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Abstract

Little is known about how children of high-income expatriate families, often from
rich nations, adapt to temporary residence in a severely polluted city of the developing
world. We use a six-year panel of 6,500 students at three international schools in a
major city in north China to estimate how fluctuation in ambient PM2.5 over the
preceding fortnight impacts daily absences. Our preferred estimates are based on the
exclusion restriction that absences respond to atmospheric ventilation such as thermal
inversions only through ventilation’s effect on particle levels. A large and rare 100 to
200 µg/m3 shift in average PM2.5 in the prior week raises the incidence of absences by
1 percentage point, about one-quarter of the sample mean. We find stronger responses
for US/Canada nationals than among Chinese nationals, and among students who
generally miss school the most. Overall responses are modest compared to the effect
on absences from more moderate in-sample variation in pollution estimated for the
US using aggregate data. Using school absence patterns as a window into short-run
health and behavior, our study suggests that high-income families find ways to adapt,
likely by moving life indoors, even if temporary residence in north China comes at the
expense of long-term health.
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1 Introduction

A large literature, mostly in epidemiology, examines the relationship between acute ex-

posure to air pollution and public health outcomes, for which data are collected via en-

counters with health suppliers or vital records, including emergency room visits, hospital

admissions, mortality and neonatal health. When it comes to more subtle manifestations

of morbidity that do not lead to health encounters, the evidence is more sparse. Recent

studies by economists have examined the causal effect of short-run pollution exposure

on medication purchases (Deschenes et al., 2017), hours worked (Hanna and Oliva, 2015;

Aragon et al., 2016), productivity while at work (Graff Zivin and Neidell, 2012; Chang

et al., 2016b,a; He et al., 2017), and student absences (Currie et al., 2009; Ransom and

Pope, 2013). Studies have typically relied on aggregate data, rather than individual-level

panels, or examined rich-world settings, where pollutant concentrations in ambient air are

much lower than in developing countries, particulate matter in particular.1

We examine how student absences respond to particle pollution in a major urban center

in north China that is routinely exposed to severe levels of PM2.5 (particulate matter of

diameter up to 2.5 micrometers). Our subjects are about 6,500 high-income students,

aged 3 to 19 years, enrolled at three international schools in the same city.2 We gained

access to individual-level attendance records over multiple years, jointly covering 2008 to

2014, allowing us to control for potential confounds and sources of variability, including

seasonality, weather (temperature, humidity and rain on the ground) and unobserved

heterogeneity. We observe students’ nationalities, both foreign and Chinese, and the

time since first enrolling at the school which, for children of expatriate families, may be

a reasonable proxy for their time of residence in China. We are thus able to look for

heterogeneous responses of absences to short-run variation in PM2.5 across nationality,

1Exceptions are studies examining worker or household-level panels in China and Peru (Chang et al.,
2016a; He et al., 2017; Aragon et al., 2016). Given their developing country setting, these three studies
focus on particulate matter. The economic impact of ozone, an oxidizing agent and very different pollutant
formed under radiation and heat, has been studied in US settings (e.g. Graff Zivin and Neidell, 2012;
Deschenes et al., 2017). Lines of enquiry relating air pollution to morbidity include households’ avoidance
behavior to mitigate health damage (Moretti and Neidell, 2011), and the short-run impact of pollution on
test scores, which may operate through morbidity (Ebenstein et al., 2016; Ham et al., 2014).

2Annual tuition fees reach (and in middle/high school exceed) one quarter of a million Chinese Yuan, or
about US$ 40,000. In terms of income, a correlate of health status, our population is quite homogeneous.
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duration at the school, student age, calendar year (to the extent that awareness of PM2.5

and its health impact has shifted, say, since 2012/2013), and among students who vary

widely in their overall levels of absenteeism (irrespective of reason).

Over our sample period, daily 24-hour PM2.5 concentrations averaged 98 µg/m3, to

be contrasted with the primary one-year average National Ambient Air Quality Standard

(NAAQS) of 12 µg/m3 set by the US Environmental Protection Agency.3 Given concerns

that pollution readings published by the Chinese authorities in the early years of the

sample may have been manipulated (Andrews, 2008; Ghanem and Zhang, 2014), we are

fortunate to rely on high-frequency ambient PM2.5 measurements since 2008 by the US

State Department on the rooftop of a US embassy located at most 20 km from each school.

The embassy is likely at a similar distance from students’ homes and daily activities.

Beyond reporting Ordinary Least Squares (OLS) fixed-effects estimates, our favored

Two-Stage Least Squares (2SLS) approach allows for measurement error in PM2.5 expo-

sure as well as unobserved determinants of student absences that may drive or correlate

with PM2.5 levels. Our 2SLS estimates are based on the exclusion restriction that at-

mospheric ventilation conditions such as temperature-altitude gradients, which fluctuate

from day to day, induce student absences only indirectly, by shifting PM2.5, and this

exogenous PM2.5 component then drives absences. Previous research has adopted designs

using atmospheric ventilation (stagnation) to infer the causal impact of air pollution on

economic outcomes, both in China and elsewhere (Ransom and Pope, 2013; Hanna and

Oliva, 2015; He et al., 2017). We provide visual in-sample evidence of how atmospheric

ventilation drives the dispersion of particles, such as a layer of hot air that stations over

the metropolis, trapping emissions close to the surface, until the thermal inversion lifts a

few days later.

We find that international school absences in this severely polluted Chinese city sig-

nificantly respond to short-run fluctuations in PM2.5. The occurrence of severe PM2.5 on

3We emphasize that particulate matter likely accounts for the bulk of health damage from exposure to
ambient air pollution in the developing world. Lelieveld et al. (2015) estimates that outdoor PM2.5 causes
3.2 million premature deaths globally each year, compared with 0.14 million from ozone. Even in rich
nations, the health damage from PM2.5 is estimated to be an order of magnitude higher than that from
ozone, e.g., 320,000 PM2.5 versus 19,000 ozone-related annual deaths in the US (Fann et al., 2012). The
relative threat posed by PM2.5 is likely a reason why ozone or CO are not monitored at the US embassy.
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the day before—defined here as a 24-hour mean above 200 µg/m3—raises the probability

of an absence by 0.93 percentage point, or 15% relative to an absence rate of 6.2 in every

100 enrolled student by school day observations in the sample.4 An overall absence rate

of 6% tends to be higher than reported for elementary and middle school children in the

US.5 Besides students being mostly expatriates, taking trips abroad and often missing

some school days shortly before or after vacations, it is conceivable that the high PM2.5

even at the left tail of the sample distribution already contributes to some absenteeism

beyond the variation we pick up.6 Our favored estimation sample drops any second and

subsequent adjacent absence days within the same absence spell by a student, with the

aim of examining the likely single decision by the student or her parent behind the absence

spell. Absence spells triggered by pollution include both remedial responses and avoidance

behavior. For example, students may stay at home to recover from sickness or to avoid

going outdoors as well as, in this high-income population, travel out of north China to

escape the severe pollution. We estimate that severe PM2.5 on the day before a school

day increases the probability that an absence spell is initiated by 0.43 percentage point,

that is, an 11% increase relative to a sample mean of 3.8 percent.

We specify models with richer lag structures that allow more prolonged PM2.5 exposure

to explain the absence decision, beyond simply PM2.5 levels on the day before or early

morning of the school day. Biological effects may not be manifested in the form of an

absence immediately, much as an avoidance trip’s departure from the city may lag high

PM2.5 by a few days. Distributed lag models with up to 14 days of delay yield estimated

cumulative PM2.5 effects that grow with the number of lags.7 In a model including 24-

hour PM2.5 levels in each of the 14 days preceding a school day, shifting the pollution dose

from 0 to 14 days of severe PM2.5—a huge variation in dose—raises the probability that

4Here we report 2SLS estimates, which tend to be double their OLS counterparts.
5Absence rates are a lower 4% to 5% in Ransom and Pope (1992) and Currie et al. (2009), but Hales

et al. (2016) report a higher 10% in Salt Lake City, where PM2.5 averages 10 µg/m3. In our sample,
absenteeism is lowest among nationals of Japan, Korea and Singapore.

6The 5th percentile of the daily PM2.5 distribution over our sample period is 17 µg/m3 (again, the US
NAAQS is 12 µg/m3). Hales et al. (2016) conjecture “that absolute values of PM2.5 (may) matter more
in determining school absences than do fluctuations from mean PM2.5 levels” (p.11).

7Zanobetti et al. (2003) find that models considering only immediate exposure to particle pollution, as
opposed to more prolonged exposure over several weeks, underestimate the mortality response.
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an absence spell is initiated by about 1.5 percentage point. In a model with cubic functions

of daily PM2.5 in each of 14 days preceding a school day, a lower though still large shift

from 100 to 200 µg/m3 sustained over the fortnight raises the probability that an absence

spell is initiated by 0.8 percentage point, or a 20% increase relative to the sample mean

of 3.8 percent (a risk ratio of 1.2). We further find that Chinese nationals display lower

absence responses to PM2.5 than US/Canada nationals. The sensitivity of absences to

PM2.5 is stronger among students who exhibit higher absenteeism overall, particularly in

the top quintile (80th percentile and above) of the distribution of individual absence rates

over the 6,500 students in the sample. Our data uniquely allow us to track a student as

she ages or as her duration at the school increases. We find a U-shaped response to PM2.5

over age, though of marginal significance. The PM2.5 response does not vary with the

time of residence in China, as proxied by the time since first enrolling at the school.

Our paper makes several contributions over the extant literature linking student ab-

sences to air pollution. It is the first to examine a student by day panel for a sizable

population (thousands) over multiple years, and the first to examine a wide range of par-

ticle pollution that is most relevant to developing countries. Like Ransom and Pope (2013),

our paper provides estimates using credible exclusion restrictions based on high-frequency

atmospheric ventilation conditions that critically determine local air quality and yet do

not respond to anthropogenic activity. It is the first study to offer a window into the

health and avoidance responses of a group of young, high-income and mostly rich-country

nationals being subjected to north China’s urban air, often for the first time.8. We obtain

positive absence responses to severe PM2.5. Responses are larger among US/Canadian

than among Chinese nationals, larger among students who generally miss school the most,

and larger when we do not restrict the (biological/behavioral) response to be immediate.

While the effects described above are considerable, when applied to in-sample exposure

variation we obtain that severe PM2.5 explains only a fraction of one percentage point

of the overall 4 percent absence incidence; only for the most sensitive subgroups does

8Stories of costly adaptation to China’s air by foreign executives—whose children might be in our
sample—abound, e.g., Wong (2015); Liu (2017)
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severe PM2.5 explain one full percentage point.9 The proportion of absences explained

by the severe PM2.5 fluctuations in our setting is not large relative to what Currie et al.

(2009) and Ransom and Pope (2013) find for CO in Texas (1996-2002) and PM10 in

Utah Valley (1985-1991), respectively. Using aggregate school by period (six periods per

academic year) data, Currie et al. (2009) estimate a 0.8 percentage point reduction in

absences for El Paso in 2000/01, a year with lower CO levels compared to 1986, when

CO exceeded the Air Quality Standard on 16 days. Ransom and Pope (2013) conclude

that PM10, averaging 45 µg/m3 in their sample (PM10 is usually double PM2.5 mass),

“caused 2.25 percent of students to be absent on the average day...roughly half of the

total rate of absenteeism” (p.14). Hales et al. (2016) study Utah absences over a later

period than in their seminal work. Selecting absences at one specific school district as

a quasi-control, they find that “a 100 µg/m3 increase in 7-day moving average PM10 is

associated with a 10% to 15% increase in absences” (p.11)—a response that is still higher

but closer to what we find. Currie et al. (2009) helpfully review the previous literature,

which typically regresses school- or grade-level absence counts or rates on one or two

pollutant levels (PM10, CO, ozone, NOx), finding mostly positive associations—and often

of large magnitudes.10

School attendance is a key input to the production of privately and socially benefi-

cial human capital (Grossman and Kaestner, 1997; Gottfried, 2014). Beyond children’s

health,11 our paper contributes to our understanding of (impediments to) human capital

formation, and the coping strategies by affluent households, in heavily polluted cities in

the developing world. On a more positive note, our finding that despite the excess pol-

lution the absentee response is not excessive relative to what the literature finds for the

US suggests that high-income families from mostly rich countries, stationed temporarily

9For example, the incidence of absences in the top quintile of the student absenteeism distribution is
predicted to fall from 9.0% to 8.6%, i.e., by 0.4 percentage point, if we truncate the right tail of the 24-hour
PM2.5 distribution at 200 µg/m3 (corresponding to an 11% density). Similarly, predicted absences in this
group fall by 1.2 percentage point if we truncate the PM2.5 distribution at 100 µg/m3 (a 40% density).

10Table 1 in Currie et al. (2009) summarizes the sample, method and findings in Ransom and Pope
(1992), Makino (2000), Chen et al. (2000), Gilliland et al. (2001), and Park et al. (2002). Romieu et al.
(1992) examine ozone-related absences in a panel of 111 preschoolers in Mexico City over three months.

11Currie et al. (2009) cite the “lack of health measures that capture the range of morbidities purportedly
related to pollution” (p.693). Ransom and Pope (2013) argue that absences are “a measure of children’s
health and morbidity that is more sensitive than the extreme measures of hospitalization or death” (p.2).
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in developing-world megacities, find ways to adapt. For example, moving life indoors and

staying inside air-conditioned spaces at home, school, and car, may partly be protective of

one’s health, even if temporary residence in north China comes at the expense of long-term

health, a topic that remains open for research.

2 Institutional background and data

Origin of student attendance records. In 2013, we contacted the principals of 16

international schools located in a large urban center in China that is routinely exposed

to severe PM2.5 pollution. These schools cater largely to the expatriate community and,

to a lesser extent, to Chinese families that have some international connection, such as

families that have lived outside China. We explained that we were interested in studying

the effect of air pollution on student absences at several international schools in China

and that, in view of the topic’s sensitivity, the addressee’s school would be anonymized

were it ultimately included in our sample. We decided to focus our data collection effort

on such schools given our understanding that they might be more open to sharing their

attendance records with us. Moreover, such data might inform on possible adaptation

by newly enrolled students of varying nationalities to a new and polluted environment,

starting from the day they first enroll at the school. Among the 16 schools that we

contacted, principals at seven schools agreed to meet with us. Ultimately, longitudinal

student-level attendance records were shared by three of these schools.12

Variation in absence rates over time and across students. A key aspect of

the attendance data is its longitudinal structure and high frequency. Since we follow the

same student day by day, we can control for individual heterogeneity and seasonality. The

periods of observation for the three schools are: (1) September 2008 to June 2014, (2)

April 2010 to December 2014, and (3) April 2013 to June 2014. The schools vary in size,

with median enrollment across days in each school sample of: (1) 1,541, (2) 1,056, and (3)

284 students. Each of the three schools caters to children of all ages, from 3 to 19 years.

12The initial contact letters as well as the non-disclosure agreements we signed, with the addressee and
school details omitted, are available from the authors.
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In terms of student nationality, rich countries grouped by continent—US/Canada,

Europe, Japan/Korea/Singapore—each account for at least one-third of enrollment for at

least one school, e.g., at one school, US/Canada accounts for one-third of enrollment and

Europe accounts for another one-third of students. Chinese nationals account for 7% to

20% of the student body at each school. At each school, the median enrollment duration

among students who depart in-sample ranges between 1.8 and 2.8 years, with the 10th

percentile below one year and the 90th percentile above four years (see Figure A.1, panel

(b)). Due to the high turnover, as well as enrollment growth at one school in particular,

the number of students in the combined sample (henceforth, sample) is 6,545.

We take the schools’ published calendars and validate these against observed atten-

dance records. We define a school day as a day in which a given school was in session. This

is invariably a weekday, Monday to Friday, during the academic year, from August to June,

excluding winter and summer vacations, breaks of three or more successive weekdays, and

short holidays of one or two successive weekdays. As labeled here, breaks include the ex-

tended National Day and Spring Festival (Chinese New Year) celebratory periods, whereas

short holidays include “staff professional development” and “parent-teacher conference”

days and the (one or two-day) Mid Autumn and Dragon Boat Festivals.

Table 1 reports summary statistics across enrolled student by school day (henceforth,

student-day) observations. There are 2.5 million student-day pairs in the sample, with

absences accounting for 6.6% of observations. Compared to the absence rate for nationals

of Japan/Korea/Singapore, at 4.7% of student-days, absenteeism is 31% and 51% higher

for nationals of Europe, at 7.1%, and the US/Canada, at 6.1%, respectively. Perhaps sur-

prisingly, the absence rate for Chinese nationals, at 7.2%, is similar to that of Europeans.

Since adjacent school days of absence by a same student are usually triggered by a

single choice or shock, such as travel and health, we will focus our analysis on how pollution

exposure may trigger the decision to initiate a spell of consecutive absence days. If we

exclude the second and subsequent adjacent absence days of every student absence spell

from the sample, keeping the first day of each absence spell as well as all student-day

observations of attendance, then absences account for 4.0% of student-day observations.
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To illustrate, say that the sample consisted merely of one student and 10 consecutive

school days, Monday to Friday of week 1 and Monday to Friday of week 2. If the student

were absent on Thursday and Friday of week 1 (or, equivalently for our purpose, Friday

of week 1 and Monday of week 2), then the “raw” absence rate would be 2/10. Excluding

the second day of the absence spell—say that it was triggered by the single decision to

travel out of town over an extended weekend—the “spell-adjusted” absence rate would be

1/9. It is the influence of acute exposure to particle pollution on initiating absence spells

that we will examine.13

Figure 1 summarizes how (raw) absence rates vary over time and across individual

students. For every day in the sample, when at least one school is in session, we com-

pute the proportion of enrolled students who are absent. Panel (a) shows a right-skewed

distribution of the aggregate absence rate over 1,234 days. The median day exhibits an

absence rate of 5.8%, and days in the 10th and 90th percentiles experience absence rates

of 3.8% and 10.5%. The day-to-day variation in absenteeism is important to our empirical

strategy. Our task is to uncover the extent to which this temporal variation is driven by

variation in concurrent and recent exposure to ambient PM2.5 levels, once we account

for other time-varying determinants. Another important control for absenteeism is unob-

served individual heterogeneity. For every student in the sample, we divide the student’s

overall number of days absent by the number of school days in the sample during which

the student was enrolled. This would be 2/10 in the preceding example. Panel (b) shows a

right-skewed distribution of the individual absence rate over 6,545 students. The median

student is absent on 5.1% of days. Some students exhibit a significantly higher absence

rate than others. The plot illustrates why we control for individual heterogeneity.

For each student, we also divide the number of school days while enrolled in the sample

by her number of absence spells; this would be 9 school days/absence spell for the single

student in the example. Panel (c) of Figure 1 shows wide variation across students in the

school days per absence spell statistic. In-sample enrolled days are low for some students

since they enrolled at the school near the end of the sample period. It is also plausible

13For perspective, the sample contains 165,698 student-day absences and 97,164 absence spells. 70% of
absence spells last one day, 15% last two (school) days, and 6% last three days.
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that some students leave China earlier than anticipated due to difficulty adapting to the

city’s polluted environment. Figure A.1, panel (a) reports the distribution across students

of school days in the sample; one academic year consists of just under 200 school days.

Figure A.2 shows that students with short duration in the sample or at the school, in

panels (a) and (b) respectively, are associated with higher absence rates.

Figure 2 considers several time-varying drivers of absences, factors that we control for

in our empirical model of school absences. There are non-monotonic relationships between

absenteeism and age, in panel (a), and day of the week, in panel (b). The absence rate

is lower for students aged around 10 years compared to younger and older students. The

absence rate is higher on Mondays and Fridays compared to the middle of the week. The

proximity-to-weekend effect may in part be driven by activities that compete with school,

such as short trips. Panel (c) shows the effect of (pre-determined) vacations and breaks

on surrounding school days. Absence rates tend to increase in the five days leading up to

a vacation or break, and decrease in the five days following a vacation or break, likely due

in part to students taking off early for a trip out of town (e.g., to their home country) or

returning late.14 Patterns in the data assure us of their high quality.

Panel (d) reports a seasonal pattern for absenteeism, with lower absence rates around

August/September, as the academic year is off to a start, and in May, typically the last

full month of the academic year, compared to higher absence rates in December through

February. The winter months of December through February are colder and tend to exhibit

higher particle levels than other months.15 In addition, many students travel abroad over

the winter vacation and may depart before school closes in December or return after school

reopens in January. Since newly enrolled students are often being introduced to a type

of urban environment that is foreign to them, we separately plot absence rates over the

calendar months in a student’s first year of enrollment versus subsequent years. We find

14Similarly, absences increase in the days leading up to, and decrease in the days following, a short
holiday. Further, official public holidays on which a school is in session (22 days in the sample) shift
absences (up by two-thirds). While schools may not follow the official public holiday calendar, student
absences can be impacted by it if parents’ employers adopt this calendar, inducing travel. For example,
the government decreed that the Monday and Tuesday prior to 2013’s Labor Day, on a Wednesday, were
public holidays. While all three schools were in session on the Monday and Tuesday, absences were high.

15Hales et al. (2016) report similar weekly and annual patterns for elementary school absence counts in
Utah, speaking to the quality of our micro data. We also observe more absences on colder winter days.
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little variation along this margin—if anything, absences appear slightly lower during a

student’s first year.

Particle pollution, weather and atmospheric ventilation. As a proxy for severe

air pollution, we obtained PM2.5 mass concentrations measured every hour by the US

State Department on the rooftop of the US embassy located in the city that hosts the

schools over the 2008 to 2014 sample period. This outdoor air monitoring site is located

no more than 20 km from the three schools. The schools informed us that most students

live within 10 km of the school, likely due in part to the state of road congestion in major

Chinese cities (Viard and Fu, 2015; Gu et al., 2017). Alternative PM2.5 measurements at

Chinese Ministry of Environmental Protection (CMEP) sites across the city, available only

from 2013, show tight spatial correlation not only across CMEP sites but also with US

embassy records in the overlapping period. Specifically, the correlation coefficient between

(24-hour) PM2.5 at the US embassy and the CMEP site average over days in 2013 and

2014 is a very high 0.97. As suggested by typical media coverage both local and foreign,

fluctuation in PM2.5 severity is a citywide—not a neighborhood—phenomenon, not least

due to regional atmospheric ventilation shocks, discussed below, that govern the dispersion

of pollutants and are plausibly exogenous to unobserved determinants of absences.

For the same-day pollution level as a potential shifter of absences, we take the PM2.5

reading at 6 am, prior to classes starting. To allow for more prolonged pollution exposure,

over up to the 14 preceding calendar days, to explain absence, we aggregate the one-

hour PM2.5 readings into daily 24-hour averages. In specifications with up to 14 days

of lagged exposure, we discard up to 14 days from the first school day after vacations,

as students may have been out of town and we are unable to assign lagged exposure.

Figure 3, panel (a) shows wide variation in daily PM2.5 over the sample period. There

is substantial density beyond 100 µg/m3, and even beyond 200 µg/m3. Much variation

remains, in panel (b), even after regressing daily PM2.5 on month-of-year fixed effects and

day-of-week fixed effects (Monday, ..., Sunday, and public holiday). Panel (c) reports the

distribution of the absolute change in daily PM2.5 from one day to the next, where the

median shift is a high 37 µg/m3 (the 75th percentile is 68 µg/m3). Table 1 shows that

10



much variation also remains even as we aggregate PM2.5 over consecutive days, e.g., the

7-day and the 14-day averages have ranges of 25 to 346 and 34 to 270 µg/m3, respectively.

We obtained weather conditions at ground level, compiled by NASA for the sampled

city and period, namely, 3-hour readings for temperature, humidity and precipitation.

We control for temperature, humidity and rain in our student absence equations, as such

weather conditions on the ground may shift absences directly (Section 3). Compared

to the magnitude of PM2.5 shocks from one day to the next, Figure A.3 suggests that

weather is more persistent, with median shifts in daily mean ambient temperature and

relative humidity from one day to the next of 1.2 ◦C and 7.7%, respectively.16

Ventilation conditions in the lower atmosphere for a reference location 19 km from

the US Embassy are available from NOAA. We observe 12-hour readings (8 am and 8 pm

local time) of vertical thermal gradients and horizontal wind speed and direction. Beyond

the OLS estimates that we provide, our 2SLS estimates allow for measurement error in

students’ pollution exposure, as well as time-varying omitted correlates or determinants

of student absences, including emissions from road traffic. In such specifications, we

instrument for measured PM2.5 using PM2.5 variation induced by atmospheric ventilation

shocks, as proxied by temperature-altitude gradients and wind conditions.

The last three panels of Figure 3 report on the strength of the atmospheric ventila-

tion instruments. The plots show (all variables are daily means) PM2.5 against: (d) the

temperature difference from ground level to a pressure point of 1000 mb, (e) the temper-

ature difference from 1000 to 925 mb, and (f) ground-level wind speed. Again, we partial

out confounding systematic seasonal and weekly variation from each series. Positive and

steeper temperature gradients with altitude (e.g., a layer hot air stationed overhead that

traps pollutants close to the ground, where they are emitted), as well as lower wind speeds

(e.g., still air), are strongly associated with higher fine particle levels. The 2SLS identifying

assumption is that day-to-day fluctuations in vertical ventilation, as thermal inversions set

in and lift, and horizontal ventilation, as wind changes in intensity (and direction), while

16This feature, coupled with the weather controls that we add directly to our estimating equation,
suggests that ambient weather is unlikely to confound our inference of the impact of PM2.5 on absences.
Taking longer two-day differences, the median absolute shift is 51 µg/m3, 1.8 ◦C and 11% for 24-hour
mean PM2.5, temperature and relative humidity, respectively.
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strong predictors of PM2.5, do not affect absences directly or correlate with unobserved

determinants of absences.

3 Empirical model

A student i’s absence decision on school day t can be described by a latent utility model,

where the utility from not attending school is:

y∗it = α0 + Ztβ +Wtα1 +Xitα2 + αi + αt + εit (1)

and an absence is observed if and only if Ait = 1[y∗it > 0], where Ait is a binary variable.

Row vector Zt of pollution exposure variables includes concurrent exposure (e.g., PM2.5

concentration at 6 am of school day t) and, more generally, lagged-day exposure, Ztp,

where p = 0, 1, ..., P indexes the lag in calendar days relative to t, starting with p = 0,

the period concurrent to school day t, and P ≥ 0. For example, a model with P = 1

restricts only prior-day (and same-day) pollution to influence absences. Further, Ztp can

be a non-parametric or parametric function of exposure, e.g., a dummy for PM2.5 above

a threshold, or a cubic function of PM2.5.

Vector Wt consists of concurrent weather covariates, namely, ground-level temperature,

humidity and rain.17 Wt can affect both direct and opportunity costs of attending school.

For instance, cold and rainy weather may raise the effort required to get out of bed and

commute to school, including through any health channels. At the same time, cold and

rain can reduce the value of outdoor activities that may compete with school. Following

Section 2, Xit captures time-varying student-level determinants or correlates of absences,

such as granular age bins and functions of time since first enrolling at the school18 Student

fixed effect αi captures the unobserved characteristics that affect an individual’s utility

from not attending school. To account for systematic annual and weekly cycles and other

17We include linear and quadratic terms for: the 24-hour means of temperature, relative humidity and
rain observed on the previous day t− 1; the temperature, humidity and rain reading at 6 am on day t. We
further include indicators for any rain on day t− 1 and rain at 6 am on day t.

18For example, indicators for the student’s first two semesters of enrollment. We find that students in
the first semester of enrollment display lower absences than in subsequent semesters. We further interact
these indicators with nationality and find that lower first-semester absences arise among non-Chinese.
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time-varying drivers of absences, vector αt includes year-month (month-of-sample) fixed

effects and day-of-week fixed effects (this includes an indicator for public holidays when

the student’s school was in session). To capture travel ahead of, or extended beyond,

longer periods in which school closes, αt further includes indicators for each of the five

school days that lead up to, or that follow, a winter or summer vacation or a break (our

label for three or more successive weekdays in which the school breaks).19

We then estimate a linear probability model of student absences:

P (Ait = 1) = α0 + Ztβ +Wtα1 +Xitα2 + αi + αt + εit (2)

Distributed lag structure for PM2.5 exposure. Following a literature in epidemi-

ology (Zanobetti et al., 2002, 2003), we estimate models with distributed lag structures

increasing from P = 1 to P = 14 days prior to the observed student absence decision,

to capture the cumulative impact from more prolonged exposure to particle pollution.

For example, in a model in which P PM2.5 covariates enter linearly, we estimate 1 + P

parameters βp in (2), and report the cumulative shift in the probability of absence from a

given PM2.5 increase sustained in each of 1 + P concurrent and lagged days of exposure,∑P
p=0 βp. This model is the unconstrained distributed lag, UDL(P ). While serial correla-

tion in Z can make estimation of the individual βp challenging, the cumulative effect can

be precisely estimated (Wooldridge, 2015, p.316).

Alternatively, in a polynomial distributed lag PDL(P,Q) model, the 1 +P coefficients

on the lag structure are disciplined according to a smooth polynomial function of degree

Q < P , such that the exposure coefficients satisfy βp =
∑Q

k=0 ηkp
k, p = 0, 1, ..., P , where

ηk are parameters constraining the βp. As an alternative to UDL models, we estimate

PDL(P, 2) models constraining the βp to follow a quadratic (and P > 2), and find a

similar cumulative impact
∑P

p=0 βp. Constraining the shape of variation in the lagged

dose-response coefficients may improve precision relative to the UDL, at the expense of

minimal bias (Schwartz, 2000). For comparison, in a study of daily aggregate absences at

19These indicators can again be interacted with nationality group (our findings are robust to doing so).
We further add indicators for each of the two school days that lead up to, or that follow, a short holiday
(our label for one or two successive weekdays without school).
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an elementary school in Utah, Ransom and Pope (2013) specify 7-day lagged averages for

PM10 (and CO) as the measure of exposure. Gilliland et al. (2001) allow acute effects of

pollution on 4th grade absences in California to be distributed over up to 30 days.

Endogenous PM2.5 exposure. Besides OLS, we estimate models by 2SLS to alle-

viate concern that PM2.5 exposure is measured with error or endogenous.20 The exclusion

restriction is that ventilation in the lower atmosphere, V , only affects absences through its

effect on air pollution. Specifically, V includes the atmospheric thermal gradients and sur-

face wind speed and direction variables reported in Table 1. To account for the build-up of

particles when ventilation is poor, we include an indicator for wind speed less than 1 m/s

interacted with each of three indicators denoting inversions in the three layers closest to

the surface.21 Such variables are key determinants of PM2.5 and are unlikely to correlate

with unobserved absence shocks, εit. Recall from panels (d) to (f) of Figure 3 that PM2.5

is higher the larger (less negative or more positive) is the temperature-altitude gradient,

since warmer air overhead traps PM2.5 that is emitted or formed near the ground; more-

over, PM2.5 is higher when the air is still and horizontal ventilation is poor. We thus use

ventilation conditions V to form an instrument for measured PM2.5 pollution Z:

Zt = δ0 + Vtδ1 + δt + νt, (3)

To be clear, V does not include weather Wt, namely ambient temperature, humidity and

rain, which we allow to directly affect absences. δt are time fixed effects (year-month, day-

of-week), and νt is a disturbance. We fit Ẑ using (3) implemented on daily observations t

between August 2008 and December 2014, and employ these fitted values to instrument

for measured PM2.5 in the linear probability model of student absences (2).22

20For instance, unobserved shifts in the value of activities that compete with school, a popular concert
say, might raise absences as well as traffic congestion and emissions, leading to upward bias. Similarly,
shocks to road congestion might raise vehicle emissions and absences.

21For continuous variables, we include squares. We include 24-hour mean ventilation conditions on the
day and (in the baseline immediate exposure analysis) in each of the two preceding days. Table 6 tests for
robustness. For comparison, Ransom and Pope (2013) use a “clearing index which measures the level of
ventilation or air movement in the atmosphere...defined as mixed layer depth...times the wind speed” (p.7);
a day is “stagnant” when the clearing index on the day and the two prior days stays below a threshold.

22To obtain 2SLS estimates, we still generate first-stage predictions of PM2.5 from these fitted values and
all other non-PM2.5 covariates in the second-stage absence equation. Isen et al. (2017) similarly instrument
for pollution using fitted pollution, imputed from a policy rather than atmospheric intervention as we do.
As an alternative to using fitted values from (3), we can instrument for pollution using V . In linear models

14



4 Severe air pollution and student absences

We first examine the relationship between absences on a given school day and PM2.5 levels

on the day before, and then subsequently enrich the lag structure of the model to allow for

more prolonged PM2.5 exposure to explain absences. We obtain our preferred estimation

sample from the original student-day observations as follows. For each school by age group

pair (three schools each with preschool, primary, middle and high school divisions, totaling

12 pairs), we compute the proportion of students absent on each school day. Observations

pertaining to a school day in which the student’s school-division specific absence rate

exceeds 30% are dropped from the estimation sample, since the very high absence rate is

likely due to recording error. This drops only 0.7% or 17,547 out of 2,528,567 observations

in the original sample.23 As explained in Section 2, we further exclude the second and

subsequent adjacent absence days for every observed student absence spell in the original

sample, since these follow-on absence days typically stem from the same decision (by the

student or her parent) that drove the first absence day in the absence spell, for example,

health or travel, including remedial or defensive responses to pollution.24 We thus arrive

at an estimation sample with 2,448,516 observations. We examine spell-adjusted absences,

where an absence is the first school day of an absence spell.

Table 2 estimates linear probability model (2) of student absences and, as alternative

measures of immediate exposure to severe PM2.5, considers: (columns 1 and 2) an indi-

cator that daily mean PM2.5 on the day before the absence decision exceeded 200 µg/m3

(recall panel (a) of Figure 3); (column 3) a count of the days in which daily mean PM2.5

exceeded 200 µg/m3 in the three days prior to the absence decision (zero, one, two or

three); (column 4) a linear spline function of daily mean PM2.5 on the day before the ab-

sence decision; and (columns 5 to 7) a quadratic function of daily mean PM2.5 on the day

before the absence decision. In column 1, severe PM2.5 on the day before (defined here

such as ours, results should be similar (Angrist and Krueger, 2001), as indeed we find (Table 6).
23Panel (a) of Figure 1 shows low density already at an absence rate of 20%. Table 5 shows that

estimates are robust to: not dropping observations on these very high absence days, or instead to dropping
observations pertaining to days in which the absence rate exceeds 50% (rather than 30%).

24Table 5 shows that estimates are robust to keeping 62,504 observed second and subsequent absence
days within absence spell in the estimation sample. Intuitively, estimated effects are even higher. Similarly,
Gilliland et al. (2001) examine “incident” (first-day) absences as opposed to “prevalent” absences.
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as a mean above 200 µg/m3) raises the probability that an absence spell is initiated by a

precisely estimated 0.20 percentage point, that is, a 5.2% increase (0.2/3.83) relative to a

sample mean of 3.83 percent. In column 2, we instrument for the severe PM2.5 dummy

using fitted ventilation-induced PM2.5 and its square (i.e., as driven by atmospheric ven-

tilation conditions per note 21), obtaining a 2SLS estimate of the effect of severe PM2.5

that is about double the OLS estimate. The occurrence of severe PM2.5 yesterday raises

the probability that an absence spell is initiated today by 0.43 percentage point, i.e., an

11% increase relative to a sample mean of 3.83 percent. Again, the exclusion restriction

is that absences respond to atmospheric thermal gradients and surface wind speed and

direction (panels (d) to (f) of Figure 3) only indirectly, through these variables’ effect on

particle concentrations. A higher absence response estimated by 2SLS compared to OLS,

as in column 2 versus column 1, is a result we obtain throughout.

Consistent with column 1, column 3 reports OLS estimates that each additional severe

PM2.5 day in the preceding three days raises the incidence of absences by 0.13 percentage

point. Thus, for example, the incidence of severe PM2.5 in all three preceding days raises

the probability that an absence spell is initiated today by 0.39 percentage point, or 10%

of the sample mean. A higher estimated absence response on allowing sustained PM2.5

exposure to drive absences, as in column 3 versus column 1 (0.13 × 3 versus 0.20), is

another result we obtain throughout.

Column 4 reports OLS estimates of a linear spline function of prior-day PM2.5, with

three knots set at 50, 100 and 200 µg/m3. Perhaps surprisingly, the likelihood that an

absence spell is initiated falls as prior-day PM2.5 increases over the 50 to 100 µg/m3

range, and then grows as prior-day PM2.5 increases beyond 100 µg/m3. To illustrate the

point estimates, a shift from 50 to 100 µg/m3 lowers the absence incidence by 0.43 ×

(100− 50)/100 = 0.22 percentage point; a shift from 100 to 200 µg/m3 raises the absence

probability by 0.16× (200− 100)/100 = 0.16 percentage point. One interpretation is that

on “blue sky days” when air quality is relatively good, say, below 50 µg/m3, students

are more likely to skip school to go to the park or to run errands outdoors.25. A non-

25Shi and Skuterud (2015) find employees in Canada calling in sick when weather is of high recreational
quality. Also see Connolly (2008). Wong (2013) cites a senior at a local high school in north China: “The
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monotonic absence response, by which absences initially fall as pollution rises from low

levels and subsequently rise, as in column 4, is yet another result we obtain throughout.

The non-linearity in the pollution-absence relationship in our setting can be seen di-

rectly in the data, in Figure 4: in panels (a) to (c) we document the incidence of absences

over prior-day PM2.5 bins of width 20 µg/m3, i.e., 0-20, 20-40, etc. We plot the propor-

tion of students initiating an absence spell both in the original sample, as well as in the

estimation sample that excludes observations jointly yielding school-division absence rates

over 30% (and we also show alternative bins of width 30 µg/m3). The absence incidence

falls over the first several bins and then rises. To highlight variation in the 50-100 µg/m3

range, panels (d) to (f) show the proportion of students initiating an absence spell against

percentiles of the PM2.5 distribution (panel (a), Figure 3). Moreover, panels (g) to (i) of

Figure 4 show percentiles of the PM2.5 distribution after partialling out co-variation with

all the other absence shifters in the model (e.g., weather W , time fixed effects αt).

The parametric specification in columns 5 to 7, in which we include both linear and

quadratic terms in prior-day PM2.5, similarly yields a non-monotonic pollution-absence

relationship, e.g., OLS estimates in column 5. Comparing column 6 to column 5, estimated

coefficients on prior-day PM2.5 change little if we include the same-day PM2.5 reading

at 6 am, a few hours before classes start, to the regression model of absences. This

specification, which has a falsification test flavor, suggests that the decision to miss school

is taken prior to 6 am on the same day, for example, on the evening before the school day.

Again, the 2SLS estimate of the absence response is about double the OLS estimate as

PM2.5 becomes increasingly severe (column 7 versus column 5).

We also observe that the share of absence spells lasting one day grows as the severity

of pollution increases. For example, take the distribution of the past-three-day severe

PM2.5 count over all student-day observations (with year and month-of-year partialled

out) and consider the duration of absence spells initiated in the top decile of this PM2.5

distribution compared to those initiated in the bottom decile. One-day absences account

for 73% of absence spells initiated under severe PM2.5 compared to 63% of absence spells

days with blue sky and seemingly clean air are treasured, and I usually go out and do exercise.”
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initiated under lower pollution. We tentatively interpret this evidence as being consistent

with a compositional change in absences, toward shorter pollution-induced (biological or

behavioral) absences as PM2.5 rises relative to longer predetermined absences.

In sum, Table 2 suggests that the estimated student absence response to PM2.5 is:

(i) stronger if one allows for endogenous PM2.5 exposure, (ii) stronger if one allows for

a more delayed response than the day (or a few hours) before the absence decision, and

(iii) non-monotonic, at least over the initial range of PM2.5 variation in our urban China

setting where particle pollution is typically severe, i.e., skies are routinely not blue.

Heterogeneous response to air pollution, and robustness. Table 3 implements

the 2SLS estimator of the prior-day severe PM2.5 dummy (as in Table 2, column 2) on

separate subsamples based on: (column 1) the time elapsed since first enrolling at the

school, with the first and second semesters of enrollment jointly accounting for 32% of

student-day observations; (column 2) academic year, with school days in the 2012/13

and subsequent years accounting for 43% of observations; (column 3) nationality group;

(column 4) age group; and (column 5) quintile of the distribution of individual absence

rates across the 6,545 students in the sample (Figure 1, panel (b)), i.e., over 80th percentile

absentee, 60th to 80th percentile, etc. As a measure of individual vulnerability in general,

Currie et al. (2009) state that “there is a long tradition of using absence from school to

define disability among children” (p.684).

As a less flexible alternative to Table 3’s subsample analysis, Table 4 reports on 2SLS

regressions implemented on the full sample but now interacting the prior-day severe PM2.5

dummy with nationality group or with absenteeism quintile. We instrument for the severe

PM2.5 measure and its interactions with levels and corresponding interactions of fitted

ventilation-induced PM2.5 and its square. As further sensitivity analysis, we specify the

past-three-day severe PM2.5 count as an alternative measure of pollution severity. We

also show OLS estimates.

Estimates for all implementations in Tables 3 and 4 suggest that Chinese nationals

display lower absence responses to PM2.5 than US/Canada nationals, and we reject equal

responses by both groups with a p-value of 0.009 (Table 4, column 2). Both flexible and
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less-flexible implementations indicate that the sensitivity of absences to severe PM2.5 is

stronger among students who exhibit higher absenteeism overall. The estimated coefficient

on the severe PM2.5 dummy increases as we separately consider subsamples of students in

higher absenteeism quintiles (Table 3, column 5). Similarly, estimates on the severe PM2.5

× absenteeism quintile interactions increase in the absenteeism quintile (Table 4, column

4). A student in the highest absenteeism quintile is 1.3 percentage point more likely to

initiate an absence spell on the school day following a severe PM2.5 day compared to a

student in the lowest quintile. To check whether this result may be driven in part by

students with short duration in the sample, who tend to be absent more (Figures A.1

and A.2), we re-estimated the Table 4, column 4 specification on a subsample restricted

to students with over 200 school days, or about one academic year, of observation. This

shrinks the number of students from 6,545 to 4,390. Estimates on the severe PM2.5 ×

absenteeism quintile interactions (not shown for brevity) are very similar to those reported

in Table 4, where the sample included the short-duration students.

Moreover, Table 3 provides weak evidence that the sensitivity of absences to severe

PM2.5 is lower: (i) in the first semester of enrollment compared with subsequent semesters

(column 1), and (ii) among students aged 5 to 12 years compared with younger and

older children (column 4). However, differences are not statistically significant. Figure 5

plots the heterogeneous absence response to PM2.5 by nationality group, age group and

absenteeism quintile estimated in Table 3.

Finally, Tables 5 and 6 show several robustness tests: (i) varying the estimation sample,

e.g., not dropping the very high absence days, not dropping the second and subsequent

absence day within absence spell, restricting the sample to students with over 200 school

days; (ii) varying the set of controls, e.g., controlling for temperature with granular bins

3 ◦C wide, adding week-of-year dummies for finer seasonal controls, interacting year-

month fixed effects with school-division fixed effects; and (iii) varying the set of excluded

instruments, e.g., fitting PM2.5 using atmospheric ventilation conditions up to one day

before PM2.5 is measured, but not two days before.

More prolonged exposure to air pollution. We now enrich the lag structure
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of our model of PM2.5 as a driver of absences. Importantly, 24-hour PM2.5 fluctuates

substantially from day to day (the 75th percentile is a 68 µg/m3 swing) and there is large

variation in exposure even as we aggregate over several days (the 7-day average ranges

from 25 to 346 µg/m3). Table 7 and Figure 6 report cumulative effects of past P days

of PM2.5 on the decision to initiate an absence spell, for alternative: distributed lag

models (lagged exposure coefficients disciplined or not); PM2.5 measures (non-parametric

or parametric); identifying restrictions (all measured PM2.5 variation or only that induced

by atmospheric ventilation); and estimation samples (full sample or specific to student’s

nationality or overall absenteeism level). Consistent with the above findings, estimated

responses are generally higher under 2SLS than OLS, higher as we allow a longer delay up

to a fortnight (fixing the average dose over the lags), higher for US/Canada (and Europe)

than for Chinese nationals, and higher for students who generally miss school the most.

Panels A and C of Table 7 specify daily lags of severe particle pollution, each lag

characterized by a dummy indicating 24-hour PM2.5 in excess of 200 µg/m3. A large

shift in exposure over the preceding week, from 0 to 7 days of severe PM2.5, raises the

incidence of absences by: 0.98 percentage point in the full sample (panel A, right and

Figure 6b, row/horizontal axis marked P = 7); 1.02 percentage point among US/Canada

nationals (panel C, left); and 2.57 percentage points among students in the top quintile of

the absenteeism distribution (panel C, right).26 To quantify the empirical importance of

PM2.5 fluctuations around a severe threshold at explaining absences overall, we can take

each estimated model and predict absences in the counterfactual scenario that 24-hour

PM2.5 were not to exceed 200 µg/m3 (mechanically, we set the severe PM2.5 dummy to

zero once the model has been estimated). We find that in-sample severe PM2.5 variation

explains considerably less than one percentage point, or one-quarter, of student absences

in the overall population.27

Panel B of Table 7 specifies daily lags of 24-hour PM2.5, its square and its cube. A

sizable shift in week-long exposure, from 100 to 200 µg/m3 sustained over 7 days, raises

262SLS estimates based on a UDL(7). Figure 6d reports on an alternative quadratic PDL(7,2).
27An alternative definition of severe PM2.5, using a threshold of 100 rather than 200 µg/m3 for each

lagged day, yields similar estimates (panel D versus panel C).
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the probability that an absence spell is initiated by 0.98 percentage point (panel B, right

and Figure 6f, row/horizontal axis marked P = 7).28 Taking each estimated model and

predicting aggregate absences under the counterfactual scenario that the 24-hour PM2.5

distribution were truncated at 100 µg/m3, close to the sample mean, we again find that

in-sample severe PM2.5 variation explains less than one percentage point of overall student

absences (mechanically, we replace 24-hour PM2.5 above 100 µg/m3 by 100 µg/m3 once

the model has been estimated).

5 Conclusion

We find that short-run fluctuations in the severity of particle pollution drive school ab-

sences in a 1,234-school day panel of 6,545 high-income students attending international

schools in north China. A 2SLS model with 7 lagged days of exposure indicates that the

incidence of absences is 1.1 percentage point higher in the wake of daily PM2.5 exceeding

200 µg/m3 seven days in a row compared to a less polluted week in which daily PM2.5

remains below 200 µg/m3 throughout (95% CI = [0.7,1.5]). A model with a smoother

cubic PM2.5 specification, also allowing up to 7 days of delay and identification similarly

based on exogenous shifts in atmospheric ventilation, indicates that raising the preceding

week’s dose from a constant 100 µg/m3 to a constant 200 µg/m3—still a sizable variation

in the sustained dose—raises the absence incidence by 0.6 percentage point (95% CI =

[0.3,0.9]).

Such illustrative responses of +1.1 and +0.6 percentage point, amounting to +30%

and +15% over a sample mean absence incidence of 3.8 in every 100 school days, are

significant. However, when paired with empirically observed short-run PM2.5 fluctuation,

and despite PM2.5 fluctuating widely within season in the sampled location,29 particle

pollution still explains only 0.1 to 0.2 absence among 3.8 overall absences per 100 school

282SLS estimates based on a quadratic PDL(7,2). The caption to the table or figure describes how the
lagged exposure coefficients are disciplined, as well as the functional form of the excluded instruments.
Denoting 24-hour PM2.5 in daily lag p of school day t by Ztp, and using β1p, β2p and β3p to denote the
coefficients on Ztp, its square Z2

tp and its cube Z3
tp, the cumulative effect of the 100 to 200 µg/m3 shift in

week-long exposure is calculated as
∑7

p=1(200 − 100)β1p + (2002 − 1002)β2p + (2003 − 1003)β3p.
29For example, the median two-day difference in daily 24-hour PM2.5 is 51 µg/m3 (note 16).
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days. It is possible that the generally high levels of ambient PM2.5 in north China (the

5th percentile is 17 µg/m3) already raise the baseline absence rate, as conjectured by

Hales et al. (2016). We note, however, that absenteeism in our sample lies within the

range reported for the US. The absence response we estimate from short-run variation

in pollution is modestly sloped compared to estimates at sustained lower concentrations

encountered in the US, which is consistent with the “supralinearity” hypothesis for the

concentration-response function (Pope et al., 2015). Perhaps the main reason explaining

the moderate absence response to the excessive pollution, first documented here, is that

the affluent child population we examine is largely able to adapt, for example, by shifting

life indoors, behind windows that shut properly and where air is sucked in through air

conditioners and filters. Other than—or because of—life shifting away from outdoor air,

daily routines appear quite normal when viewed from the window of school absences.

The heterogeneous pattern of response that we uncover is revealing. The lower absence

response to PM2.5 that we estimate among Chinese nationals (9% of the sample) compared

to the majority share of US, Canadian and European citizens, is consistent with longer-run

adaptation, since the degraded environment may be more familiar to Chinese children’s

physiology as well as parental behavior. We do not find differential sensitivity of absences

to PM2.5 over time of residence in China, as proxied by time of enrollment at the school.

The pattern is also consistent with compensatory inter-temporal reallocation of schooling.

Western parents may tolerate higher absenteeism during their temporary residence in

China in anticipation of a near-term return to a less polluted home-country environment,

whereas Chinese parents view residence in a polluted environment as less temporary. We

also obtain a markedly stronger absence response to PM2.5 among students who generally

miss school the most. We view this pattern as being consistent with the epidemiological

literature that broadly finds more severe health outcomes such as hospital admissions to

be driven by chronically unhealthy individuals in the population.

Excluding days surrounding vacations and breaks, the in-sample absence incidence in

January is 4.2% compared with 3.2% in May and 2.9% in September. North China’s Jan-

uary is more polluted, colder and drier than May or September. An extreme environment
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might call for extreme measures, such as expanding the winter vacation by six weeks until

Chinese New Year in early February, for most students to remain in their home coun-

tries, and instead shorten the long summer vacation, when environmental quality in north

China is relatively higher. The policy might abate absences to the tune of one school day

for every three students each year (6 weeks × 5 school days/week × 0.01). While such

a school policy is unlikely to be popular in the west, and such avoidance unaffordable

among low-income children, the policy and the avoidance it enables might be welcomed

by informed, high-income parents.
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Table 1: Descriptive statistics

Variables N Mean Std.dev. Min. Max.

Enrolled student is absent on school day (yes=1)... 2,528,567 0.066 0.248 0.000 1.000
...& National of US/Canada (yes=1) 620,852 0.061 0.240 0.000 1.000
...& National of Europe (yes=1) 778,501 0.071 0.257 0.000 1.000
...& National of Japan/Korea/Singapore (yes=1) 448,206 0.047 0.212 0.000 1.000
...& National of China (yes=1) 231,037 0.072 0.259 0.000 1.000
...& National of other countries (yes=1) 423,363 0.074 0.262 0.000 1.000
...& First year of enrollment (yes=1) 801,706 0.067 0.250 0.000 1.000
...& Not the 2nd or subsequent day of absence spell (yes=1) 2,460,033 0.040 0.195 0.000 1.000
Number of days since first enrolling at school (days) 2,513,076 852.69 820.62 0.00 5387.00
First 180 days of enrollment (yes=1) 2,513,076 0.18 0.39 0.00 1.00
181 to 360 days from first enrolling (yes=1) 2,513,076 0.14 0.34 0.00 1.00
Academic year 2012/13 onward (yes=1) 2,528,567 0.43 0.49 0.00 1.00
National of US/Canada (yes=1) 2,501,959 0.25 0.43 0.00 1.00
National of Europe (yes=1) 2,501,959 0.31 0.46 0.00 1.00
National of Japan/Korea/Singapore (yes=1) 2,501,959 0.18 0.38 0.00 1.00
National of China (yes=1) 2,501,959 0.09 0.29 0.00 1.00
National of other countries (yes=1) 2,501,959 0.17 0.37 0.00 1.00
Age (years) 2,518,364 11.13 4.10 1.00 21.00
Student over 12 years old (yes=1) 2,518,364 0.40 0.49 0.00 1.00

Particle pollution, Z
PM2.5 concentration, daily 24-hour mean (µg/m3) 2,172 98.04 75.91 2.92 568.57
PM2.5 concentration, 6 am reading (µg/m3) 2,105 95.46 82.42 2.00 532.00
PM2.5 concentration, prior 2 days’ mean (µg/m3) 2,145 98.09 67.22 8.96 492.41
PM2.5 concentration, prior 7 days’ mean (µg/m3) 2,022 98.52 44.54 25.29 345.95
PM2.5 concentration, prior 14 days’ mean (µg/m3) 1,870 98.84 33.77 34.36 270.49

Weather, W
Temperature at the surface (daily 24-hour mean, ◦C) 2,327 11.47 11.66 -18.19 33.21
Relative humidity at the surface (daily 24-hour mean, %) 2,327 49.52 19.30 0.00 100.15
Precipitation at the surface (daily 24-hour mean, mm/hour) 2,327 0.06 0.26 0.00 4.69
Any precipitation on the day (yes=1) 2,327 0.17 0.37 0.00 1.00

Atmospheric ventilation, V
Temperature difference (◦C) for increasing altitudes at standard atmospheric pressure levels
...from surface to 1000 mb 2,326 0.30 1.41 -3.50 7.25
...from 1000 to 925 mb 2,327 -3.26 1.78 -6.50 7.70
...from 925 to 850 mb 2,327 -3.97 1.91 -7.00 9.15
...from 850 to 700 mb 2,327 -8.93 3.20 -15.70 5.25
...from 700 to 500 mb 2,327 -15.40 2.83 -25.30 -4.80
Wind speed at the surface (daily 24-hour mean, m/s) 2,326 2.04 1.07 0.00 9.00
Wind direction at the surface (all hours from a given direction=1)
...from North 2,327 0.32 0.30 0.00 1.00
...from East 2,327 0.24 0.30 0.00 1.00
...from South 2,327 0.27 0.28 0.00 1.00
...from West 2,327 0.16 0.23 0.00 1.00

Notes: An observation is a student by school day pair (student-day for short) or, for pollution, weather
and atmospheric ventilation variables, a day. The periods of observation for the three schools,
all located in the same city, are: (1) September 2008 to June 2014, (2) April 2010 to December
2014, and (3) April 2013 to June 2014. The sample period for environmental data is August 18,
2008 (14 days prior to September 1, 2008) to December 31, 2014.
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Table 2: Student absences and concurrent pollution: Non-parametric and parametric
PM2.5 specifications estimated by OLS or 2SLS

PM2.5 specification: (1) (2) (3) (4) (5) (6) (7)
Severe Severe Severe Spline Quadr. W/ 6 am Quadr.

(Dependent variable is 1 if prior day prior day past 3 d function prior day same day prior day
absence spell is initiated) OLS 2SLS OLS OLS OLS OLS 2SLS

Prior-day PM2.5 > 200 µg/m3 (yes=1) 0.20*** 0.43***
(0.05) (0.10)

Count of past 3 days PM2.5>200 µg/m3 0.13***
(0.02)

Prior-day PM2.5 3-50 µg/m3 (×100) -0.07
(0.16)

Prior-day PM2.5 50-100 µg/m3 (×100) -0.43***
(0.10)

Prior-day PM2.5 100-200 µg/m3 (×100) 0.16***
(0.06)

Prior-day PM2.5 200-569 µg/m3 (×100) 0.14***
(0.05)

Prior-day PM2.5 (×100 µg/m3) -0.24*** -0.28*** -0.55***
(0.05) (0.05) (0.09)

Prior-day PM2.5 squared 0.08*** 0.08*** 0.18***
(0.01) (0.01) (0.03)

Same-day PM2.5 (×100 µg/m3, 6 am) 0.02
(0.05)

Same-day PM2.5 squared (at 6 am) 0.01
(0.01)

Flexible weather controls Yes Yes Yes Yes Yes Yes Yes
Student age bins (width 1 year) Yes Yes Yes Yes Yes Yes Yes
Bins for first 2 semesters of enrollment Yes Yes Yes Yes Yes Yes Yes
Student fixed effects Yes Yes Yes Yes Yes Yes Yes
Year-month fixed effects Yes Yes Yes Yes Yes Yes Yes
Day-of-week fixed effects Yes Yes Yes Yes Yes Yes Yes
Bins for days around vacation/break Yes Yes Yes Yes Yes Yes Yes
Bins for days around short holiday Yes Yes Yes Yes Yes Yes Yes
Observations 2,297,246 2,291,723 2,244,876 2,297,246 2,297,246 2,245,573 2,291,723
Number of students 6,439 6,439 6,439 6,439 6,439 6,439 6,439
Number of regressors 118 118 118 121 119 121 119
R-squared (within) 0.006 0.006 0.006 0.006 0.006 0.006 0.006
First-stage F-statistic 405,262 116,615
Mean value of dependent variable (%) 3.83 3.83 3.83 3.83 3.83 3.83 3.83

Notes: The sample consists of all students enrolled at three international schools in a major city of
China, over a combined period from September 2008 to December 2014. An observation is a
student by school day. The dependent variable is 1 if the student initiates an absence spell
on the day, and 0 otherwise; the estimation sample thus excludes the second and subsequent
adjacent absence days within each observed absence spell. We also drop observations pertaining
to a school day in which the student’s school-division specific absence rate exceeds 30%. OLS
estimates or 2SLS estimates, where we instrument for measured PM2.5 (both non-parametric
and parametric specifications) using PM2.5 fitted by atmospheric ventilation conditions (note
21) and the square of these ventilation-induced fitted values. Weather controls are flexible
functions of temperature, relative humidity and rain observed on the previous day and at 6 am
on the day (note 17). Standard errors, in parentheses, are clustered by student. Alternative
standard errors, with two-way clustering by student and by school-age-day, are slightly larger.
∗∗∗Significant(ly different from zero) at (the) 1% (level), ∗∗at 5%, ∗at 10%.
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Table 3: Student absences and concurrent pollution: A non-parametric PM2.5 specifica-
tion with heterogeneous effects, estimated by 2SLS flexibly by subsample

Coefficient on prior-day PM2.5 > 200 µg/m3 (yes=1). Standard error in parentheses.

Restrict estimation to subsample (1) (2) (3) (4) (5)
defined on: Time since Academic Nationality Age Absenteeism

first enrolling year quintile

First 180 days of enrollment 0.34 (0.21)
Mean value of DV (%) 3.70

181 to 360 days from first enrolling 0.57** (0.25)
Mean value of DV (%) 3.70

Over 360 days from first enrolling 0.43*** (0.12)
Mean value of DV (%) 3.89

Academic year 2011/12 or before 0.58*** (0.13)
Mean value of DV (%) 3.75

Academic year 2012/13 onward 0.30** (0.15)
Mean value of DV (%) 3.92

Nationals of US/Canada 0.54*** (0.19)
Mean value of DV (%) 3.86

Nationals of Europe 0.54*** (0.18)
Mean value of DV (%) 3.98

Nationals of Japan/Korea/S’pore 0.34* (0.19)
Mean value of DV (%) 2.96

Nationals of China -0.14 (0.33)
Mean value of DV (%) 4.12

Nationals of other countries 0.41 (0.26)
Mean value of DV (%) 4.20

Students aged up to 4 years 0.41 (0.59)
Mean value of DV (%) 5.58

Students aged 5 to 8 years 0.05 (0.18)
Mean value of DV (%) 3.03

Students aged 9 to 12 years 0.24 (0.15)
Mean value of DV (%) 2.71

Students aged 13 to 16 years 0.72*** (0.19)
Mean value of DV (%) 4.24

Students aged 17 years and over 1.04*** (0.37)
Mean value of DV (%) 7.01

Students in absenteeism quintile 1 0.10 (0.13)
Mean value of DV (%) 1.05

Students in absenteeism quintile 2 0.15 (0.15)
Mean value of DV (%) 2.11

Students in absenteeism quintile 3 0.52*** (0.20)
Mean value of DV (%) 3.28

Students in absenteeism quintile 4 0.55** (0.24)
Mean value of DV (%) 4.74

Students in absenteeism quintile 5 0.96*** (0.36)
Mean value of DV (%) 8.96

Notes: The table shows estimates for 20 2SLS regressions, separately implemented on subsamples de-
fined on: (1) the time elapsed since first enrolling at the school, (2) academic year, (3) nationality,
(4) age, and (5) absenteeism quintile. An observation is a student by school day. The dependent
variable (DV) is 1 if the student initiates an absence spell on the day, and 0 otherwise. Controls
include flexible weather controls, student age bins (width 1 year), bins for first 2 semesters of
enrollment (except in column 1), student fixed effects, year-month fixed effects, day-of-week
fixed effects, bins for days around vacations/breaks, and bins for days around short holidays.
Other notes to Table 2 apply. For brevity, we omit the number of observations, the number of
regressors and other regression statistics. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table 4: Robustness to estimating non-parametric specifications for prior-day PM2.5, that
allow for heterogeneous effects, on the full sample (OLS or 2SLS)

Interaction with PM2.5 Nationality Absenteeism quintile

(Dependent variable is 1 if (1) (2) (3) (4) (5) (6)
absence spell is initiated) OLS 2SLS OLS 2SLS OLS 2SLS

Prior-day PM2.5 > 200 µg/m3 (yes=1) 0.22** 0.63*** -0.13** 0.10
(0.10) (0.18) (0.06) (0.11)

... × national of US/Canada 0.10 -0.02
(0.13) (0.20)

... × national of Europe -0.05 -0.26
(0.12) (0.20)

... × national of Japan/Korea/Singapore -0.04 -0.39*
(0.13) (0.20)

... × national of China -0.31* -0.63**
(0.17) (0.26)

... × student in absence rate quintile 2 0.16* 0.05
(0.08) (0.12)

... × student in absence rate quintile 3 0.16* 0.22
(0.09) (0.15)

... × student in absence rate quintile 4 0.53*** 0.31*
(0.11) (0.17)

... × student in absence rate quintile 5 0.91*** 1.29***
(0.16) (0.24)

Count of past 3 days PM2.5>200 µg/m3 0.00 0.17*
(0.03) (0.09)

... × student in absence rate quintile 2 0.06* 0.01
(0.04) (0.06)

... × student in absence rate quintile 3 0.05 0.09
(0.04) (0.08)

... × student in absence rate quintile 4 0.15*** 0.13
(0.05) (0.09)

... × student in absence rate quintile 5 0.44*** 0.65***
(0.07) (0.12)

Observations 2,274,381 2,268,906 2,297,246 2,291,723 2,244,876 2,239,353
Number of students 6,267 6,267 6,439 6,439 6,439 6,439
Mean value of dependent variable (%) 3.83 3.83 3.82 3.83 3.83 3.83

Notes: The table takes the non-parametric PM2.5 specifications implemented on the full sample in
Table 2 and interacts PM2.5 with either the student’s nationality group, in columns 1 and 2,
or the student’s absenteeism quintile, in columns 3 to 6. The reference category is a National
of other countries, in columns 1 and 2, or the first absenteeism quintile, in columns 3 to 6. An
observation is a student by school day. The dependent variable is 1 if the student initiates an
absence spell on the day, and 0 otherwise. Controls include flexible weather controls, student
age bins (width 1 year), bins for first 2 semesters of enrollment, student fixed effects, year-month
fixed effects, day-of-week fixed effects, bins for days around vacations/breaks, and bins for days
around short holidays. Other notes to Table 2 apply. For brevity, we omit the number of
regressors and other regression statistics. Standard errors are in parentheses. ∗∗∗Significant at
1%, ∗∗at 5%, ∗at 10%.
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Table 7: Student absences and more prolonged pollution exposure: Non-parametric and
parametric PM2.5 specifications, with P daily lags, estimated by OLS or 2SLS

Panel A: 24-h PM2.5 > 200 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in OLS 2SLS

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 2,297,246 0.20 (0.05) -0.02 pct pt 2,294,741 0.57 (0.12) -0.07 pct pt
3 2,232,217 0.45 (0.07) -0.05 pct pt 2,226,694 0.89 (0.13) -0.10 pct pt
5 2,152,799 0.48 (0.09) -0.06 pct pt 2,147,276 1.24 (0.17) -0.15 pct pt
7 2,090,242 0.45 (0.10) -0.05 pct pt 2,079,629 1.14 (0.20) -0.13 pct pt
9 2,019,035 0.70 (0.12) -0.08 pct pt 2,003,332 0.89 (0.21) -0.10 pct pt
11 1,961,415 1.09 (0.14) -0.13 pct pt 1,943,169 1.19 (0.23) -0.14 pct pt
13 1,905,311 1.25 (0.15) -0.15 pct pt 1,884,494 1.34 (0.24) -0.16 pct pt

Panel B: 24-h PM2.5, PM2.5 squared, PM2.5 cubed (each lag) & Constrained exposure coefficients, PDL(P, 2)

Lags in OLS 2SLS

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations 100→200 µg/m3 Truncate 100 µg/m3 observ. 100→200 µg/m3 Truncate 100 µg/m3

3 2,238,487 0.21 (0.04) -0.07 pct pt 2,232,964 0.73 (0.13) -0.19 pct pt
5 2,170,142 0.34 (0.05) -0.10 pct pt 2,164,619 0.73 (0.12) -0.21 pct pt
7 2,108,047 0.37 (0.07) -0.10 pct pt 2,097,434 0.59 (0.15) -0.14 pct pt
9 2,024,965 0.45 (0.08) -0.12 pct pt 2,009,262 1.08 (0.19) -0.21 pct pt
11 1,976,146 0.48 (0.09) -0.14 pct pt 1,957,900 0.33 (0.22) -0.12 pct pt
13 1,920,944 0.61 (0.11) -0.18 pct pt 1,900,127 0.90 (0.30) -0.23 pct pt

Panel C: 24-h PM2.5 > 200 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in 2SLS: US/Canada nationality subsample 2SLS: 5th absenteeism quintile subsample

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 563,855 0.69 (0.24) -0.08 pct pt 367,307 1.34 (0.44) -0.16 pct pt
3 545,265 0.94 (0.27) -0.11 pct pt 357,393 2.46 (0.46) -0.28 pct pt
7 508,177 1.17 (0.41) -0.14 pct pt 333,932 2.50 (0.70) -0.31 pct pt
13 458,450 1.69 (0.50) -0.20 pct pt 303,045 2.48 (0.85) -0.31 pct pt

Panel D: 24-h PM2.5 > 100 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in 2SLS: US/Canada nationality subsample 2SLS: 5th absenteeism quintile subsample

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 563,855 0.15 (0.15) -0.06 pct pt 367,307 0.39 (0.28) -0.16 pct pt
3 545,265 0.45 (0.22) -0.19 pct pt 357,393 1.40 (0.37) -0.57 pct pt
7 508,177 0.99 (0.29) -0.40 pct pt 333,932 2.15 (0.48) -0.88 pct pt
13 458,450 2.33 (0.45) -0.94 pct pt 303,045 3.40 (0.76) -1.39 pct pt

Notes: The dependent variable is 1 if the student initiates an absence spell on the day, and 0 otherwise.
Distributed lag models, estimated by OLS or 2SLS (as labeled), include P lags of the daily
PM2.5 measure given by: (panels A and C) 1 if the respective 24-hour PM2.5 > 200 µg/m3 and
0 otherwise; (panel D) 1 if the respective 24-hour PM2.5 > 100 µg/m3 and 0 otherwise; and
(panel B) the respective concentration, its square and its cube. In the cubic PM2.5 specification
of panel B, we constrain the P coefficients on the PM2.5 lags to follow a quadratic, the P
coefficients on the squared PM2.5 lags to follow another quadratic, and the P coefficients on the
cubed PM2.5 lags to follow yet another quadratic. Panels C and D restrict the 2SLS estimation
sample to nationals of US/Canada or to students in the top absenteeism quintile (as labeled).
An observation is a student by school day. All controls and notes reported in Table 2 apply (the
cubic PM2.5 specifications additionally includes cubes of fitted ventilation-induced PM2.5). For
brevity, we omit the number of regressors and other regression statistics. Standard errors (SE)
are in parentheses. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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(a) Absence rates, over school days

(b) Absence rates, across individual students

(c) School days per absence spell, across students

Figure 1: Distribution of absence rates: (a) over school days, and (b) across individual
students in the sample (shown up to 40% for better visualization). Panel (c) reports the
distribution across individuals of the ratio of a student’s total school days to total absence
spells (shown up to 150 days/absence spell). An observation is: (a) a school day, and (b),
(c) an enrolled student.

35



(a) By student age (b) By day of the week

(c) By days to/from vacation or break (d) By calendar month, by year of enrollment

Figure 2: Absence rates over student-days in the sample: (a) by student age, (b) by day of
the week, (c) by the number of days leading up to, or following, a vacation or break, and
(d) by calendar month. In panel (d), we separately plot absence rates over the calendar
months in a student’s first year of enrollment versus subsequent years.
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(a) PM2.5 distribution (b) PM2.5 distribution: Deaseasoned

(c) Day to day shift (up or down) in PM2.5 (d) PM2.5 & temp. inversion layer 1

(e) PM2.5 & temp. inversion layer 2 (f) PM2.5 & wind speed

Figure 3: Variation in 24-hour mean PM2.5 concentration (µg/m3) in the sample: (a)
PM2.5 distribution (shown up to 500 µg/m3 for better visualization); (b) residual PM2.5
distribution, once systematic temporal variation (year-month and day-of-week) is par-
tialed out (shown up to 300 µg/m3); (c) distribution of the absolute shift in PM2.5 from
one day to the next (shown up to 250 µg/m3); (d) to (f) residual PM2.5 against residual
temperature gradients in the lower atmosphere (◦C from ground-level to 1000 mb equiv-
alent altitude, and from 1000 to 925 mb), and residual wind speed (m/s). An inversion
describes a positive temperature-altitude gradient in the raw (non-deseasoned) series.
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(a) Heterogeneous effects over nationality

(b) Heterogeneous effects over age

(c) Heterogeneous effects over absenteeism quintile

Figure 5: Heterogeneous sensitivity of absences to concurrent pollution: (a) by student
nationality, (b) by student age, and (c) by student absenteeism quintile. 95% confidence
intervals on the effect of severe PM2.5 (defined as prior-day 24-hour mean > 200 µg/m3)
on the probability that an absence spell is initiated. Source: 2SLS estimates implemented
separately by subsample, reported in columns 3 to 5 of Table 3; 2SLS estimate implemented
on the full sample, reported in column 2 of Table 2.
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(a) Severe PM2.5, UDL(P ), OLS (b) Severe PM2.5, UDL(P ), 2SLS

(c) Severe PM2.5, PDL(P, 2), OLS (d) Severe PM2.5, PDL(P, 2), 2SLS

(e) Cubic PM2.5, PDL(P, 2), OLS (f) Cubic PM2.5, PDL(P, 2), 2SLS

Figure 6: Cumulative impact of more prolonged PM2.5 exposure on the probability that
an absence spell is initiated. Panels (a) to (d) show estimates, for a severe PM2.5 dummy
(24-hour mean > 200 µg/m3) specification, of the cumulative effect on absences from P
preceding days of severe PM2.5, relative to zero days of severe PM2.5. Panels (e) and (f)
show estimates, for a cubic PM2.5 (24-hour mean, its square, its cube) specification, of the
cumulative effect on absences from shifting PM2.5 on each of the P preceding days from
100 to 200 µg/m3. Panels (a) and (b) (resp., panels (c) to (f)) implement unconstrained
UDL(P ) (resp., quadratic PDL(P, 2)) distributed lag models. For the cubic PM2.5 specifi-
cation, the PDL(P, 2) constrains the P coefficients on the PM2.5 lags to follow a quadratic,
the P coefficients on the squared PM2.5 lags to follow another quadratic, and the P coef-
ficients on the cubed PM2.5 lags to follow yet another quadratic. Distributed lag models
in panels: (a), (c) and (e) are estimated by OLS; (b), (d) and (f) are estimated by 2SLS.
In each panel, we implement a different distributed lag model as we raise P along the
horizontal axis. Point estimates and 95% confidence intervals are shown. All controls and
notes reported in Table 2 apply (the cubic PM2.5 specification additionally includes cubes
of fitted ventilation-induced PM2.5).
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A Appendix

The figures that follow provide further description of the data, and are referenced in the

text.

A.1



(a) Days enrolled in the sample, across students

(b) Total duration at the school, across departed students

Figure A.1: Distribution of enrollment across students: (a) school days observed in the
sample, and (b) time from student’s arrival at the school to departure from the school.
An observation is: (a) an enrolled student, and (b) an enrolled student who departed
in-sample.
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(a) Absence rate & days enrolled in the sample, across students

(b) Absence rate & duration at the school, across departed students

Figure A.2: A student’s overall absence rate (as in panel (b) of Figure 1) against en-
rollment, as measured by: (a) school days observed in the sample, and (b) time from
student’s arrival at the school to departure from the school. An observation is: (a) an
enrolled student, and (b) an enrolled student who departed in-sample.
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(a) Day to day shift (up or down) in ground temperature

(b) Day to day shift (up or down) in ground humidity

Figure A.3: Ground-level weather conditions persist from one day to the next. Distribution
of the absolute shift in daily mean ambient: (a) temperature, and (b) relative humidity,
from one day to the next. We partial out systematic temporal variation (year-month and
day-of-week), though doing so makes little difference.
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