. In the empirical part, program

attributes consist in the field of study, the degree to be received upon completion of the program,

and, as a proxy for selectivity/quality/popularity, the admission score of the marginally admitted

student in the previous year. Individual and program-student characteristics include distance be-

tween the student’s home (as proxied by her high school) and the university hosting the program;25

the student’s high-school performance in the field of the program and outside this field; interactions

between distance traveled and SES as well as program quality; and interactions between gender

and field of study, as well SES and terminal degree.

The distribution of unobservables εi· := (εi`)` is assumed to be known, and independent of pro-

grams’ and students’ observable characteristics.26 To facilitate estimation, I later assume εi· are

i.i.d. type-1 extreme value. Normalizing to zero the coefficient on a reference field and on a refer-

ence terminal degree then fully identies the model. This means that, for each student, the value

of every post-secondary program is interpreted as relative to the mean value of a local (in that

distance traveled is 0) program that is not selective (past-year cutoff is 0 for programs that did not

fill to capacity in 200927), and upon completion of which the student would earn an ‘LA’ Bachelor

degree (the reference degree) in Humanities (the reference field of study)28.

The specified function controls flexibly for the two main determinants of post-secondary choices:

distance between the university and the student’s home, and the student’s academic performance

(Altonji, Arcidiacono and Maurel, 2015). Distance from home enters in a quadratic way. It is

interacted with the student’s socioeconomic status, to account for the fact that traveling may

be more costly to economically disadvantaged students. It is also interacted with the program’s

selectivity level, to account for the fact that students may be willing to travel more to have better

peers. The data, which contain students’ scores at the national exam in eight different subjects,

allows me to control separately for the student’s high-school performance in STEM fields and

24This specification rules out preferences that depends on identified peers’ assignments.
25As a proxy for student’s i distance to university j, I use the distance between the capital city of their respective

regions. Hence, student i is at distance 0 of any university in her home region. The distance between regions capitals
is provided to students in the application handout made available by the Ministry of Higher Education.

26This rules out students sorting based on unobservable preferences –for instance, students systematically choosing
their geographical residence at the time of high school to be next to the university programs they like. This guarantees
that coefficients on school attributes identify the students’ valuation for that attribute, and does not capture correlated
variation with unobservable tastes. However, note that programs’ and students’ observable characteristics will be
taken as given and fixed in the counterfactual analysis and welfare evaluations in this paper.

27Past-year cutoffs are expressed in percentiles of the distribution of priority scores; non-selective programs have
cutoff at the 0th percentile.

28In other words, student i derives flow utility ui,` =βSESi × distancei,`+ γSESi × past-year cutoff` + εi,` from a
program ` preparing her to receive an ‘LA’ Bachelor degree in Humanities. If program ` is local (distancei,` = 0) and
non-selective (past-year cutoff` = 0), then i’s utility for ` is ui,` = εi,`.
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non-STEM fields. The student’s high-school performance in each field is also interacted with the

program’s field of study to account for individual comparative advantages in studying one subject

vs. another, and for the fact that studying a given field may require more effort from students with

lower high-school performance in the field.

Representativeness of truthful students and their choices. The particular structure of the

subset of truthful students is crucial to the identification of such a flexible utility function, which

renders the extrapolation credible. Tables 13 and 14 in Appendix D show descriptive statistics

for key student and choice characteristics, comparatively for three samples of interest: the whole

population (for which we would like to recover utility parameters); and each of the two truthful

subsamples.

Table 13 shows that students’ characteristics have, in each of the truthful subsamples, similar

variation and support as they have in the population. In that sense, each of the truthful sam-

ples is representative of the population. There is one main exception: high-school performance

variables have smaller support in the ‘top’ sample than they have in the population. This is a con-

sequence of ‘top’ students being sampled from three points in the priority (a deterministic function

of high-school performance) distribution. When using ‘top’ students to recover population utility

parameters, the relationship between preferences and high-school performance in the population

is therefore extrapolated from the relationship between preferences and high-school performance

among ‘top’ students, via the continuity of the utility function. The validity of such extrapolation

would be a strong assumption if ‘top’ students were sampled from one point of the priority dis-

tribution. However, Table 13 shows that the three-point sampling allowed by the Tunisian design

ensures sufficient range and variance in ‘top’ students performance to allow for a reasonable ex-

trapolation by continuity.29

Table 14 shows that the characteristics of the choices made by students in each of the truthful

subsamples described in Section 4.1.2 span the full support of programs’ characteristics in the

initial choice set. In that sense, students in each of the truthful samples express preferences over

all relevant tradeoffs existing in the choice set. This is a consequence of the choice set restrictions

imposed by the informational updates. Students in low-priority groups are induced to express

preferences over and solve tradeoffs involving programs others than the programs most popular

among high-priority students and publicly declared to be full.30

29The argument is made clear by comparing ‘top’ students characteristics in the Tunisian design with the charac-
teristics of those who would be ‘top’ students in a single-phase implementation of the assignment mechanism –that
is, students at the very top of Group 1. Descriptive statistics for these students, also provided in Table 13, show
that there is very little variation in ‘top Group 1’ students’ high-school performance, and the variable has a very
small support relative to its support in the population. This is unsurprising given the very selected nature of the
top of Group 1 data. As a consequence, extrapolating to the population the utility function recovered from the top
of Group 1 data would require unreasonable assumptions about the homogeneity of students’ preferences across the
range of high-school performance. As shown by Table 13, The Tunisian design, which gives incentives to be truthful
to students at three point of the priority distribution rather than one, crucially alleviates this issue.

30As an illustration, Table 14 shows that there is also little variation in the characteristics of the programs chosen by
‘top Group 1’ students. Only 10% of the existing programs are listed by top of Group 1 students in their application
lists. There is very little variation in the selectivity level of the listed programs by students at the top of Group 1,
relative to what is observed in the population. Moreover, some program characteristics do not have full support in ‘top
Group 1’ students’ choices. This is the case not only for some fields of study (no program in Social Sciences and Law,
while in the population students do express preferences regarding these fields), but also for key interaction variables
such as distance from home × program selectivity. As a consequence, important aspects of students’ preferences,
such as the way they solve trade-offs between traveling further from home, attending more selective institutions, and
studying a field they like, could not be identified by the sample of ’top Group 1’ students.
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4.2 Estimation

4.2.1 A local discrete choice estimation procedure.

I assume that the unobservable components εi,j are i.i.d. type-1 extreme value. Estimation proceeds

by maximum likelihood, using the sample of truthful students.31 Independence of unobservables

across individuals allows to write the sample likelihood L as the product of individual likelihoods pi;

independence of unobservables across alternatives further allows to write individual likelihoods as

the product of logit probabilities, yielding the well-known ranked-ordered (or exploded) logit form:

L =

NE∏
a=1

pia

with pi =
exp(ui`i(1))∑
k∈Ji exp(uik)

×
exp(ui`i(2))∑

k∈Ji\{`i(1)} exp(uik)
× · · · ×

exp(ui`i(Mi))∑
k∈Ji\{`i(1),...,`i(Mi−1)} exp(uik)

(4)

where Mi ≤ 10 is number of programs included by i in her application list; and (ia)a=1,...,NE
denote

the estimation sample.

While the subset of ‘short-list’ students is readily observable from the data and can straightfor-

wardly be used for estimation, the subset of ‘top’ students is a priori unobserved. Indeed, Condition

1, which ensures that students who think they have probability 1 to clear the ex-post admission

cutoff of (at least) one of ten most-preferred programs (among those not declared to be full) truth-

fully report their preferences, cannot be used in practice as students’ preferences and expectations

are unknown at this stage. In the rest of this subsection, I explain how I select the ‘top’ estimation

sample.

4.2.2 Estimation from ‘top’ students: choosing the ‘top’ sample in practice

A standard bandwidth choice problem. The choice of the ‘top’ estimation sample is akin to

the choice of the estimation bandwidth in any local estimation procedure (e.g. local linear regres-

sion, as in Section 3.3). Selecting the ‘top’ estimation sample involves solving a trade-off between

bias and variance of the estimator. The sample should be sufficiently large to have identification

power and for the estimates to be precise. However, the sample should be small enough not to

include any non-truthful students, whose inclusion would bias the estimates.

In practice, I include in the ‘top’ estimation sample all students with priority in the top 200 ranks

within each group.32 In the next paragraph, I present empirical evidence that the selected ‘top’

students are aware of the incentives they face and behave truthfully. In Section 4.3, I discuss the

robustness of my results to changes in the estimation bandwidth.

31In Appendix D, I discuss an alternative estimation strategy that could yield more precise utility parameter
estimates by using all students’ application lists, rather than only those from truthful students.

32The size of the subset of truthful students is increasing in the size of the application list students are able to
submit, and in programs’ capacities. Indeed, keeping preferences and everything else fixed, the number of students
who perceive to be eligible with probability 1 to one of their M ′ > 10 most-preferred programs is weakly larger
than the number of students who perceive to be eligible with probability 1 to one of their M = 10 most-preferred
programs. Similarly, all other things equal, if the number of available seats to all programs (weakly) increases, the
number of students who perceive to be eligible with probability 1 to one of their 10 most-preferred programs weakly
increases as well.
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Empirical validation of the bandwidth choice. I present three pieces of empirical evidence

suggesting that, within the chosen ‘top’ bandwidth, students truthfully report their most-preferred

programs –that is, that my estimates are unlikely to be biased by the presence of students misre-

porting their preferences. First, given Condition 1, it is crucial that students use and understand

the public information about vacancies. In particular, it must be reasonable to assume that they

understand that, given their priority ordering and the number of vacancies said to be remaining,

they do have eligibility probability 1 to a range of programs. The RDD analysis in Section 3.3

strongly suggests that this is indeed true. In particular, Table 5 suggests that students understand

the incentives they face. In addition, marginally informed students submitting shorter lists that

their marginally uninformed counterparts (Table 4) suggests that students at the top of each group

recognize that their eligibility to some programs is certain. It is then natural to infer that they un-

derstand that a truthful report of their most preferred alternatives (in their choice set) is dominant.

Second, I show that suggestive evidence of students censoring themselves (in the sense that they

do not apply to their most-preferred but very popular alternatives) can be found only among stu-

dents outside the chosen bandwidth. It is uncontroversial that the very first student at the top of

each group is certain about her eligibility chances and is truth-telling. Ambiguity about whether

other applicants think that reporting truthfully is dominant for them increases as within-group

priority decreases. When students stop being truthful, we expect to observe a decreased frequency

of application to programs listed by the uncontroversially truthful students. Figure 2 shows that

such frequency decrease does not happen within the chosen ‘top’ estimation bandwidth. Figure 2

considers the ten programs listed the first three students at the top of Group 1,33 and shows the

frequency at which these programs are listed by Group 1 students as a function of students’ pri-

ority. Programs are represented on the x-axis, priority on the y-axis. A dot in position (a, b) in

the graph means that student ranked b in Group 1 included program a in her list. The vertical

line at rank 200 represents the limit of the ‘top’ estimation bandwidth –so students with priority

rank lower than 200 are included in the estimation sample. The frequency of application to the

programs listed by the top three students does not decrease within the ‘top’ estimation sample.

Passed the bandwidth limit, it then decreases more or less abruptly for some programs–suggesting

that omission or censoring start occurring.

Third, I show ex-post evidence that students in the ‘top’ estimation sample submit a truthful

report of their preferences. For this, I rely on another unique feature of the implementation of the

DA algorithm in the Tunisian context: a reassignment round. After students of all three groups

have been assigned by the DA algorithm34 but before the new academic year starts, students are

invited to express any dissatisfaction about their assignment. Precisely, students may submit a

new ordered list of four programs they would prefer to attend over their assigned match. Any

program can be included in this new list, irrespective of whether it was part of the student’s initial

ranking or not, of whether it has vacancies left or not, and of the program’s realized admission

cutoff relative to the student’s priority score. Importantly, students do not have to forgo their

initial assignment to participate in the reassignment round: unless their reassignment request is

approved, they keep their initial match. No precise procedure is explicitly defined regarding the

processing and approval of requests. It is generally understood that priority within students is

preserved in the reassignment round and that approval depends on the ability of the requested

33Figure 11 in Appendix D shows similar evidence for Groups 2 and 3.
34or administratively for those not eligible to any element of any of their application lists
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Figure 2: Persistence of the top-ranked students’ listed choices over the priority ranking

Legend: This graph considers the ten programs listed the first three students at the top of Group 1, and shows the

frequency at which these programs are listed by Group 1 students list as a function of students’ priority. Programs

are represented on the x-axis, priority on the y-axis. A dot in position (a, b) in the graph means that student ranked

b in Group 1 included program a in her list. The vertical line at rank 200 represents the limit of the estimation

bandwidth –students with priority rank lower than 200 are included in the estimation sample.

track to welcome an additional student. The top panel in Table 6 shows the shares of top and

non-top students applying for reassignment. The bottom panel describes further the behavior of

students applying for reassignment. Students in the ‘top’ bandwidth apply for reassignment at a

significantly lower rate than other students (17.6 vs 24.6%) and when they do, they submit fewer

requests (2.7 vs 3 programs included in the reassignment list). Most importantly, about 84% of the

programs students in the ‘top’ bandwidth request are outside their choice set, that is, had already

been declared full when the students applied. On the contrary, the majority (54%) of requests

submitted by other students are within their choice set. The large difference between the shares

of students in and out of the ‘top’ bandwidth who request reassignment within their choice set

(2 vs 11%35) suggests that students in the estimation sample did not censor themselves –that is,

indeed reported their most-preferred programs. Indeed, students out of the ‘top’ bandwidth reveal

by their reassignment requests that they prefer some of the alternatives in their choice set that

they did not inially list over the ones they initially applied to.36

35Shares: .02 = .176× .13 and .11 = .246× .43.
36Calsamiglia, Fu and Guell (2014) and Kapor, Neilson and Zimmerman (2016) rationalize students “changing

their mind” by them receiving a post-assignment, pre-enrollment utility shock. The contexts in these two papers are
different from the one here: they consider families applying for seats in public schools and kindergarten in Barcelona
and Cambridge, MA respectively (both cities use a variant of the Boston mechanisms). In their context, a student
“changing her mind” is a student who is matched to her first choice by the centralized mechanism but ends up not
enrolling in the school –and supposedly enrolling in a private school instead. Despite this difference of settings, a
post-assignment, pre-enrollment utility shock could be used here as well to justify students requesting reassignment.
However, there is no reason a priori why students ‘at the top’ would be induced to change their mind at such a much
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Table 6: Students at the top reveal to be satisfied with their assignments

In the ‘top’ Out of the ‘top’
estimation sample estimation sample

# students 636 10,368
% requesting reassignment 17.61 24.60

Conditional on request
Average # requests per student 2.71 (1.28) 3.02 (1.22)
% requesting w/in choice set 13.39 43.39
% of all requests w/in choice set 16.17 54.32

Standard deviations in parentheses, next to sample means.

4.3 Results

Main estimates

Tables 7 and 8 show maximum likelihood (ML) estimates obtained from pooling both subsets of

truthful students (‘top’ and ‘short-list’). Results are shown for each of the two estimation samples

are similar to the one shown here, and displayed in Tables 15 and 16 in Appendix D. Results

being similar across the two subsets of truthful students supports the validity of the extrapolation

argument made above. As expected, estimates obtained from the larger ‘top + short-list’ sample

are more precise –most standard-errors are reduced by half relative to the sample of ‘top’ stu-

dents. Results of a sensitivity analysis regarding the bandwidth choice for the ‘top’ sample are also

presented in Appendix D. Tables 17 and 18 in Appendix D show results derived with alternative

bandwidth sizes (twice, five and ten times the original bandwidth size, namely). Utility coefficients

derived under the original bandwidth and a bandwidth of twice its size are not identical, but, for

many of them, similar. This suggests that results are robust to small changes in the bandwidth

size. As the bandwidth size increases, estimated coefficients are increasingly different from the

original estimates from Tables 7 and 8, illustrating the increasing bias affecting estimates as more

non-truthful students get included in the estimation sample.

Interpretation is easier when distance is used as a numeraire. Column (2) in each table shows ML

estimates obtained for a utility function with no quadratic term on distance. While Column (1)

shows preferred estimates that will be used in later parts of the analysis (Sections 5 to 6), I use the

linear-in-distance utility estimates to comment on parameters in this paragraph.

A positive coefficient on Past-year median admit means that students value program quality, as

measured by the priority ranking of the past-year median admit of the program –an increase in Past-

year median admit means that the 2009 median admit had higher priority, hence corresponds to a

increase in the program quality. A positive coefficient on squared Past-year median admit means

that the marginal value of an increase in program selectivity increases with the program level of se-

lectivity. In other words, students’ willingness to travel to attend a program with marginally higher

quality increases as quality gets higher. The magnitudes estimated with specification (2) suggest

lower rate relative to other students. At the very least, the share of non-top students asking for reassignment in
excess of the share of students at the top can reasonably be attributed to forecasting errors on their part.
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Table 7: Utility parameter estimates (1/2)

(1) (2)
Main Lin. in distance

Distance (100km) -2.010∗∗∗ -1.009∗∗∗

(0.07) (0.05)
× high SES 0.026 0.137∗

(0.04) (0.06)
Distance (100km) sq. 0.221∗∗∗

(0.01)
Past-year marginal admit 2.282∗∗∗ 3.015∗∗∗

(0.30) (0.30)
× high SES 0.534 0.713

(0.39) (0.39)
Past-year marginal admit sq. -1.029∗∗∗ -0.712∗

(0.31) (0.33)
× high SES 0.958∗ 0.580

(0.38) (0.38)
Distance (100km) × Past-year marginal adm. 0.884∗∗∗

(0.07)
Degree: Bachelor (LF) 0.547∗∗∗ 0.548∗∗∗

(0.06) (0.06)
× h-s perf. 0.379∗∗∗ 0.384∗∗∗

(0.05) (0.05)
× high SES 0.033 0.009

(0.07) (0.07)
Degree: Adv. degree 2.544∗∗∗ 2.529∗∗∗

(0.08) (0.08)
× h-s perf. 1.838∗∗∗ 1.849∗∗∗

(0.08) (0.08)
× high SES -0.160 -0.193∗

(0.09) (0.09)
Program location: Tunis 0.520∗∗∗ 0.748∗∗∗

(0.08) (0.10)
Program location: Coast 0.352∗∗∗ 0.395∗∗∗

(0.07) (0.08)
Program location: Abroad -9.626∗∗∗ -10.676∗∗∗

(1.43) (1.51)
× STEM h-s perf. 3.448∗∗∗ 3.754∗∗∗

(0.72) (0.77)
× non-STEM h-s perf. 2.254∗∗∗ 2.371∗∗∗

(0.35) (0.38)
× high SES -0.116 0.177

(0.36) (0.37)
Sample Top + Short Bdw
PseudoObs. 24,961 24,961
Obs. 3,629 3,629

Std. errors in parentheses, clustered at the high school level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Distance (100km) gives the distance (in 100km) between the program’s region and the region of the student high school

(as a proxy for home); Distance (100km) sq. is the square of this distance. Past-year (PY) marginal admit gives the priority

score (in percentiles of the priority scores distribution) of the program’s marginally admitted student in the past year. A higher

score number means a higher priority –for instance, a value of Past-year marginal admit of .01 means that the program’s 2009

marginally admitted student was at the bottom 1% of the 2009 priority distribution. Degree:‘. . . ’ are indicators of whether the

program prepares to the degree considered; these coefficients are allowed to differ continuously × h-s perf., where h-s perf. is

the student’s (standardized) unweighted average score at the end-of-high-school exam. LA (Licence appliquée) is used as the

reference group for degree dummies. Program location: ‘. . . ’ are indicators of whether the program is located in the region

considered. ‘Southern and western regions’ is used as the reference group for program location dummies. Field:‘. . . ’ (see

Table 8) are indicators of whether the program is in the field considered; these coefficients are allowed to differ across sexes, and

continuously with high-school performance in STEM and non-STEM fields via the interactions × female, × STEM h-s perf.

and × non-STEM h-s perf.. STEM h-s perf. and nonSTEM h-s perf. are the student’s (standardized) unweighted average

score at the STEM and non-STEM tests taken in the end-of-high-school exam. ‘Humanities’ is used as the reference group for

field dummies.
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Table 8: Utility parameter estimates (2/2)

(1) (2)
Field: Arts 2.788∗∗∗ 2.787∗∗∗

(0.28) (0.28)
× STEM h-s perf. 1.672∗∗∗ 1.672∗∗∗

(0.18) (0.18)
× non-STEM h-s perf. -1.261∗∗∗ -1.245∗∗∗

(0.23) (0.22)
× female -0.949∗∗ -0.944∗∗

(0.31) (0.31)
Field: Educ. 2.042∗∗∗ 2.073∗∗∗

(0.39) (0.39)
× STEM h-s perf. 1.287∗∗∗ 1.242∗∗

(0.37) (0.39)
× non-STEM h-s perf. -0.725 -0.743

(0.51) (0.53)
× female -1.568∗∗ -1.560∗∗

(0.51) (0.52)
Field: Soc. Sc. 0.911∗∗ 0.935∗∗

(0.35) (0.35)
× STEM h-s perf. 0.820∗∗ 0.841∗∗

(0.32) (0.32)
× non-STEM h-s perf. -0.912∗∗ -0.901∗∗

(0.34) (0.33)
× female -1.337∗∗ -1.336∗∗

(0.41) (0.41)
Field: Eco/Mgmt 3.647∗∗∗ 3.632∗∗∗

(0.29) (0.29)
× STEM h-s perf. 1.168∗∗∗ 1.200∗∗∗

(0.19) (0.18)
× non-STEM h-s perf. -1.194∗∗∗ -1.186∗∗∗

(0.23) (0.23)
× female -1.056∗∗∗ -1.050∗∗∗

(0.30) (0.30)
Field: Law 2.189∗∗∗ 2.177∗∗∗

(0.40) (0.39)
× STEM h-s perf. 0.434 0.481

(0.35) (0.34)
× non-STEM h-s perf. -0.408 -0.415

(0.34) (0.33)
× female -1.187∗∗ -1.190∗∗

(0.42) (0.42)
Field: Math/Comp.Sci. 4.296∗∗∗ 4.284∗∗∗

(0.28) (0.28)
× STEM h-s perf. 1.317∗∗∗ 1.341∗∗∗

(0.17) (0.17)
× non-STEM h-s perf. -1.551∗∗∗ -1.542∗∗∗

(0.23) (0.22)
× female -1.230∗∗∗ -1.220∗∗∗

(0.30) (0.30)
Field: Phys./Chem./Engin. 4.074∗∗∗ 4.054∗∗∗

(0.27) (0.27)
× STEM h-s perf. 1.291∗∗∗ 1.311∗∗∗

(0.17) (0.16)
× non-STEM h-s perf. -1.598∗∗∗ -1.586∗∗∗

(0.22) (0.22)
× female -1.391∗∗∗ -1.383∗∗∗

(0.29) (0.29)
Field: Health/Life Sc. 3.491∗∗∗ 3.445∗∗∗

(0.28) (0.28)
× STEM h-s perf. 1.143∗∗∗ 1.177∗∗∗

(0.17) (0.17)
× non-STEM h-s perf. -1.310∗∗∗ -1.286∗∗∗

(0.23) (0.23)
× female -0.346 -0.324

(0.30) (0.30)
Field: Earth Sc. 2.169∗∗∗ 2.173∗∗∗

(0.28) (0.28)
× STEM h-s perf. 0.293 0.301

(0.18) (0.18)
× non-STEM h-s perf. -1.633∗∗∗ -1.626∗∗∗

(0.24) (0.23)
× female -0.863∗∗ -0.870∗∗

(0.30) (0.30)
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that low-SES students are willing to travel 3.0km (≈ 1.875 miles37) for a 1-percentile increase of in

program quality, all other things equal, against 4.3km for high-SES students..

A positive coefficient on a field dummy means that, on average, students prefer the field to the

reference field (Humanities). All field-dummy coefficients being positive means that Humanities

is the least-preferred field for average-performing38 male students. Comparison of field-dummy

coefficients show that STEM fields are preferred over non-STEM fields, and that Math/Comp.Sci.

is the most-preferred field of study –which is not surprising given that students in the sample grad-

uated from high-school with a Math major. All other things equal, low-SES (resp. high-SES) male

students are willing to travel 23km (resp. 26km39) to study Math/Comp.Sci. rather than Physics/

Chemistry/ Engineering (the second most-popular STEM field among male students), and 65km

(resp 75km40) to study Math/Comp.Sci. rather than Economics/ Business/ Management (the

most-popular non-STEM field among male students). Female students prefer Math/Comp.Sci.

over Physics/ Chemistry/ Engineering by the same magnitude as males, and their most-preferred

field is also a STEM field –again, as to be expected from high-school Math-majors. In contrast

to males, though, female students strongly prefer Health and Life Sciences over Math/Comp.Sci..

Economics/ Business/ Management is also female students’ most preferred non-STEM field (at

the mean performance levels in STEM and non-STEM), and they generally dislike less non-STEM

fields than male students. For students of both sexes, Earth Sciences is the least preferred STEM

field. Preferences for field of study are correlated with high-school performance in STEM and

non-STEM fields, although most coefficients on field-performance interactions are not statistically

significant. Notably though, in my sample of Math-high-school graduates, preference for Earth Sci-

ences strongly decreases as high-school performance in STEM increases. As for non-STEM fields,

preference for Humanities strongly increase as high-school performance decreases in STEM subjects

and/or increases in non-STEM subjects.

A positive coefficient on a degree dummy means that, on average, students prefer the degree in

question over the reference degree (‘licence appliquée’, a type of Bachelor degree designed for stu-

dents likely to enter the labor market upon graduation). On average, students prefer both the

‘licence fondamentale’ (a type of Bachelor degree designed for students likely to pursue a gradu-

ate studies upon graduation) and the more advanced degrees to the reference Bachelor-equivalent.

Preference for these two types of degree increases with high-school performance –especially for the

latter, as expected given the higher academic level certified by this type of degree. On average,

students with high-school performance equal to the mean are willing to travel about 54 to 64km,

depending on SES, to work towards a licence fondamentale rather than a licence appliquée; and

between 251 and 268km to work towards an advanced degree (e.g. Masters’ and M.D.) instead of

a licence appliquée.41

373.015×.01/(1.009×.01)=3.0; (3.015+.713)/(1.009-.137)=4.3
38High-school performance in STEM and non-STEM are standardized to have mean 0 and standard-deviation 1 in

the population of students graduating from high-school with a Math major.
39(4.284-4.054)/1.009=.23; and (4.284-4.054)/(1.009-.137)=.26
40(4.284-3.632)/1.009=.65; and (4.284-3.632)/(1.009-.137)=1.75
41LF: .548/1.009=.54; and (.548+.009)/(1.009-.137)=.64. Adv. degrees: 2.529/1.009=2.51; and (2.529-

.193)/(1.009-.137)=2.68.
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5 Expectations about admission chances

Students’ application lists depend not only on their preferences, but also on their expectations

about their admission chances. When studying the effect of provision of information about pro-

gram vacancies on students’ chosen application lists, it is important to have a sense of how their

expectations about their admission chances relate to the information available to them. Taking

preferences as known from the previous section, this section characterizes students’ expectations

about their admission chances.

A student’s admission to a given university program is the result of all students’ application deci-

sions. Indeed, whether or not a seat in that program will be offered to the student by the algorithm

depends not only on whether or not the student listed the program in her portfolio, but also on

whether or not the program was already filled up as a consequence of other students’ assignments

and applications. It has been acknowledged in previous studies (e.g. Agarwal and Somaini, 2014;

Calsamiglia, Fu and Güell, 2014; Ajayi and Sidibé, 2016; Kapor, Neilson and Zimmerman, 2016)

that the complexity of forming expectations about admission chances in such a game setting and

solving the expected-utility maximization problem (1) likely exceeds the computational capacity of

high-school students and their families, especially as the number of programs students can choose

from and the size of the application list they may submit get large. Hence, students have been

allowed to behave with limited sophistication, viewing the application decision as a single-agent

problem rather than a game. Previous analyses have also established the possible existence of dif-

ferences in expectations formation and use of public information across socioeconomic status (SES)

and related variables (e.g. Hoxby and Turner, 2015).

The approach taken in this section is in line with these concerns. I specify types of expectations-

formation behavior for students who take their application choice as a single-agent problem. My

analysis then proceeds to recovering the share of each type in the student population (conditional on

students’ observables). The identification strategy takes advantage of the fact that utility parame-

ters were recovered from a strict subsample and without taking a stand on students’ expectations

about their admission chances. Perceived admission probabilities are sought to rationalize, given

utility parameters, the application lists submitted by the popstudents who can a priori be truthful

or strategic. Given utility parameters, I use maximum simulated likelihood (MSL) to estimate the

share of various types of expectations formation behaviors in the population.

5.1 Forming expectations about one’s admission chances: a model

I allow for two main types of application behavior among students –sophisticated and unsophisti-

cated. I describe these types now, along with the effect of informational updates about programs

filling up and vacancies remaining on each of them.

Unsophisticated students. Unsophisticated students simply report in their application list

their most-preferred alternatives in their choice set (Agarwal and Somaini, 2014; Calsamiglia, Fu

and Güell, 2014). No matter their position in the priority ranking, they are truthful. The provision

of information about vacancies, made through the sequential implementation of the application

procedure, enables them to update their choice set: they only consider programs that have not

been publicly declared full at the time they submit their portfolio.
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Sophisticated students. Sophisticated students maximize expected-utility (1) to choose their

application portfolio. I assume that sophisticated students form their expectations about their

eligibility chances on the grounds of the programs’ past-year admission cutoffs and their own priority

score, rather than based on a model for other students’ behavior. This is a natural approach

given the availability of past-year marginal admission scores to students. Specifically, to report

the expected-utility-maximizing list, such students derive their expectations assuming marginal

admission scores follow, from one year to the next, some AR(1) process of the form:

cutoffj,2010 = a+ b× cutoffj,2009 + ηj with ηj ∼ N(0, σ2). (5)

Taking the parameters a, b, σ of the relationship (5) as given, student i’s expectation about her

probability to clear the admission cutoff for program j is:

P (priorityi ≥ cutoffj,2010) = Φ

(
1

σ
(priorityi − a− b× cutoffj,2009)

)
(6)

In this framework, the effect on eligibility chances of an informational update, such as those pro-

vided in the Tunisian mechanism, is to reset to 0 the perceived probability of admission to programs

which are declared to be full. In addition, when a student’s priority ranking within her group is

such that there are fewer students in the group to be assigned before her than vacancies publicly

declared to be remaining in the program, the student’s perceived probability of admission to this

program is reset to 1 by the information revelation.

In the Tunisian sequential design, Group 1 and Group 2 students who fail to be assigned to any of

their listed choices are pooled at the top of the next group and allowed to participate again time

in the application process (see Section 3.1). At that time, they can only pretend to alternatives

still available in the choice set of this next group. This ‘second chance’ affects students’ option

value of being rejected from all their listed choices –in Equation (1), Vi(0). In the present model

of sophisticated behavior, I assume that a student i in Group 1 or 2 computes Vi(0) as follows.

Let groupCutoff i denote the position in the priority ranking of the division between i’s application

group an the next. Student i can form expectations the choice set she would face at the time of

her ‘second chance’ if she were to use it by using groupCutoff i instead of priority i in Equation (6).

Then, Vi(0) is the value of the program with highest expected utility, based on these ‘second-chance’

expectations. The probability that i will use that second chance (πi in Equation (1)) is determined

by her admission probabilities to her listed choices.

Estimation of the model of expectations formation proceeds in two parts, both described in the

next subsection. First, I fix the AR(1) parameters characterizing the sophisticated type; then I

recover the respective shares of sophisticated and unsophisticated students in the population. The

second part uses data on students’ application behaviors; the first part uses panel data on admis-

sion cutoffs. While I fix AR(1) parameters and do not recover them from students application

choices per se, I maintain flexibility in the model by allowing for different sophisticated (sub)types.

Hence, different sophisticated students may use different sets of AR(1) parameters to form their

expectations about their admission chances.
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5.2 Using observed choices to recover types shares

Paragraphs 5.2.1 and 5.2.2 present the second part of the estimation strategy. I explain how, when

types are taken as fixed and known, their population shares can be recovered. Paragraph 5.2.3

turns to the first part of the estimation strategy, and describes the way I fix AR(1) parameters for

the sophisticated (sub)types.

In the next two paragraphs, it is useful to view each sophisticated expectations-formation type t

as a known function that takes as inputs the student’s priority score and the information about

programs that is publicly available at the time she submits her application list, and returns a

vector of J probabilities, which is interpreted as the student’s perceived eligibility probabilities to

all university programs. A type-t student then uses the J probabilities outputed by the type-t

function, along with her preferences, as inputs in the expected-utility maximization problem (1).

(Consistently, the unsophisticated type can be viewed as the function that, given the student’s

preferences and the information about programs that is publicly available at the time she submits

her application list, returns the programs with highest flow utility among those that have not been

declared full).

5.2.1 A maximum simulated likelihood approach

Suppose each student has one of T discrete expectations-formation types. The probability Pi to

observe the actual application list Li submitted by student i given her mean flow utilities for all

programs (ūi,j)j , and her observable characteristics Xi, writes

Pi =
T∑
t=1

P
(
Li | (ūi,j)j , Xi, θi = t

)
︸ ︷︷ ︸

:=pi(t)

×P
(
θi = t | (ūi,j)j , Xi

)
︸ ︷︷ ︸

:=ρ(t,X)

(7)

where, for types t = 1, . . . , T , pi(t) is the probability to observe the actual application list Li
submitted by student i conditional on her being of type t, and ρ(t,X) is her probability to

be of type t given her observable characteristics. Since, conditional on observable characteris-

tics, a student’s expectations-formation type is independent of her vector of mean flow utilities,42

ρ(t,X) = P (θi = t | Xi).

The type functions being known means that, assuming a student has type t, and given her prior-

ity score, I can straightforwardly derive her perceived probabilities of admission to all university

programs using Equation (6). Hence, for any fixed type t, and for each student i, since utility

parameters are known, pi(t) can be estimated by simulation (of choices, over preferences unobserv-

ables). Given the set of possible types, and estimated conditional choice probabilities p̂i(t) for all

(i, t) ∈ {1, . . . , N}×{1, . . . , T}, the type shares ρ := (ρ(t,X))t can then be recovered by maximizing

the (simulated) sample likelihood:

L(ρ) =

n∏
i=1

Pi =

n∏
i=1

(
T∑
t=1

p̂i(t)× ρ(t,Xi)

)
.

42This follows from the fact that, conditional on observable characteristics, utility parameters are independent of
student’s expectations and level of sophistication. This holds under the assumptions made in Section 4.
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5.2.2 Identifying variation

If two expectations-formation types t1 and t2 are such that pi(t1) = pi(t2) for all i = 1, . . . , N such

that Xi = X, their respective shares ρ(t2, X) and ρ(t1, X) cannot be separately identified. The

estimation strategy exploits the fact that, given her (known) mean utility, a student does not have

the same probability to submit the application list she did submit (which is observed in the data)

conditional on being of two different (sub)types. Precisely, the identification of conditional type

shares ρ(t,X) in (7) for the specified types t = 1, . . . , T relies on pi(t), the (simulated) likelihood

to observe the data conditional on Xi, varying across t. Figure 13 in Appendix E illustrates the

identifying variation in the data, and the way it is enters in the estimation strategy.

In practice, given the size of the choice set and programs’ observable characteristics, there is more

variation across expectations-formation types in the likelihood (given preference parameters and

individual characteristics) of observing the characteristics of students’ chosen programs (shown in

Figure 13) than in the likelihood of observing the identity of their chosen programs. Hence in the

implementation of the MSL, rather than the definition given in Equation (7), I use

pi(t) = P
(
Y(Li) | (ūi,j)j , Xi, θi = t

)
where Y(Li) is a vector of program characteristics of the programs listed by i. For instance,

Y(Li) may include the selectivity level (in terms of past-year admission cutoff), the distance home-

university for student i, the number of vacancies publicly announced to be remaining a the beginning

of i’s application group.43

5.2.3 Fixing types

Fixing the types can be done in a very flexible way. The set of possible types a priori allowed

can be large, and the estimation procedure allows the data to dictate which types have positive

probability in the population. The only limitations on the set of possible types are imposed by

identification requirements. If two sets of expectations-formation parameters induce the same ap-

plication behavior for all students, their shares in the population cannot be separately identified

–regardless of whether they induce the same expectations for all students or not.

The results shown in Section 5.3, are based on allowing for six sophisticated (sub)types, in addition

to the unsophisticated type. Each sophisticated (sub)type corresponds to a different specification

of the AR(1) equation (5). Specifications differ from one another in the level of observable hetero-

geneity across programs accounted for in (5). I characterize these specifications more in detail in

Section 5.3, as I describe and interpret results. The choice of AR(1) coefficients for these speci-

fications is based on data on programs’ 2009 and 2010 marginal admission scores. Namely, using

this cutoffs data, I estimate the AR(1) processes characterizing each sophisticated type. Estimated

coefficients, which I use in simulations to recover conditional choice probabilities (7), are showed

in Appendix E.44

43Because the estimator does not use all the available data, it is not efficient.
44One may think that the ideal approach would allow to recover not only the shares of each type, but the parameters

characterizing the types as well. Such approach would however face two pitfalls. The first is the identification issue
already mentioned at the beginning of paragraph 5.2.3. The second is a computational issue. Consider the following
(already restrictive) framework. Suppose each student is of one of T < +∞ discrete types of expectations formation
processes. Suppose a student of type t forms her expectations about her admission chances by assuming that the
changes in admission cutoffs from one year to the next are normally distributed so that: cutoffj,2010 = cutoffj,2009 +νj
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5.3 Results

5.3.1 Estimated types.

Table 9 shows types shares estimated conditional on socioeconomic status (SES) and for six so-

phisticated subtypes. Estimated shares of unsophisticated students are robust to changes in the

set of AR(1) specifications characterizing sophisticated subtypes, and conditioning on other de-

mographics, such as sex, region of origin, or interactions of these demographics with SES. Shares

for the main two types –sophisticated and unsophisticated– are shown in bold font, along with a

breakdown of the sophisticated type into its subtypes. Slightly less than two thirds of the low-SES

students are estimated to behave naively, against half of high-SES students. These large shares of

unsophisticated behaviors are not necessarily surprising. In the context of the NYC high school

match, which is based on a single-phase DA with a restricted list of 12 choices, Abdulkadiroğlu,

Agarwal and Pathak (2017) show evidence that at least 80% of applicants (and very possibly all

of them) truthfully report their most preferred programs in their application list. Focusing on

an alternative assignment mechanism that highly rewards sophisticated behavior (a variant of the

Boston mechanism), Agarwal and Somaini (2014) estimate that a third of families participating in

the elementary school match in Cambridge, Massachusetts behave in a unsophisticated way, the

other two thirds behaving as if they knew their true admission probabilities. Consistent differences

in expectations-formation, sophistication, and application behaviors across SES and related vari-

ables have also been documented in other studies (e.g. Hoxby and Turner, 2015).

Among sophisticated students, most students, regardless of SES, form expectations about their ad-

mission chances using an AR(1) whose parameters differ (at least) for programs in different fields

of study. About 12% of both low- and high-SES students use an AR(1) whose parameters differ

only across programs’ fields of study. In addition, 26% of high-SES students and 16% of low-SES

use a finer AR(1) process allowing different parameters not only across field of study, but also

across programs’ capacity filling status in the previous year or (quantiles) of selectivity level. 6%

of high-SES students and 3% of low-SES students use an AR(1) whose parameters differ only along

either or these two dimensions –programs’ capacity filling status in the previous year or (quantiles)

of selectivity level. Finally, 4% of students, regardless of SES, are estimated to form expectations

about their admission chances using an AR(1) specification that does not account for any kind of

heterogeneity across programs.

5.3.2 Model fit

Figure 3 plots the selectivity level of students’ choices as a function of their priority ranking. For

clarity, it focused on students’ first, fourth, and eighth-listed choices. Solid lines represent choices

observed in the data; dotted lines represent choices predicted given utility parameter estimates

from Section 4 and estimated expectations-formation types shown in Table 9. Figure 3 suggests

that the estimated model is able to reproduce the variation in the selectivity level of students’

where νj ∼ N (0, σ2
t ). The variances (σ2

t )t, along with the shares (ρ)t, are to be recovered. Each evaluation of
the likelihood L(σ2, ρ) requires simulating choices for all students under type t to estimate the conditional choice
probabilities pi(t). Optimization over a set of values for σ2 quickly gets very demanding. Fixing the types, simulations
and estimation of the conditional choice probabilities pi(t) can be done once and for all outside the optimization
routine, and hence greatly simplify estimation. In this case, an evaluation of the likelihood L(ρ) simply involves
reweighing this estimated conditional choice probabilities pi(t).
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Table 9: Estimated shares of expectations formation behaviors

low-SES stud. high-SES stud.

Unsophisticated 0.64 0.50

Sophisticated 0.36 0.50
Homogeneous AR(1) 0.04 0.04
AR(1) w/ heterog. across fields 0.12 0.13
AR(1) w/ heterog. across capacity filling status in 2009 0.02 0.03
AR(1) w/ heterog. across selectivity levels 0.01 0.03
AR(1) w/ heterog. across field, and capacity filling in 2009 0.08 0.12
AR(1) w/ heterog. across field, and selectivity level 0.08 0.14

listed choices as a function of their priority rank; and predicts reasonably well the diversification

of students’ application portfolios in terms of selectivity level.

Figure 3: Selectivity level of predicted vs. observed choices

Note: This graph plots the selectivity level (in terms of past-year admission cutoff) of students’ choices as a function
of their priority ranking –focusing on students’ first, fourth, and eighth-listed choices. Solid lines represent choices
observed in the data; dotted lines represent choices predicted given utility parameter estimates from Section 4 and
estimated expectations-formation types shown in Table 9.

6 Understanding the value of information

In this section, I evaluate the effects of informational updates in a restricted-list DA mechanism. To

evaluate these effects, I use simulations, and compare students’ outcomes under the standard single-

phase implementation of the DA and alternative multiple-phase implementations of the mechanism,

in which information about available vacancies is publicly updated between phases.

Welfare. I measure average student welfare as the uniformly weighted sum of utilities that stu-

dents derive from their assignment (indirect utilities). Given the distribution of preferences, a

simulation exercise allows me to compute the expected average student welfare induced by a given
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mechanism. Welfare comparisons made in this section are based on expected average student

welfare:

W =
1

N

N∑
i=1

E
[
ui,µ(i) + εi,µ(i)

]
where µ(i) denotes student i’s assignment, and the expected value E is estimated by simulations

over ε.

Counterfactual scenarios. I comparatively evaluate the effects of informational updates by

considering four multiple-phase scenarios: dividing the cohort in two, three, four, or five groups by

order of priority. When simulating applications in the three-phase mechanism, I divide the cohort

into groups as was done in the 2010 Tunisian mechanism (i.e. top 30, middle 40, and bottom 30%).

When simulating applications in the two-, four-, and five-phase mechanisms, I divide the cohort in

equally-sized groups. As a benchmark, I also simulate applications in a perfect information setting,

publicly updating vacancies after every single assignment. This corresponds to a limit N -phase

scenario, where N is the total number of students in the population. The number of phases is the

only difference between the scenarios I simulate.

I first show that, when applying under the single-phase restricted list DA, and relative to the perfect-

information benchmark, their average expected indirect utility is significantly decreased. While easy

to implement, the 2010 Tunisian three-phase implementation of the restricted-list DA reduces by

67% the welfare loss induced by the implementation of a standard (single-phase) restricted-list

DA, relative to the perfect information benchmark. Investigating the mechanisms underlying these

changes in indirect utility, I show that expected indirect utility gains essentially accrue to students

who fail to be admitted to any of their listed elements under a single-phase mechanism and who

gain assignment because of the informational updates –rather than to assigned students improving

their match. Exploring heterogeneous effects across students with different ability, sophistication,

and socioeconomic backgrounds, I find that gains disproportionately accrue to low-ability, unso-

phisticated, and low-SES students. In fact, providing information about vacancies, even through

a small number sequential of sequential phases, reduces the expected indirect utility gap existing

between high- and low-SES students. Finally, while the 2010 Tunisian implementation of the three-

phase procedure does increase welfare and the average match rate, I show that a better targeting of

low-priority students by the information provision –through a different division of the cohort into

three groups– could increase gains to students.

6.1 Effects of information-revelation on expected welfare and assignment rates

6.1.1 Welfare

Average welfare gains. Figure 4 shows, as a function of the number of phases implemented, the

difference in student welfare relative to the single-phase scenario. The horizontal dotted red line

shows the difference in expected average student welfare between perfect information and to the

one-phase implementation. A positive difference in welfare means that, on average, students derive

more utility from their assignment under a multiple-phase mechanism than under the standard

single-phase DA. Under the perfect-information benchmark, the average indirect utility is higher

than in the single-phase DA by the equivalent of a 41km-reduction in distance traveled. As a refer-
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Figure 4: Change in expected average student welfare relative to single-phase implementation of
the restricted-list DA

ence, distance to actual assignments has mean 145km (≈ 90 miles), median 107km, and standard

deviation 200km in the data. Comparing alternative multiple-phase scenarios suggests that welfare

gains increase as the number of information revelations made increases, although the marginal value

of an extra phase seems to be decreasing. Under the two-, three-, four-, and five-phase scenarios,

indirect utility gains average an equivalent of about 17km, 28km, 31km, and 34km travel-distance

reductions, respectively. In particular, this means that a three-phase implementation of the DA, as

done in Tunisia, reduces by about 68% the loss in average utility induced by using a single-phase

restricted-list DA in a environment where students face uncertainty about their admission chances,

relative to the perfect-information benchmark.

Distribution of indirect utility gains. Table 10 reports selected quantiles of the distributions

of indirect utility gains under each scenario, relative to the single-phase implementation. Under

each multiple-phase scenario, the range of gains is pretty large. Under the 2010 three-phase mech-

anism for instance, the first and last percentiles of indirect utility gains are equivalent to a 41km

increase in distance traveled, and a 192km decrease in distance traveled, respectively. Although

individual losses can be significant, under each multiple-phase scenario, the share of students hurt

by the multiple-phase mechanism (relative to the standard single-phase DA) is relatively small as

compared to the share of students who (weakly) benefit from it (null gains correspond to the 15th,

11th, 10th, and 9th percentile under the two-, three-, four-, and five-phase scenario, respectively).

Interestingly, the perfect information setting does not constitute a Pareto improvement relative to

the single-phase implementation of the DA. Indeed, 8% of students derive less utility from the as-

signment they obtain under perfect information than under the single-phase DA. The next section

sheds light on the mechanisms underlying these facts.

42



Table 10: Distribution of utility gains in ex-post flow utility (in km): selected quantiles

1st pct 5th pct 25th pct 50th pct 75th pct 95th pct 99th pct

Two-phase -67 -22 0 5 25 93 147
Three-phase -41 -5 0 7 38 134 192
Four-phase -28 -4 1 9 43 143 200
Five-phase -16 -3 1 9 49 152 207
Perfect Info. -8 -2 1 11 62 174 230

6.1.2 Underlying mechanisms

There are two margins through which a student’s indirect utility may change from the single-phase

implementation of the DA to a multiple-phase implementation. The first is a change in assignment

status; the student fails to be assigned to any element of her list under the single-phase imple-

mentation (and is therefore administratively assigned to a left-over seat) while she managed to be

assigned to one of the programs she listed under the multiple-phase implementation –or vice-versa.

The second is a change in assignment, holding the assignment status fixed; under both implemen-

tations, the student is assigned to one of her listed elements, but the program she is assigned to

changes –or symmetrically, she is administratively assigned in both cases but her assigned left-over

program changes. The former can be seen as a change in indirect utility at the extensive margin,

and the latter as a change at the intensive margin. Table 11 decomposes the welfare gains shown

in Figure 4 into these two mechanisms. It shows the average share of students who, under the

multiple-phase scenarios and relative to the single-phase implementation, switch assignment sta-

tus, and the share of those who do not. Table 11 also shows the average change in indirect utility

experienced by students with each of the four assignment-status pairs. Figure 14 in Appendix F

provides additional information by showing the distribution of indirect utility changes (relative to

the single-phase DA) within each assignment-status-pair group.

Table 11 shows that an increase in the match rate is the main mechanism underlying the increase

in average indirect utility induced by the revelation of information. Under the single-phase imple-

mentation, 9.1% of students end up administratively assigned. These students all gain assignment

(i.e. match) under the perfect information benchmark. As a consequence, they experience a large

average expected indirect utility gain –equal to more than 10 times the population-average expected

indirect utility gain. By contrast, the 90.9% of students who are assigned under both the single

implementation and the perfect information setting experience on average little expected indirect

utility changes. As Figure 14 shows, students who are assigned under both scenarios may experi-

ence an increase or decrease in expected indirect utility when information in revealed. Increases in

indirect utility are due to some students failing to apply to a desired program under the single-phase

implementation, because they expect their admission chances to be low, while the program would

actually have had a seat for them (which they are able to claim under perfect information). The

slight worsening of some assignments among ‘always-assigned’ students is the result of equilibrium

effects, given programs’ finite capacities. Some students with higher-priority improving their as-

signment or gaining assignment takes away from lower-priority applicants spots that are available

under the one-phase implementation. That is, some students are better off under the single-phase

mechanism than under a perfect-information setting (last row of Table 10) because they benefit
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from other students’ misplacement in the absence of informational updates.

While under perfect information no one is administratively assigned, a few students fail to be

admitted to any element of their list under the other multiple-phase scenarios. Among the 9.1%

of students administratively assigned under the single-phase scenario, 82% (hence 7.5% of the

population) switched to being assigned to an element of their list when applying under the 2010

three-phase mechanism. These students experience large welfare gains. The other 18% of the stu-

dents administratively assigned under the single-phase scenario keep this assignment status under

the three-phase scenario. On average, these students experience a decrease in expected indirect

utility –in magnitude lower than the average gain. This is again the consequence of equilibrium

effects. As more students get assigned to desired programs, leftover programs that remain available

for administrative assignment get worse45 (as suggested by the larger loss experienced by ‘never-

assigned’ students when moving from one to five phases, than to three phases). Finally, a few

students fail to be assigned to any element of their application portfolio under the multiple-phase

mechanism while they were under the single-phase mechanism –less than 1% (resp. .5%) of students

when switching from one to three (resp. five) sequential phases.

Table 11: Changes in assignment status and associated changes in utility

Changes on the extensive margin Changes on the intensive margin
In 1-phase,
students are . . .

. . . admin. assigned . . . matched . . . matched . . . admin. assigned

In multi.-phase,
students are . . .

. . . matched . . . admin. assigned . . . matched . . . admin. assigned

% ∆W % ∆W % ∆W % ∆W

Perfect info. 9.1 510 0 – 90.9 -6 0
–

Three-phase 7.5 544 0.9 -648 90 -8 1.6 -31

Five-phase 8.5 523 0.4 -635 90.4 -8 0.6 -38

6.2 Heterogeneous effects by ability, sophistication and SES

6.2.1 Gains and priority ranking

The left panel of Figure 5 plots indirect utility gains as a function of students’ priority ranking under

the three- and five-phase DA (relative to the single-phase DA), and under the perfect-information

benchmark. Other multiple-phase scenarios yield similar graphs. Close to all welfare gains accrue

to students in the second half of the priority distribution. The right panel of Figure 5 plots stu-

dents’ probability to be assigned to one of their listed choices as a function of their priority ranking

under the various multiple-phase implementations. It echoes the findings of the previous section

that the larger gains in indirect utility accrue to students with larger drops in their probability to

be administratively assigned. These graphs highlight the fact that, when students do not know

their true admission probabilities, the accuracy of their expectations decreases as the state of the

world to be forecast gets further from the one they have information on. Under the single-phase

45No explicit rule is provided relative to how administrative assignments are made. In simulations, for each student
who fail to be assigned to any element of her list, I randomly set the administrative assignment using a uniform
distribution over the 50% closest seats that are leftover at the end of the DA. Random administrative assignments
using a uniform distribution over all leftover seats yield similar results.
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restricted-list DA, the lower a student’s priority ranking, the larger the number of students to be

assigned before her. In other words, the larger the number of random events (assignments) to alter

the initial state of the world before she gets to be assigned. The revelation of information, as done

in the Tunisian mechanism, increases low-priority students’ average expected indirect utility by

bringing them ‘closer’ to up-to-date information.

Figure 5: Changes in indirect utility and assignment probability as a function of priority ranking

As mentioned earlier, the sequential implementation of the DA may affect applicants’ behaviors

through two channels. The provision of information about programs filling up enable (later groups)

students to update their expectations about their admission chances. In addition, the introduction

of a ‘second chance’ to (early group) students if they fail to be assigned to any of their listed choices

increase students’ option value of being rejected. Gains being small in the first part of the priority

ranking (and in particular in what becomes Group 1 under the three- and five-phase scenario)

suggests that the latter channel has a small effect on welfare relative to the former.

Under the three-phase scenario, average welfare gains are negative at the very end of the priority

ranking; the very last students are the most likely to have their assignment worsened as a result

of equilibrium effects, while at the same time remaining relatively far from the information and so

relatively likely to fail to be assigned to any of their choices.

6.2.2 Gains and sophistication

Figure 6 is analogous to Figure 5 but shows average welfare gains as a function of priority separately

for sophisticated and unsophisticated students. The left panel shows that increases in the match

rate are mostly experienced by unsophisticated students. Most sophisticated students maintain

their assignment status relative to the single-phase scenario. At the very end of the priority rank-

ing though, sophisticated students, on average, experience a decrease in their match rate. This is

the result of equilibrium effects described earlier; as higher-priority students who end administra-

tively assigned under the single-phase implementation manage to gain a match with the sequential

implementation, fewer seats become available at the end of the priority ranking, increasing students

probability to be rejected from all their listed choices. This also explains why the increase in match

rate dips down at the end of the priority ranking for unsophisticated students.
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The right panel shows that largest increase in average indirect utility accrue to unsophisticated

students. Given that unsophisticated students are those who benefit from an increase in their

match rate, this is consistent with the mechanisms established in Section 6.1.2. Among sophisti-

cated students, significant increases in average expected indirect utility are essentially experienced

by mid-priority students (ranks 3,000–9,000 under three phases; ranks 3,000–10,000 under five

phases). The decrease in average expected indirect utility experienced by sophisticated students at

the bottom the priority ranking experience follows the same causes as the decrease in their match

rate.

Figure 6: Changes in indirect utility and assignment probability as a function of priority ranking
by sophistication type

6.2.3 Gains by demographics

The previous two paragraphs have established that the extent to which a student gains or not

from the revelation of information depends on her position in the priority ranking, and the level

of sophistication with which she forms expectations about her admission chances. Statistics from

Table 1 and estimates from Table 9 show that a student’s position in the priority ranking and

the level of sophistication of her beliefs are correlated with her socioeconomic background. As a

consequence, welfare gains from information revelation differ across SES.

The left panel of Figure 7 shows, as function of the number of sequential phases implemented, the

average expected indirect utility gains experienced relative to the single-phase scenario, separately

for low-SES (thicker dashed black line) and high-SES (thinner dotted black line) students. The hor-

izontal red lines show, separately for low- (thicker dashed red line) and high- SES (thinner dotted

red line), the difference in expected average student welfare between the perfect-information and

one-phase settings. On average, and in terms of expected indirect utility, low-SES students benefit

more from the information revelations than high-SES students do –in other words, low-SES students

are more hurt by the single-phase implementation of the DA than their high-SES counterparts are.

Switching from the single-phase implementation to the perfect information setting increases aver-

age expected indirect utility for low-SES students by an equivalent of a 59-km reduction in travel

distance, against 29km for high-SES students. Switching from the single-phase implementation to

the 2010 Tunisian three-phase setting increases average expected indirect utility for low-SES stu-
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dents by an equivalent of a 43-km reduction in travel distance, against 18km for high-SES students.

Figure 7: Changes in average expected indirect utility by SES, and changes in the average expected
indirect utility gap across SES as a function of the number of sequential phases

As a consequence of low-SES students being more hurt by the single-phase implementation of the

DA than their high-SES counterparts are, the provision of information, through sequential imple-

mentation of the mechanism, reduces the welfare gap existing across low- and high-SES students.

The right panel of Figure 7 shows, as function of the number of sequential phases implemented, the

difference in average expected indirect utility between high- and low-SES students. The horizontal

dotted red line show the level of this welfare gap in the perfect-information setting46. Switch-

ing from the perfect information setting to the single-phase implementation increases the welfare

gap across SES by 25%. Switching from the single-phase implementation to the 2010 Tunisian

three-phase procedure reduces this increase by 88%.

6.3 How much information to give? vs. whom to give information to?

The previous subsection established that, even under perfect information or with information being

provided early on as in the three- and five- phase scenarios, most of the welfare gains are generated

in the second half of the priority ranking. This suggests that, beyond the amount of information

provided (i.e. the number of sequential phase implemented), the points in the priority rankings at

which revelations are crucial determinants of welfare gains. In this section, I test this hypothesis by

comparing student welfare and match rate under different three-phase scenarios. While I hold the

number of sequential phases constant, the division of the cohort in application groups differ across

scenarios. I compare the 2010 Tunisian design, in which groups correspond to the top 30%, mid-

dle 40% and bottom 30% on the priority distribution (denoted ‘30/40/30’), to divisions that allow

to focus information provision on the lower end of the priority ranking –50/25/25 and 50/37.5/12.5.

46The welfare gap across SES that persists under the perfect information benchmark is due to low-SES students
being matched with lower quality programs (because they are more heavily distributed at the bottom of the priority
ranking), and having different preferences for program characteristics. In particular, low-SES students have a larger
disutility from traveling (see Table 7); and, due to lower average high-school performance in both STEM and non-
STEM fields, derive on average less utility from the different fields of study (see Table 8).
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The right panel of Figure 8 reproduces Figure 4. The horizontal dotted red line shows the dif-

ference in expected average student welfare under perfect information, relative to the one-phase

implementation. The black dotted curve shows welfare gains for the multiple-phase scenarios doc-

umented in Section 6.1. On this curve, the black dot at the three-phase mark of the horizontal

axis represents welfare gains, relative to the single-phase scenario, achieved under the 30/40/30

three-phase implementation. The blue and green dots at the three-phase mark represent welfare

gains, relative to the single-phase scenario, achieved under the 50/25/25 and 50/37.5/12.5 three-

phase implementations, respectively. The colored dots being above the mark-three black dot means

that, relative to the single-phase scenario, average expected indirect utility is increased more un-

der the latter two implementations than by the 2010 Tunisian three-phase procedure. Switching

from the single-phase restricted-list DA to the 50/25/25 (resp. 50/37.5/12.5) three-phase scenario

achieves 76% (resp. 90%) of the average expected indirect utility increase generated by switching

from the single-phase restricted-list DA to a perfect information setting. That is, the 50/25/25

scenario achieves as much as the four-phase implementation documented in Section 6.1; and the

50/37.5/12.5 scenario achieves more than the five-phase implementation. (To ease comparison, the

two horizontal thinner black lines show the levels welfare gains achieved by the equally-spaced four-

and five-phase scenarios.)

The left panel of Figure 8 shows that, again, the main mechanism under the increase in average

expected indirect utility is an decrease in the share of students administratively assigned. It shows,

as a function of the number of phases implemented, the share of students administratively assigned.

The blue and green dots at the three-phase mark show the administrative assignment rate under

the 50/25/25 and 50/37.5/12.5 three-phase implementations, respectively –which is in both case

smaller than under the 30/40/30 implementation (black dot at the three-phase mark).

Figure 8: Change in average expected indirect utility relative to single-phase scenario and assign-
ment rate, as a function of sequential phases

Figure 9 is analogous to Figure 6. It shows average welfare gains (relative to the single-phase imple-

mentation of the DA) and match rate as a function of priority separately for sophisticated (thinner

plots) and unsophisticated (thicker plots) students. Plots are showed for the perfect-information

benchmark (red dotted lines), as well as for the three alternative three-phase scenarios. The black

plots are the same as those in Figure 6; they show outcomes for the 30/40/30 implementation. The

blue dotted plots and green line plots show outcomes for the 50/25/25 and 50/37.5/12.5 three-
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phase implementations, respectively. The left panel shows that the 50/37.5/12.5 implementation

allows to maintain the upward-sloping increase in matching rate through the entire priority rank-

ing, where the increase dips under the 30/40/30 and 50/25/25 scenarios (and under the five-phase

implementation, see the left panel of Figure 6). The increase in matching rate in particularly

high for unsophisticated students, but it also benefits very-low-priority sophisticated students –by

contrast, these students experience a decrease in match probability (relative to the single-phase

implementation) under the other multiple-phase scenarios documented here.

As shown in the right panel of Figure 9, the upward-sloping increase in match rate translates, for

unsophisticated students, into a larger increase in average expected indirect utility than under the

other multiple-phase scenarios. Just as they do in other multiple-phase implementations, very-low-

priority sophisticated students experience, under the 50/37.5/12.5 implementation, a decrease in

average expected indirect utility relative to the single-phase scenario. However, this average de-

crease starts much later (about 1,500 ranks later) in the priority ranking than it does in the other

three-phase scenarios, meaning that a larger share of students experience increases in expected

indirect utility than under other multiple-phase scenarios. Furthermore, the existing decreases in

expected indirect utility (relative to the single-phase DA) are, on average, smaller in magnitude un-

der the 50/37.5/12.5 implementation than under other implementations. In fact, the late provision

of information (at the 87.5 percentile of the priority distribution) mitigates the negative equilib-

rium effects affecting low-priority sophisticated students by enabling them to have more accurate

expectations about available seats at the very end of the assignment process.

Figure 9: Changes in indirect utility and matching probability as a function of priority ranking by
sophistication type

7 Conclusion

This paper quantifies the welfare effects of enabling students to update their expectations about

their admission chances to academic programs in a setting where they cannot apply to all the

alternatives in their choice set. It document a simple way to enable this updating in the context of

DA-based assignment mechanisms, which are extensively used around the world to assign students

to schools. I estimate a model of application portfolio choice, and perform a counterfactual analysis

to compare students’ application and assignments under scenarios with different levels of updat-
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ing. I take advantage of a rich administrative data set from Tunisia, where a variant of the DA

is used nationwide to assign high-school graduates to university programs. Building on the quasi-

experimental design induced by the Tunisian procedure, I am able to recover students’ preferences

for university programs without taking a stand on their expectations, hence circumventing a com-

mon identification challenge in the empirical literature on school choice. I then take preferences

as given and characterize students’ expectations. This two-step approach partially alleviates the

computational intractability of the application portfolio choice problem –the other main challenge

faced by the empirical literature on school choice.

I combine preferences estimates and findings about expectations to show that, while easy to im-

plement, a sequential version of the DA can reduce the welfare loss and inequality induced by

the standard restricted-list implementation. The 2010 Tunisian three-phase implementation of the

restricted-list DA reduces by 67% the welfare loss induced by the implementation of a standard

(single-phase) restricted-list DA, relative to the perfect information benchmark. Gains dispropor-

tionately accrue to low-ability, unsophisticated, and low-SES students; so providing information

about vacancies, even through a small number sequential of sequential phases, reduces the ex-

pected indirect utility gap existing between high- and low-SES students. My results suggest that,

while the 2010 Tunisian implementation of the three-phase procedure does increase welfare and

the average match rate, a better targeting of low-priority students by the information provision

–through a different division of the cohort into three groups– could increase gains to students.

The findings of this paper are promising. They show that a simple twist in the implementation of

the DA can effectively mitigate the consequences of imperfect knowledge of admission chances on

welfare and inequality. No data is available on the implementation costs of the sequential proce-

dure, and it is therefore not possible to rigorously compare the costs and benefits of such a policy.

However, the small number of sequential phases needed to restore a large share of the loss suggests

that the benefits of a sequential implementation are likely to exceed its costs. The Tunisian exam-

ple also demonstrates that the information revelation intervention can be implemented at a large

scale.

The extent to which the findings of this paper can be generalized beyond the Tunisian college choice

setting is an important question to ask. The application problem faced by Tunisian high school

graduates is no different from the one faced by students in other places. The inefficiencies that can

arise with the single-phase implementation of the restricted-list DA, such as a large rate of admin-

istrative assignment, have been documented in other instances (e.g. Ajayi and Sidibé, 2016). It is

likely that a sequential implementation of the DA would have the same benefits there as in Tunisia

–at a limited cost since fixed costs are already being paid in the non-sequential implementation of

the DA. Beyond school and college choice, the DA is used as an assignment mechanism in other

contexts where information is imperfect and application is costly. A sequential implementation

may improve outcomes there as well.

This paper takes as given and fixed the restrictions placed, in virtually every school choice imple-

mentation of the DA, on the number of alternatives students can list in their application portfolio.

There is evidence that while they value the strategy-proofness implied by the DA when no constraint

in imposed on the size on the application portfolio, policy-makers have proved to be unwilling to

lift list size restrictions (Pathak and Sönmez, 2013; Roth, 2015). An interesting question for future
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research is to understand the reasons behind this reluctance. In settings where the choice set faced

by students is large (such as in Tunisia, but also for instance in NYC where students can choose

from 700+ high schools), a natural hypothesis to investigate is that it is costly for applicants to

process information, learn about, and precisely assess their preferences for all existing alternatives.

If this is the case, allowing students to downsize their choice set, by revealing which programs are

full by the time they get to apply, may be an additional benefit of the sequential design –which I

plan to investigate in future work.
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A Appendix: Theory

A.1 Deferred acceptance algorithm (Gale and Shapley, 1962)

DA (1)

Step 1/ Schools receive applications from students who ranked them first in their list. Schools

that received fewer applications than their capacity hold on to these applications. Each school

j that received more applications than its capacity qj sends rejection decision to applicants: it

temporarily hold on to the qj applicants with highest priority, and rejects all others (if any).

Students receive the rejection notifications sent.

Step (k+1)/ For any k ≥ 1, students who received a rejection notification at step k send an

application to the school ranked next on their list. Schools received these applications. Schools

then consider their total pool of applications –those just received, and those they held on at

step k (if any). Schools which have fewer applications than their capacity hold on to these

applications. Each school j with excess applications sends rejection decision to applicants: it

temporarily hold on to the qj applicants with highest priority, and rejects all others (if any).

Students receive the rejection notifications sent.

Stop/ The algorithm stops after all students who received rejections have exhausted their list

of acceptable schools. School formally admit applicants they hold on to at this stage.

A.2 Proof of Proposition 1

Proposition 1. (a) Condition 1 (below) is a sufficient condition for students not have a strict

incentive to misreport their preferences over their choice set.

(b) Under Assumption 1 (below), Condition (1) is a sufficient condition for students not misreport

their preferences over their choice set.

Condition 1. Student i has a perceived eligibility probability 1 for (at least) one of her ten

most-preferred programs (among those not declared to be full).

Assumption 1. When indifferent between doing so or not, a student does not left-censor nor mis-

order her application list relative to her unconstrained preference ranking (over her own choice set).

In other words, a student left-censors or mis-orders her application list relative to her unconstrained

preference ranking (over her own choice set) only when it is strictly profitable to do so.

Proof. Deviation from truth-telling involve at least one of the following:

• Misrepresenting one’s preferences by not reporting one’s M most-preferred alternatives –i.e.

reporting a subset of alternatives that is left-censored or not consecutive relative to one’s

unrestricted preference ranking.

• Misrepresenting one’s preferences by not reporting alternatives in decreasing order of flow

utility –i.e. reporting a subset of alternatives that is not well ordered relative to one’s unre-

stricted preference ranking.

First, reporting a subset of alternatives that is not well ordered relative to one’s unrestricted prefer-

ence ranking is never strictly profitable since one needs to be rejected from an higher-ranked choice

in order to be considered for admission into a lower-ranked choice.
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Now, suppose Condition 1 holds for some student i. WLOG, say student i thinks she has probability

1 to clear the ex-post cutoff of program j∗, which is ranked second in her unrestricted preference

ranking. Denote j1 the alternative ranked first in her unrestricted preference ranking.

• If i thinks she has probability 0 to clear the cutoff of j1, she is indifferent between any ordered

list starting with: {j1, j∗} or {j∗}. In that case, it is therefore not strictly profitable to omit

j1 from the list.

• Suppose i thinks she has probability p1 > 0 to clear the cutoff of j1. Submitting ordered list

{j1, j∗} she thinks she will be assigned to j∗ unless she is assigned to j1, which she prefers the

j∗, and which occurs with non-0 probability. In expectation, she is then better of submitting

{j1, j∗} than {j∗}, with which she would be admitted to j∗ with probability 1.

This shows Part (a) of Proposition 1. Part (b) follows directly from Part (a) and Assumption 1.

B Institutional background & data

B.1 Tunisia

C RDD: Sharpness & validity of the design

The division of the applicant pool in three groups creates assignment cutoffs. The top left panel

of Figure 10 displays students’ probability to be assigned to Group 2 as a function of the running

variable, that is, their priority score (or priority ranking, in ordinal terms). This probability jumps

from 0 to 1 at standardized score .578 (score, 3,307 the Group 1/Group 2 cutoff), indicating the

sharpness of the discontinuity. The probability drops back from 1 to 0 at standardized score -.726

(rank 7,708, the Group 2/Group 3 cutoff). The bottom left panel of Figure 10 shows students’

probability to be assigned to Group 3 as a function of the running variable. It jumps from 0 to 1
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at standardized score -.726.

I use McCrary’s test as an evidence of the validity of the design, and reject the presence of a dis-

continuity of the running variable at standardized scores -.578 (estimated discontinuity -.004, with

standard error .080), and -.726 (estimated discontinuity .069, with standard error .065). The right

panel of Figure 10 illustrates the test, showing the density of the standardized test score.

Figure 10: Sharpness and validity of the RD design: graphical evidence

Note: The top (resp. bottom) left panel shows students’ probability to be assigned to Group 2 (resp. 3) as a function
of the running variable. It presents a sharp discontinuity at rank 3,307 (resp. 7,709). The top (resp. bottom) right
panel shows the density of the running variable, whose continuity at rank 3,307 (resp. 7,709) cannot be rejected
(McCrary test).

Table 12 gives the size of the sample as well as its decomposition into assignment groups

Table 12: Size of each assignment group for high-school graduates majoring in Math

Group Nb of students Max score Min score Top rank Last rank

1 3,306 2.51 .578 1 3,306
2 4,402 .577 -.726 3,307 7,708
3 3,296 -.727 -2.12 7,709 11,004
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D Preferences

D.1 Extrapolation: tables

Table 13: Comparative statistics: students

Sample Mean Std. dev. Median Min Max Obs.
Female Pop. .53 .50 1 0 1 10,897

Top .55 .50 1 0 1 636
Top G1 .55 .50 1 0 1 205
Sh.-list .53 .50 1 0 1 3,236

High SES Pop. .60 .49 1 0 1 10,897
Top .73 .45 1 0 1 619

Top G1 .89 .33 1 0 1 205
Sh.-list .63 .48 1 0 1 3,236

From Tunis Pop. .30 .46 0 0 1 10,897
Top .35 .48 0 0 1 619

Top G1 .38 .49 0 0 1 205
Sh.-list .26 .44 0 0 1 3,236

From Coast (excl. Tunis) Pop. .48 .50 0 0 1 10,897
Top .48 .50 0 0 1 619

Top G1 .54 .50 1 0 1 205
Sh.-list .53 .50 0 0 1 3,236

From West/Interior Pop. .19 .39 0 0 1 10,897
Top .15 .36 0 0 1 619

Top G1 .09 .28 0 0 1 205
Sh.-list .18 .38 0 0 1 3,236

From South Pop. .03 .17 0 0 1 10,897
Top .02 .14 0 0 1 619

Top G1 0 0 0 0 0 205
Sh.-list .03 .17 0 0 1 3,236

STEM high-school performance Pop. 0 .85 -.10 -2.26 1.96 10,897
Top .52 .96 .49 -1.15 1.96 619

Top G1 1.70 .10 1.70 1.34 1.96 205
Sh.-list .04 .93 -.08 -2.15 1.96 3,236

non-STEM high-school performance Pop. 0 .79 0 -2.62 2.40 10,897
Top .47 .91 .42 -1.99 2.40 619

Top G1 1.48 .32 1.49 .62 2.40 205
Sh.-list .03 .85 .01 -2.24 2.40 10,897

Note: ‘Top‘ refers to the subset of students at the top of each group that is used for estimation of utility parameters.
‘Sh.-list’ refers to the subset of all students listing strictly fewer than 10 programs, also used for estimation of utility
parameters. By contrast to ‘Top’, ‘Top G1’ refers to students in ‘Top’ who are also in Group 1. ‘Pop.’ indicates
population statistics. In the second panel, STEM (resp. non-STEM) high-school performance is the unweighted
average of the student’s standardized scores at the Math, Physics, Natural Sciences, and Comp. Sci. (resp. English,
French, Arabic, and Philosophy) tests of the end-of-high-school national exam.

D.2 Empirical validation of the bandwidth choice: supplementary figures

D.3 A possible alternative estimation strategy

Proposition 1(b) (Haeringer and Klijn, 2009) in Section 2 shows that while students may not report

their most-preferred programs, they always report programs in decreasing order of preference. That

is, while I identify students’ preferences from the choices made by a strict subset of students, all
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Table 14: Comparative statistics: application behaviors

Sample Mean Std. dev. Median Min Max Obs.
Distance home-sch. (km): min over list Pop. 39.4 75.7 0 0 1,800 10,897

Top 51.9 109.2 0 0 1,800 619
Top G1 89.1 157.4 65 0 1,800 205
Sh.-list 37.9 71.6 0 0 1,800 3,236

Distance home-sch. (km): max over list Pop. 235.9 291.2 191 0 1,800 10,897
Top 535.7 670.9 235 0 1,800 619

Top G1 1,209.7 766.9 1,800 0 1,800 205
Sh.-list 316.3 491.6 163 0 1,800 3,236

Distance home-sch. (km): avg. over list Pop. 123.1 169.1 82.3 0 1,800 10,897
Top 340.6 484.7 100.4 0 1,800 619

Top G1 824.8 573 1,285.7 0 1,800 205
Sh.-list 161 272.1 77.7 0 1,800 3,236

2009 ordinal marg. adm. score: min over list Pop. .33 .23 .29 .002 .991 10,897
Top .26 .24 .25 .002 .84 619

Top G1 .02 .03 .005 .002 .23 205
Sh.-list .34 .25 .32 .002 .991 3,236

2009 ordinal marg. adm. score: max over list Pop. .71 .24 .72 .012 1 10,897
Top .57 .34 .57 .012 1 619

Top G1 .17 .18 .03 .012 .80 205
Sh.-list .67 .28 .70 .012 1 3,236

2009 ordinal marg. adm. score: avg. over list Pop. .51 .23 .51 .008 .996 10,897
Top .41 .28 .42 .008 .94 619

Top G1 .08 .08 .01 .008 .34 205
Sh.-list .50 .27 .51 .008 .996 3,236

At least one choice in Earth Sc. Pop. .21 .41 0 0 1 10,897
Top .21 .41 0 0 1 619

Top G1 .02 .14 0 0 1 205
Sh.-list .15 .36 0 0 1 3,236

At least one choice in Soc. Sc. Pop. .02 .16 0 0 1 10,897
Top .01 .13 0 0 1 619

Top G1 0 0 0 0 0 205
Sh.-list .02 .11 0 0 1 3,236

At least one choice in Law Pop. .03 .17 0 0 1 10,897
Top .02 .13 0 0 1 619

Top G1 0 0 0 0 0 205
Sh.-list .02 .14 0 0 1 3,236

Total # programs applied to Pop. 609 n/a n/a n/a n/a 10,897
Top 429 n/a n/a n/a n/a 619

Top G1 62 n/a n/a n/a n/a 205
Sh.-list 609 n/a n/a n/a n/a 3,236

Note: ‘Top‘ refers to the subset of students at the top of each group that is used for estimation of utility parameters.
‘Sh.-list’ refers to the subset of all students listing strictly fewer than 10 programs, also used for estimation of utility
parameters. By contrast to ‘Top’, ‘Top G1’ refers to students in ‘Top’ who are also in Group 1. ‘Pop.’ indicates
population statistics.

application lists reveal a partial preference ranking.

Non-truthful students’ application lists generate moment inequalities, while truthful students’ lists

imply moment equalities. Indeed, if student i is truthful, then the likelihood of observing her list Li
in the data corresponds to the likelihood of the listed programs being her most-preferred programs:

P
(
Li = {Li(1),Li(2), . . . ,Li(Mi)}

)
= P

(
ui(Li(1)) > ui(Li(2)) > · · · > Li(Mi) > ui(j), ∀ j ∈ Ci\Li

)
,
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Figure 11: Persistence of the top-ranked students’ listed choices over the priority ranking –Groups
2 and 3

Legend: The x-axis represents all the programs listed by the first 10 students of Group 1. The y-axis indexes all

students in Group 1 by their priority ranking. A dot in position (x, y) means that the student ranked y included

program x in her application list.

where Li, Mi and Ci denote i’s application list, the length of i’s application list, and i’s choice set,

respectively. By contrast, if student i is (a priori) not truthful, then observing her list Li in the

data only implies an order on the utilities of listed programs:

P
(
Li = {Li(1),Li(2), . . . ,Li(Mi)}

)
≤ P

(
ui(Li(1)) > ui(Li(2)) > · · · > Li(Mi)

)
.

Extracting the information included in lists of non-truthful students requires an estimation method

that allows for the use of both moment equalities and inequalities (e.g. Andrews and Shi, 2013;

Fack, Grenet and He, 201547), which I do not pursue in this paper.

D.4 Estimates: sensitivity analysis

Tables 15 and 16 in Appendix D shows utility estimates obtained for each of the truthful subsamples

separately.Tables 17 and 18 show estimation results for alternative choices for the bandwidth of

truthful students. Columns (1), (2) and (3) show estimates for a bandwidth size equal to twice,

five and ten times the original bandwidth size, respectively.

47Fack, Grenet and He (2015) implement such a method to recover the preferences for high schools of middle-
schoolers in Paris. Their identifying moment equalities differ from those I describe, though. Identification of students’
preferences in their analysis relies on the assumption that the match realized in their data is stable. They also
implement a partial identification approach, using only moments inequalities, without assuming stability.
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Table 15: Utility parameter estimates – truthful samples (1/2)

(1) (2) (3) (4)
Main Lin. in distance Main Lin. in distance

Distance (100km) -2.083∗∗∗ -0.931∗∗∗ -2.019∗∗∗ -1.026∗∗∗

(0.12) (0.08) (0.08) (0.05)
× high SES 0.085 0.181 0.021 0.147∗

(0.08) (0.11) (0.04) (0.06)
Distance (100km) sq. 0.223∗∗∗ 0.222∗∗∗

(0.02) (0.01)
Past-year marginal admit 2.503∗∗∗ 3.613∗∗∗ 2.097∗∗∗ 2.794∗∗∗

(0.60) (0.58) (0.31) (0.31)
× high SES -0.952 -0.706 0.467 0.679

(0.87) (0.88) (0.40) (0.41)
Past-year marginal admit sq. 0.761 1.055 -1.015∗∗ -0.668∗

(0.70) (0.71) (0.32) (0.34)
× high SES 2.394∗ 1.771 1.017∗ 0.616

(0.95) (0.93) (0.40) (0.40)
Distance (100km) × Past-year marginal adm. 1.107∗∗∗ 0.885∗∗∗

(0.12) (0.07)
Degree: Bachelor (LF) 0.302∗ 0.303∗ 0.595∗∗∗ 0.597∗∗∗

(0.12) (0.12) (0.06) (0.06)
× h-s perf. 0.431∗∗ 0.449∗∗ 0.393∗∗∗ 0.399∗∗∗

(0.14) (0.14) (0.06) (0.06)
× high SES 0.206 0.178 0.009 -0.016

(0.16) (0.16) (0.07) (0.07)
Degree: Adv. degree 2.577∗∗∗ 2.551∗∗∗ 2.603∗∗∗ 2.592∗∗∗

(0.17) (0.17) (0.09) (0.09)
× h-s perf. 0.884∗∗∗ 0.919∗∗∗ 1.941∗∗∗ 1.955∗∗∗

(0.15) (0.16) (0.09) (0.08)
× high SES -0.024 -0.062 -0.175 -0.210∗

(0.20) (0.20) (0.10) (0.10)
Program location: Tunis 0.902∗∗∗ 1.128∗∗∗ 0.499∗∗∗ 0.728∗∗∗

(0.14) (0.15) (0.09) (0.10)
Program location: Coast 0.913∗∗∗ 0.951∗∗∗ 0.304∗∗∗ 0.348∗∗∗

(0.13) (0.13) (0.07) (0.08)
Program location: Abroad -18.693∗∗∗ -19.996∗∗∗ -10.233∗∗∗ -11.335∗∗∗

(2.33) (2.49) (1.36) (1.45)
× STEM h-s perf. 7.492∗∗∗ 7.837∗∗∗ 4.319∗∗∗ 4.671∗∗∗

(1.25) (1.40) (0.77) (0.82)
× non-STEM h-s perf. 3.671∗∗∗ 3.874∗∗∗ 1.969∗∗∗ 2.069∗∗∗

(0.42) (0.44) (0.30) (0.33)
× high SES 0.064 0.368 -0.261 0.040

(0.50) (0.46) (0.35) (0.37)

Sample Bdw Bdw Short Short
PseudoObs. 4,927 4,927 24,961 24,961
Obs. 624 624 3,629 3,629

Std. errors in parentheses, clustered at the high school level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 16: Utility parameter estimates – truthful samples (2/2)

(1) (2) (3) (4)
Field: Arts 1.751∗∗ 1.741∗∗ 2.962∗∗∗ 2.963∗∗∗

(0.57) (0.57) (0.32) (0.32)
× STEM h-s perf. 1.484∗∗∗ 1.478∗∗∗ 1.676∗∗∗ 1.678∗∗∗

(0.41) (0.40) (0.19) (0.19)
× non-STEM h-s perf. -1.064 -1.067∗ -1.273∗∗∗ -1.256∗∗∗

(0.55) (0.54) (0.24) (0.24)
× female -0.090 -0.060 -1.151∗∗ -1.149∗∗

(0.55) (0.55) (0.36) (0.36)
Field: Educ. -0.572 -0.625 2.287∗∗∗ 2.318∗∗∗

(1.90) (1.94) (0.43) (0.43)
× STEM h-s perf. 2.727∗∗ 2.762∗∗ 1.142∗∗ 1.084∗∗

(0.88) (0.88) (0.35) (0.36)
× non-STEM h-s perf. -0.147 -0.145 -0.883 -0.908

(0.98) (1.00) (0.53) (0.54)
× female -2.044∗∗∗ -2.044∗∗∗ -1.676∗∗ -1.653∗∗

(0.57) (0.58) (0.58) (0.58)
Field: Soc. Sc. -0.120 -0.103 1.033∗∗ 1.064∗∗

(0.87) (0.88) (0.37) (0.37)
× STEM h-s perf. 1.490 1.508 0.775∗ 0.797∗

(0.97) (0.98) (0.32) (0.32)
× non-STEM h-s perf. -0.944 -0.946 -0.882∗ -0.868∗

(0.94) (0.93) (0.36) (0.35)
× female -0.640 -0.628 -1.455∗∗∗ -1.461∗∗∗

(0.92) (0.92) (0.43) (0.43)
Field: Eco/Mgmt 2.995∗∗∗ 2.931∗∗∗ 3.775∗∗∗ 3.765∗∗∗

(0.56) (0.55) (0.33) (0.33)
× STEM h-s perf. 0.981∗∗ 1.050∗∗ 1.160∗∗∗ 1.191∗∗∗

(0.34) (0.33) (0.21) (0.21)
× non-STEM h-s perf. -1.045∗ -1.050∗ -1.189∗∗∗ -1.177∗∗∗

(0.49) (0.49) (0.25) (0.25)
× female -0.478 -0.466 -1.199∗∗∗ -1.194∗∗∗

(0.51) (0.51) (0.36) (0.36)
Field: Law 0.497 0.454 2.386∗∗∗ 2.378∗∗∗

(1.07) (1.06) (0.43) (0.42)
× STEM h-s perf. 0.199 0.296 0.451 0.501

(0.73) (0.71) (0.36) (0.36)
× non-STEM h-s perf. -1.689∗ -1.755∗ -0.161 -0.167

(0.75) (0.77) (0.36) (0.35)
× female 0.943 0.940 -1.455∗∗ -1.454∗∗

(1.18) (1.16) (0.48) (0.48)
Field: Math/Comp.Sci. 3.863∗∗∗ 3.801∗∗∗ 4.405∗∗∗ 4.399∗∗∗

(0.55) (0.55) (0.32) (0.32)
× STEM h-s perf. 1.113∗∗ 1.166∗∗ 1.338∗∗∗ 1.366∗∗∗

(0.36) (0.35) (0.19) (0.19)
× non-STEM h-s perf. -1.370∗∗ -1.364∗∗ -1.562∗∗∗ -1.553∗∗∗

(0.48) (0.48) (0.25) (0.24)
× female -0.837 -0.819 -1.337∗∗∗ -1.328∗∗∗

(0.51) (0.51) (0.36) (0.36)
Field: Phys./Chem./Engin. 3.530∗∗∗ 3.464∗∗∗ 4.187∗∗∗ 4.171∗∗∗

(0.55) (0.55) (0.31) (0.31)
× STEM h-s perf. 1.145∗∗∗ 1.180∗∗∗ 1.301∗∗∗ 1.322∗∗∗

(0.33) (0.33) (0.18) (0.18)
× non-STEM h-s perf. -1.244∗∗ -1.243∗∗ -1.626∗∗∗ -1.612∗∗∗

(0.47) (0.46) (0.24) (0.23)
× female -0.835 -0.813 -1.517∗∗∗ -1.511∗∗∗

(0.51) (0.51) (0.35) (0.35)
Field: Health/Life Sc. 3.371∗∗∗ 3.286∗∗∗ 3.603∗∗∗ 3.562∗∗∗

(0.56) (0.56) (0.32) (0.32)
× STEM h-s perf. 0.907∗∗ 0.978∗∗ 1.102∗∗∗ 1.135∗∗∗

(0.34) (0.33) (0.19) (0.19)
× non-STEM h-s perf. -1.467∗∗ -1.436∗∗ -1.322∗∗∗ -1.300∗∗∗

(0.50) (0.50) (0.25) (0.24)
× female 0.226 0.259 -0.536 -0.517

(0.54) (0.54) (0.36) (0.36)
Field: Earth Sc. 2.234∗∗∗ 2.204∗∗∗ 2.105∗∗∗ 2.109∗∗∗

(0.56) (0.56) (0.32) (0.32)
× STEM h-s perf. -0.130 -0.134 0.264 0.276

(0.35) (0.35) (0.21) (0.21)
× non-STEM h-s perf. -1.278∗∗ -1.256∗∗ -1.732∗∗∗ -1.730∗∗∗

(0.48) (0.48) (0.26) (0.25)
× female -0.654 -0.632 -0.929∗ -0.941∗∗

(0.53) (0.53) (0.36) (0.36)
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Table 17: Utility parameter estimates – truthful samples (1/2)

(1) (2) (3)

Distance (100km) -2.011∗∗∗ -1.851∗∗∗ -1.807∗∗∗

(0.10) (0.08) (0.06)
× high SES 0.035 0.005 0.031

(0.06) (0.04) (0.03)
Distance (100km) sq. 0.215∗∗∗ 0.194∗∗∗ 0.189∗∗∗

(0.02) (0.01) (0.01)
Past-year marginal admit 2.735∗∗∗ 2.725∗∗∗ 2.983∗∗∗

(0.45) (0.32) (0.26)
× high SES -0.090 0.892∗ 1.141∗∗∗

(0.62) (0.41) (0.33)
Past-year marginal admit sq. 0.151 0.090 -0.937∗∗∗

(0.45) (0.29) (0.24)
× high SES 1.146 -0.026 -0.156

(0.62) (0.38) (0.30)
Distance (100km) × Past-year marginal adm. 1.097∗∗∗ 0.959∗∗∗ 0.841∗∗∗

(0.09) (0.07) (0.06)
Degree: Bachelor (LF) 0.411∗∗∗ 0.407∗∗∗ 0.463∗∗∗

(0.09) (0.06) (0.05)
× h-s perf. 0.411∗∗∗ 0.442∗∗∗ 0.354∗∗∗

(0.09) (0.06) (0.04)
× high SES 0.142 0.181∗∗ 0.163∗∗

(0.11) (0.07) (0.05)
Degree: Adv. degree 2.783∗∗∗ 2.768∗∗∗ 2.699∗∗∗

(0.11) (0.08) (0.06)
× h-s perf. 1.047∗∗∗ 1.107∗∗∗ 1.335∗∗∗

(0.10) (0.07) (0.06)
× high SES -0.109 0.018 -0.069

(0.13) (0.09) (0.07)
Program location: Tunis 0.800∗∗∗ 0.779∗∗∗ 0.701∗∗∗

(0.11) (0.08) (0.06)
Program location: Coast 0.753∗∗∗ 0.695∗∗∗ 0.574∗∗∗

(0.10) (0.07) (0.06)
Program location: Abroad -25.303∗∗∗ -23.147∗∗∗ -18.036∗∗∗

(2.10) (1.98) (2.05)
× STEM h-s perf. 10.733∗∗∗ 9.989∗∗∗ 7.545∗∗∗

(1.08) (0.97) (1.02)
× non-STEM h-s perf. 4.245∗∗∗ 3.745∗∗∗ 3.075∗∗∗

(0.43) (0.40) (0.43)
× high SES 0.290 0.274 0.347

(0.50) (0.43) (0.38)

Sample Bdw × 2 Bdw × 5 Bdw × 10
PseudoObs. 10,169 26,384 53,485
Obs. 1,252 3,134 6,250

Std. errors in parentheses, clustered at the high school level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 18: Utility parameter estimates – truthful samples (2/2)

(1) (2) (3)
Field: Arts 1.705∗∗∗ 2.211∗∗∗ 2.473∗∗∗

(0.35) (0.22) (0.17)
× STEM h-s perf. 1.523∗∗∗ 2.145∗∗∗ 2.036∗∗∗

(0.26) (0.22) (0.16)
× non-STEM h-s perf. -0.961∗ -1.209∗∗∗ -1.144∗∗∗

(0.39) (0.25) (0.16)
× female 0.087 -0.264 -0.440∗

(0.41) (0.26) (0.19)
Field: Educ. -0.181 0.328 1.449∗∗∗

(1.38) (0.71) (0.28)
× STEM h-s perf. 1.344 2.907∗∗∗ 1.798∗∗∗

(1.18) (0.70) (0.37)
× non-STEM h-s perf. 0.303 -1.531∗∗ -0.868∗∗

(0.97) (0.54) (0.34)
× female -1.254 -1.177∗ -1.122∗∗∗

(0.71) (0.54) (0.34)
Field: Soc. Sc. 0.136 0.660∗ 0.637∗∗

(0.46) (0.29) (0.23)
× STEM h-s perf. 1.216∗ 1.724∗∗∗ 1.476∗∗∗

(0.54) (0.35) (0.24)
× non-STEM h-s perf. -0.824 -1.139∗ -0.796∗∗

(0.63) (0.48) (0.29)
× female -1.079 -0.744∗ -0.476

(0.57) (0.37) (0.26)
Field: Eco/Mgmt 3.081∗∗∗ 3.355∗∗∗ 3.513∗∗∗

(0.34) (0.21) (0.17)
× STEM h-s perf. 1.001∗∗∗ 1.618∗∗∗ 1.413∗∗∗

(0.25) (0.21) (0.15)
× non-STEM h-s perf. -0.909∗ -1.276∗∗∗ -1.110∗∗∗

(0.36) (0.24) (0.16)
× female -0.450 -0.613∗∗ -0.706∗∗∗

(0.36) (0.23) (0.18)
Field: Law 1.486∗∗ 1.922∗∗∗ 2.286∗∗∗

(0.47) (0.34) (0.22)
× STEM h-s perf. 0.825 0.907 0.815∗∗

(0.61) (0.47) (0.28)
× non-STEM h-s perf. -0.708 -0.855∗∗ -0.785∗∗∗

(0.48) (0.29) (0.22)
× female -0.198 -0.430 -0.525∗

(0.53) (0.39) (0.26)
Field: Phys./Chem./Engin. 3.559∗∗∗ 3.777∗∗∗ 3.933∗∗∗

(0.35) (0.21) (0.16)
× STEM h-s perf. 1.149∗∗∗ 1.710∗∗∗ 1.489∗∗∗

(0.24) (0.21) (0.14)
× non-STEM h-s perf. -1.289∗∗∗ -1.662∗∗∗ -1.537∗∗∗

(0.35) (0.23) (0.15)
× female -0.816∗ -0.875∗∗∗ -1.000∗∗∗

(0.38) (0.22) (0.17)
Field: Health/Life Sc. 3.493∗∗∗ 3.721∗∗∗ 3.633∗∗∗

(0.37) (0.22) (0.17)
× STEM h-s perf. 1.010∗∗∗ 1.558∗∗∗ 1.411∗∗∗

(0.24) (0.21) (0.15)
× non-STEM h-s perf. -1.389∗∗∗ -1.590∗∗∗ -1.370∗∗∗

(0.36) (0.24) (0.16)
× female 0.074 -0.026 -0.091

(0.40) (0.24) (0.19)
Field: Earth Sc. 2.049∗∗∗ 2.094∗∗∗ 2.079∗∗∗

(0.35) (0.21) (0.17)
× STEM h-s perf. -0.207 0.577∗∗ 0.404∗∗

(0.26) (0.22) (0.15)
× non-STEM h-s perf. -1.239∗∗∗ -1.640∗∗∗ -1.547∗∗∗

(0.36) (0.23) (0.15)
× female -0.391 -0.425 -0.436∗

(0.40) (0.23) (0.18)
Field: Math/Comp.Sci. 3.871∗∗∗ 4.029∗∗∗ 4.181∗∗∗

(0.34) (0.21) (0.17)
× STEM h-s perf. 1.205∗∗∗ 1.901∗∗∗ 1.559∗∗∗

(0.25) (0.21) (0.14)
× non-STEM h-s perf. -1.307∗∗∗ -1.726∗∗∗ -1.523∗∗∗

(0.36) (0.23) (0.15)
× female -0.711 -0.621∗∗ -0.810∗∗∗

(0.37) (0.23) (0.18)
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E Students’ expectations about their admission chances

E.1 True-admission-probability benchmark

As a standard benchmark, I assume that, given the distribution of preferences, students are all able

to form expectations that coincide with their true admission chances (are ‘perfectly rational’). In

this setting, perfect rationality and the distribution of preferences are common knowledge.

E.1.1 Recovering true admission probabilities

Students having the same priority at all programs allows me compute numerically the joint distribu-

tion of each students’ admission chances to all programs, in a simple way, given utility parameters

and the distribution of preference unobservables.

• Step 1: I estimate the distribution of seats left after Student 1’s assignment. Given a draw

of her unobservable preference term, Student 1 truthfully lists her most-preferred program

on top of her application list and get assigned to it. Simulating over her unobservable pref-

erence term, I can recover the distribution of her assignment –hence the joint distribution of

seats left after her assignment. This distribution gives, for every program, the probability of

an available vacancy for Student 2, that is, Student 2’s expected admission chances in the

rational-expectations benchmark.

• Step k, (1 < k ≤ N): I estimate the distribution of seats left after Student k’s assign-

ment. Student k solves Problem (1) given her preferences, and her expectations about her

admission chances –recovered in Step (k-1). For any draw of Student k’s unobservables, I

solve Problem (1) and deduce Student k’s assignment via the DA and the assignment of

previous students. Simulating over her unobservable preference term, I can recover the distri-

bution of her assignment –hence the joint distribution of seats left after her assignment. This

distribution yields Student k + 1’s expected admission chances in the rational-expectations

benchmark.

The simulation of optimal application lists is a computational challenge. When the choice set is

large, the simulation of application lists of even moderate size is demanding. For instance, in the

setting of this paper, finding one individual’s expected-utility-maximizing ordered list of up to 10

elements among 600 requires evaluating the expected utility function at more than 1020 points, and

finding the maximum. In practice, to ease computation, I do not solve the optimization Problem (1).

Rather, I approximate the solution using the Marginal Improvement Algorithm (MIA) proposed

by Chade and Smith (2006).48 The MIA starts by first selecting the application list of size 1 (that

is, the alternative) with highest expected utility. It then proceeds to finding the best marginal

improvement to that list. That is, it selects the alternative that forms, together with the first pick,

the application list of size 2 with highest expected utility (among all the lists containing the first

pick). This iterative process continues until the desired list size is reached. A detailed description

of the MIA is provided in Appendix Section E.2.
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Figure 12: Rational-expectations benchmark –Selectivity level of predicted vs. observed choices

Note: This graph shows the selectivity level (in terms of past-year admission cutoff) of students’ choices as a function of
their priority ranking. For clarity, it focused on students’ first, fourth, and eighth-listed choices. Solid lines represent
choices observed in the data; dotted lines represent choices predicted under the rational-expectations benchmark,
given utility parameter estimates from Section 4.

E.1.2 Predicted choices

Figure 12 plots the selectivity level of students’ choices as a function of their priority ranking. For

clarity, it focused on students’ first, fourth, and eighth-listed choices. Solid lines represent choices

observed in the data; dotted lines represent choices predicted under the rational-expectations bench-

mark, given utility parameter estimates from Section 4. The graph suggests that assuming perfect

rationality of students imperfectly captures the variation in the data in two ways. It overshoots

the selectivity level of some students’ listed choices, and does not reproduce the diversification of

students’ application portfolios in terms of selectivity levels. In a rational equilibrium, each student

understands that when the number of seats in each program is fixed, given the number of students

assigned before her, there is a negative correlation between the number of seats remaining available

when her turn in the algorithm comes in programs with similar characteristics.49 In other words,

conditional on being rejected from an higher-listed program, they know they have an increased

chance to be admitted to a program with similar characteristics if they rank such program lower

in their list. Hence the similarity in programs’ characteristics across a rational student’s listed

choices. The diversification of students’ portfolios (in terms of selectivity level) in the observed

data suggests that students do not fully account for this negative correlation.

Note, from the procedure described in E.1.1, that given utility parameter estimates, predicting

48When one’s eligibility chances are independent across programs, the MIA yields the actual solution of Problem (1)
(Chade and Smith, 2006). When these eligibility chances are not independent, however, this result is not guaranteed
(Ajayi and Sidibé, 2016).

49This is mechanical. Suppose there are only two programs A and B, and that they have identical characteristics.
Fix students’ tastes and the number of students to be assigned before student i in the algorithm. Statistically, and
conditional on the characteristics of A and B, when none of the programs are full, the students assigned to A are
the ones whose unobservable utility draw for A is larger than for B. The number of students to be assigned before
student i in the algorithm being fixed, the larger the number of students assigned to A before i’s turn, the smaller
the number of students assigned to B before i’s turn.
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choices under the rational-expectations framework does not require the identification of any new

parameter. The admission chances expected by perfectly rational students are fully determined once

the utility parameters and the distribution of preference unobservables are known. In Section 4,

preferences were recovered without taking any stand on expectations, and using a strict subset

of the students. In the previous paragraph, other students’ observed lists were used to assess the

ability of the rational-expectations framework to reproduce patterns in the data (Figure 12). In the

next subsection, I use still-unexploited identifying variation in these lists to estimate an alternative

framework of expectations formation.

E.2 Marginal Improvement Algorithm (Chade and Smith, 2006)

Marginal Improvement Algorithm

Step 0: Start with the empty list: L(0)
i = ∅.

Discard from choice set all alternative with lower flow utility than the outside option.

Step 1: Select the program with highest expected utility: L(1)
i = {s1}

Step k (2 ≤ k ≤ 10): Select the best complement to the current list L(k−1)
i , i.e. solve:

max
s∈J\L(k−1)

i

EU(L′i)

s.t. L′i = Oi
(
L(k−1)
i ∪ {s}

)
where

• Oi arranges the elements of Li in decreasing order of flow utility for i

• EUi(L(k)
i ) = πi,`1 · ui,`1 + πi,`2|`1 · ui,`2 + · · ·+ πi,`k|`1,`2,...,`k−1

· ui,`k

E.3 Types specification

In Section 5, expectations-formation types are specified as AR(1) processes, the coefficients of which

are estimated by MLE from 2009-2010 data on marginal admission scores. Types differ from one

another in the level of observable heterogeneity allowed in the AR(1) specification:

cutoffj,2010 = aj + bj × cutoffj,2009 + ηj with ηj ∼ N(0, σ2
j ).

Tables 19 and 20 show estimated coefficients for the different specifications considered.

E.4 Identifying variation

Figure 13 illustrates how, given preferences, the likelihood of observing one’s actual choices differs

under alternative assumptions about expectations formation process and level of sophistication.

This figure illustrates the variation in the data allowing me to characterize students’ expectations.

It plots, as a function of students’ priority ranking, the likelihood (given preferences) of observing

the characteristics of one’s actual choices under alternative assumptions about the expectations-

formation process. Specifically, it focuses on the selectivity level (in terms of past-year admission

cutoff) of students’ listed programs under the eight distinct scenarios of expectations-formation
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Table 19: Estimated AR(1) parameters for marginal admission scores (1/2)

No heterogeneity Log-lik.: 0.54

All

cst. -0.19
0.02

slope 0.82
0.02

σ 0.42
0.02

Log-lik. 0.54
Obs. 616

Heterogeneity by selectivity level (in percentile of priority distribution) Log-lik.: 0.51

≤ 5th 5–25th 25–50th 50–75th 75–95th above 95th

cst. 1.73 -0.5 0 -0.31 -0.25 -0.43
1.57 0.43 0.19 0.07 0.06 0.15

slope 1.66 0.58 1.09 0.65 0.89 1.17
0.82 0.27 0.19 0.18 0.15 0.07

σ 0.44 0.41 0.39 0.41 0.39 0.38
0.09 0.05 0.04 0.03 0.04 0.09

Heterogeneity by field of study Log-lik.: 0.46

STEM non-STEM

cst. -0.09 -0.32
0.02 0.04

slope 0.89 0.73
0.02 0.04

σ 0.31 0.5
0.02 0.03

Heterogeneity by 2009 filling status Log-lik.: 0.53

full not full

cst. -0.21 0.02
0.02 0.04

slope 0.82 0.91
0.03 0.02

σ 0.4 0.45
0.02 0.05

Heterogeneity by field × 2009 filling status Log-lik.: 0.44

STEM STEM non-STEM non-STEM
full not full full not full

cst. -0.11 0.09 -0.32 -0.63
0.02 0.03 0.04 0.42

slope 0.91 0.92 0.72 0.56
0.03 0.01 0.04 0.24

σ 0.3 0.28 0.48 0.57
0.02 0.03 0.03 0.07

Obs. 616
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Table 20: Estimated AR(1) parameters for marginal admission scores (2/2)

Heterogeneity by field × selectivity level Log-lik.: 0.36

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

cst. -0.76 -0.16 -0.46 -0.27 -0.25 0.08 1.64 -0.95 0.68 -0.37 -0.26 1.86
2.03 0.26 0.14 0.08 0.04 0.09 1.8 0.83 0.29 0.12 0.1 0.97

slope 0.3 0.8 0.59 0.46 1.21 0.95 1.64 0.3 1.88 0.77 0.67 -1.48
1.08 0.17 0.15 0.2 0.13 0.05 0.93 0.53 0.33 0.31 0.23 1.02

σ 0.24 0.26 0.31 0.3 0.26 0.11 0.51 0.57 0.45 0.47 0.46 0.25
0.05 0.03 0.03 0.04 0.03 0.02 0.15 0.08 0.07 0.05 0.07 0.05

Obs. 616

considered in Section 5.2.3. For the sake of space, I only show plots for students’ first, third, sixth,

and ninth listed choices –plots for the second, fourth, fifth, seventh, eighth, and tenth listed choices

are similar. Lists are simulated assuming that unsophisticated students report their ten most

preferred programs among those that have not been publicly declared to be full. Students with

any given AR(1) type report the expected-utility-maximizing list, and derive their expectations

assuming marginal admission scores follow, from one year to the next, the given AR(1) process.
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Figure 13: Density of listed-choice characteristics (past-year cutoff) under alternative expectations
formation assumptions
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F Counterfactual

F.1 Supplemental figures

Figure 14: Distribution of changes in expected indirect utility by assignment status pair

F.2 True-admission-probabilities benchmark

Table 21 is the true-admission-probabilities analogue of Table ??: it shows the difference in expected

average student welfare between scenarios with and without information revelation –in a setting in

which students form expectations about their admission chances that coincide with their admission

probabilities (see Appendix Section E.1). In this setting, the loss generated by the implementation

of the standard (single-phase) restricted-list DA, relative to perfect-information benchmark, is very

small. Under the perfect-information benchmark, the average indirect utility is higher than in the

single-phase DA by an equivalent of a 0.40km-reduction in distance traveled –a difference 100 times

smaller than the one shown in Figure 4. This suggests that, rather than the sole incompleteness

of information about which seat are available for them, it is students’ inability to form accurate

expectations about their admission chances that is responsible for most of the welfare loss induced

by the implementation of a single-phase restricted-list DA in an incomplete information setting.

Table 21: Rational expectations benchmark –Change in expected average student welfare relative
to single-phase implementation of the restricted-list DA

Two-phase Three-phase Four-phase Five-phase Perfect info

equiv. km 0.04 0.22 0.1 0.11 0.39
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[15] Calsamiglia, C., C. Fu and M. Güell (2014). Structural estimation of a model of school choices:

the Boston mechanism vs. its alternatives. FEDEA Working Paper No. 2014-21.

[16] Calsamiglia C., G. Haeringer and F. Klijn (2010). Constrained school choice: an experimental

study. The American Economic Review, 100(4), pp. 1860–74.

69



[17] Carvalho J.-R., T. Magnac and Q. Xiong (2014). College Choice Allocation Mechanisms: Struc-

tural Estimates and Counterfactuals. Toulouse School of Economics Working Paper No. TSE-

506.

[18] Chade, H. and L. Smith (2006). Simultaneous search. Econometrica, 74(5), pp. 1293–307.

[19] Chen, H. and Y. He (2017). Information acquisition and provision in school choice: an exper-

imental study. Working paper.

[20] Chen, H. and T. Sönmez (2006). School choice: an experimental study. Journal of Economic

Theory, 127(1), pp. 202–31.
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