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Abstract

Despite many workers being regularly exposed to outdoor temperatures as part of
their jobs, little is known about the effect of temperature on occupational health. This
study assembles and analyzes two data sets that link occupational health outcomes
and temperature. Using a data set that consists of daily occupational injury and illness
rates constructed from Texas workers’ compensation claims data, I find that a day with
a high temperature over 100◦F increases same-day claim rates by 7.6 to 8.2 percent and
three-day claim rates by 3.5 to 3.7 percent. A day with high temperatures below 35◦F
increases three-day claim rates by 3.4 to 5.8 percent. To consider how the effects of tem-
perature vary across climates, I construct a data set with daily injury rates from mining
sites around the United States. The results indicate that sites in warmer climates expe-
rience worse effects of high temperatures than sites in cooler climates, suggesting that
avoiding the adverse effects of higher temperatures may be easier for workers when
there are fewer hot days. Using data from the monthly Current Population Survey,
I show that high temperatures reduce hours worked of temperature-exposed workers
more in cooler climates than in warmer climates, while low temperatures reduce hours
worked more in warmer climates than in cooler climates. While research on the ef-
fect of temperature on mortality finds substantial capacity for adaptation with current
technology, the results presented in this paper highlight that the ease of adaptation
varies across contexts. In some important settings, the effects of high temperatures
may intensify as the earth warms.
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1 Introduction

The greenhouse gasses accumulating in the earth’s atmosphere are poised to raise global

temperatures considerably in a relatively short period of time. While air conditioning and

outdoor avoidance are promising strategies for mitigating the adverse effects of high tem-

peratures in many settings, the hundreds of millions of workers around the world exposed

to outdoor temperatures as part of their jobs may have limited avoidance or adaptation

options relative to the rest of the population. The health of workers matters because health

and productivity are linked and because occupational injuries and illnesses have an estimated

annual cost of nearly $300 billion in the United States alone (Leigh 2011). Knowing if high

temperatures affect occupational health and understanding how workers respond to high

temperatures have important implications for preparing for climate change and for assessing

the social costs of greenhouse gas emissions.

Despite considerable attention being devoted to understanding the impact of tempera-

ture on a variety of outcomes and behaviors, little is currently known about the effects of

temperature on workers’ health. The research that has explored the effects of temperature

on workers has focused on productivity and finds that high temperatures are associated with

lower productivity.1 A lack of an understanding of how temperature affects occupational

health is a recognized hole in the literature.2 The economics literature on the health effects

1This research mostly includes studies of indoor air temperature (Cachon, Gallino, and Olivares 2012;
Niemela et al. 2002; Seppanen, Fisk, and Faulkner 2003) and finds that productivity falls with temperature
once temperatures reach a certain point, though the estimated thresholds across studies range from 60◦F to
the 80s. Other related studies consider the effect of temperature on economic output across countries (Dell,
Jones, and Olken 2012; Heal and Park 2013; Hsiang 2010) or on income across counties in the United States
(Deryugina and Hsiang 2014) and tend to find that temperatures outside an optimal range lower output and
income. Refer to Dell, Jones, and Olken (2014), Deschenes (2014), and Heal and Park (2015) for reviews of
the economics research on climate.

2Discussions of the lack of research on the potential effects of climate change on occupational health
are common. For example, on the National Institute for Occupational Safety and Health’s science blog,
Kiefer et al. (2014) state, “There has been considerable research and planning with regard to the public
health and environmental aspects of climate change, but little on its effects on workers.” In their review of
research about occupational health and temperature, Gubernot, Anderson, and Hunting (2013) state that
“few studies examine or characterize the incidence of occupational heat-related illnesses and outcomes. More
research on the effects of occupational heat exposure is needed to identify and implement evidence-based
policies and interventions.”
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of temperature is small in general and focuses almost exclusively on mortality and the elderly

(Barreca 2012; Barreca et al. 2016; Burgess et al. 2014; Deschenes and Greenstone 2011; De-

schenes and Moretti 2009; Heutel, Miller, and Molitor 2017). An important finding from

this literature is that while both high and low temperatures increase mortality rates, people

have demonstrated a substantial capacity to adapt to their climates. One piece of evidence

that adaptation has occurred is that hot days have less severe mortality effects in warmer

climates than in cooler climates, largely because the higher frequency of hot days in warmer

climates has led to greater investments in air cooling technology in these places (Barreca

et al. 2016; Heutel, Miller, and Molitor 2017). The near-exclusive focus on mortality is a rec-

ognized weakness in the literature. According to Deschenes (2014), “At the conceptual level,

the main limitation of the existing literature is that mortality and hospitalizations have been

exclusively studied, and so little is known about the potentially large “lower level” effects of

temperature extremes on chronic conditions and quality of life.”

Data limitations present a major challenge for studying the impact of temperature on

occupational health. Linking temperature to occupational health requires data on workers’

health outcomes that can be matched closely to the weather that workers experienced on a

particular day, but most publicly available data with occupational health information (e.g.

the National Health Interview Survey and the Survey of Occupational Injuries and Illnesses)

only contain state or region identifiers and the year of illnesses and injuries.

To assess the effects of temperature on occupational health, I construct two data sets

with daily occupational health outcomes matched to daily weather information. The first

data set draws on workers’ compensation (WC) administrative data from Texas and consists

of daily Metropolitan Statistical Area (MSA) claim rates matched to weather data from

the National Climatic Data Center.3 An advantage of using data from Texas is that climate

change will result in many places in the United States moving towards rather than away from

3I use the term MSA to mean Core Based Statistical Areas, which include both metropolitan and
micropolitan statistical areas as identified by the Census Bureau. Micropolitan areas are urban clusters of
at least 10,000 and fewer than 50,000 people, while metropolitan areas are urban clusters of at least 50,000
people.
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the Texas climate, which means the results provide insights into the effect of temperature

on workers in a climate that more places will resemble in the future. If workers can adapt

to high temperatures with currently available technology, they arguably would have done it

already in Texas. However, a possible concern about drawing conclusions about the effect

of temperature on occupational health from Texas data is that acclimation, adaption, or

avoidance behavior may be more or less feasible in a warm climate than in a cooler climate.

To consider the effects of temperature on occupational health for a wider variety of climates,

I draw on data on injuries and illnesses from the mining industry to create a data set with

daily injury rates for various outdoor mining sites across the United States along with the

weather experienced at the site each day.

I use these data sets to estimate models with time and place fixed effects to identify the

effect of temperature on occupational health measures through plausibly random short-run

variations in temperature. Using the Texas data set, I find evidence that both high and low

temperatures are detrimental to workers’ health. A day with high temperatures of 86◦F to

88◦F increases three-day claim rates by 2.1 to 2.8 percent relative to days with temperatures

of 59◦F to 61◦F, while a day with temperatures over 100◦F increases three-day claim rates by

3.5 to 3.7 percent. A day with high temperatures under 35◦F increases three-day claim rates

by 3.4 to 5.8 percent relative to days with temperatures of 59◦F to 61◦F. Taking advantage

of the fact that the WC data allow future treatment to be linked to a medical issue that

began months earlier, I find that many of the claims that arise from extreme temperatures

require additional treatment in the days and months after they begin.

With the mining analysis, I test for heterogeneous effects of temperature based on a site’s

temperature norms. Whereas adaptation and acclimation hypotheses would predict that the

effect of a hot day would be smaller in warmer climates, the results from the mining analysis

suggest that a hot day has more detrimental effects on occupational health in warmer climates

than in cooler climates. With the mining data, I find no evidence that cold temperatures

affect injury rates, though as I discuss later, the mining data have limitations in picking up
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injuries and illnesses that the cold is likely to affect.

Overall, these results provide strong evidence that extreme temperatures affect occupa-

tional health. While in other aspects of life, people have been able to adapt to high temper-

atures through air conditioning technology, many workers do not appear to be able to do so.

Instead, finding that hot days are more harmful in warmer climates suggests that the poten-

tial for avoidance behavior may be more limited in places where extreme temperatures are

common. To test for differences in avoidance behavior based on temperature norms, I draw

on data from the monthly Current Population Survey (CPS) and take advantage of the fact

that the CPS questions about hours worked in the past week refer to the same, identifiable

week for all respondents each month. Estimating models with MSA and year-month fixed

effects, I find statistically significant differences in the effect of hot and cold days on hours

worked based on climate for a sample of temperature-exposed workers. An additional day

above 90◦F decreases weekly hours worked more in cooler climates than in warmer climates,

while an additional day with a high below 40◦F decreases weekly hours worked more in

warmer climates than in cooler climates.

These results are relevant for assessing the costs of climate change, as they indicate that

the health effects of extreme temperatures go beyond mortality effects. Furthermore, a lot

of research indicates that people can adapt to warm climates, which means that using the

estimated effects of high temperatures now to assess damages from future distributions of

temperatures likely overstates some of the costs of climate change.4 But the results from this

study highlight that the cost and ease of adaptation to higher temperatures with current

technology are context-specific. In some important settings, the effects of high temperatures

may intensify as high temperatures become more common.

In addition to contributing to the economics literature that studies the effects of temper-

4Assessing the costs of climate change is challenging. Refer to Nordhaus (2011), Nordhaus (2014), and
Stern (2007) for examples of Integrated Assessment Models that seek to quantify the costs of carbon and
climate change and to Burke et al. (2015), Heal (2017), Lemoine (2017), Lemoine and Traeger (2012), Millner,
Dietz, and Heal (2013), and Pindyck (2013) for critiques and discussions of these models and for discussions
of economic issues relevant to assessing future costs of climate change.
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ature and people’s responses to their environments, this study also contributes to the body of

research that seeks to understand the relationship between work and health (e.g., Case and

Deaton 2005; Fletcher, Sindelar, and Yamaguchi 2011; Morefield, Ribar, and Ruhm 2012;

Schmitz 2016). Additionally, as low-income and low-educated people make up a dispropor-

tionate share of workers exposed to outdoor temperatures, this study has implications for

the literatures that examine the income-health and education-health gradients (e.g., Clark

and Royer 2013; Conti, Heckman, and Urzua 2010; Lleras-Muney 2005).

The paper proceeds as follows. The next section discusses the potential effect of temper-

ature on occupational health and possible factors that may mitigate these effects. Section

3 characterizes the workers in the United States in temperature-exposed jobs. Section 4

discusses the occupational health analysis. Section 5 considers avoidance behavior, the pre-

dicted future distribution of temperatures, and the possibility that the current industrial

composition of MSAs reflects adaptive efforts. Section 6 provides a discussion and concludes.

2 The Potential Effects of Temperature on Occupa-

tional Health

The physiological health effects of temperatures at either tail of the temperature dis-

tribution arise because these temperatures can push the body’s core temperature outside

of its healthy ranges.5 High temperatures can increase heart and respiratory rates, reduce

blood pressure, and damage internal organs, which can lead to sunstroke, syncope, cramps,

exhaustion, and fatigue, as well as acute cardiovascular and respiratory failure. Physical ex-

ertion, which is a common component of many jobs vulnerable to environmental stresses,

can exacerbate the likelihood that high temperatures affect workers’ health. As fatigue is

often a contributing factor for injuries, high temperatures also have the potential to increase

injury rates.

5The information in the first two paragraphs of this section comes from Seltenrich (2015).
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Cold temperatures cause veins and arteries to narrow, blood to become more viscous, and

the body to lose heat, which depletes energy. The direct adverse effects of cold temperatures

include frostbite and hypothermia. As cold weather causes muscles to tighten and restricts

blood flow, cold temperatures can lead to muscle strains and sprains as well as other injuries

(Scott et al. 2016). At temperatures below 32◦F, ice may form, which may increase the

prevalence of falls or motor vehicle accidents.

Apart from the direct effects of temperature, a number of lab experiments show that

people’s ability to perform various tasks declines at both high and low temperatures (Hancock

and Vasmatzidis 2003; Hancock, Ross, and Szalma 2007; Pilcher, Nadler, and Busch 2002).

This performance decline appears to occur for a variety of tasks, including psychomotor,

perceptual, and cognitive tasks, and has the potential to lead to increased injury rates.6

Despite the physiological effects of temperature extremes, several factors may mitigate

the effect of temperature on occupational health. First, workers are likely healthier than the

rest of the population, and people who select into temperature-exposed jobs may be able to

handle temperature extremes better than people who do not. This selection into vulnerable

jobs has the potential to mitigate the effects of temperatures, especially in light of previous

research that finds that the elderly and infants are the most vulnerable to the effects of

temperature (Deschenes, Greenstone, and Guryan 2009; Deschenes and Greenstone 2011;

Graff Zivin and Shrader 2016).

A second factor that may minimize the adverse effects of temperature on occupational

health is that the human body has the ability to physically change in response to its environ-

ment. These acclimation responses can include changes in skin blood flow, metabolic rate,

oxygen consumption, and core temperatures (Armstrong and Maresh 1991; Graff Zivin and

Neidell 2014). Physiological acclimation can occur in as little as two weeks (Wagner et al.

1972) and can potentially lessen the adverse effects of extreme temperatures in places where

6A number of recent studies show that students perform worse on tests on particularly hot days, which is
consistent with high temperatures affecting cognitive task completion (Cho 2017; Garg, Jagnani, and Taraz
2017; Graff Zivin, Hsiang, and Neidell 2015; Park 2017).
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extreme temperatures are common.

A third factor that may mitigate the effects of temperature is that people may be able to

avoid working or doing their most dangerous or strenuous work during temperature extremes.

As evidence that workers can engage in avoidance behavior, Graff Zivin and Neidell (2014)

find that workers in outdoor industries reduce their labor supply on hot days.

Finally, extreme temperatures may not affect workers’ health because workers may be

able to adapt to extreme temperatures in a variety of ways. For instance, short-run behav-

ioral adaptations during periods of high temperatures include drinking more water, wearing

different clothes, and spending more time in the shade, all of which the National Institute

for Occupational Safety and Health recommends. Longer-term adaptive strategies include

investing in technology that alters temperature or in technology aimed at reducing labor

needs in vulnerable industries. However, the main adaptive tools that Barreca et al. (2016)

find have ameliorated the mortality effects of temperature in the past several decades—air

conditioning and heating—are not available for many workers, meaning the capacity for

vulnerable workers to adapt may be limited.7

3 Temperature-Exposed Workers in the United States

I now characterize temperature-exposed workers in the United States using the 2014

American Community Survey (ACS), which is the Census Bureau’s annual survey that col-

lects demographic, social, economic, and housing information on one percent of the U.S.

population. I classify workers’ exposure to temperature in two ways. First, I classify workers

in the following industries as being exposed to outdoor temperatures: agriculture, forestry,

fishing, and hunting; construction; manufacturing; mining; and transportation. These indus-

7Research often considers avoidance behavior to be a form of adaptation (e.g, Deschenes and Greenstone
2011 and Graff Zivin and Neidell 2014). In this paper, I consider them to be separate ways to mitigate the
effects of temperature on occupational health to distinguish between minimizing the effects of temperature
while continuing to work and perform the same tasks at the same time of day (adaptation) and minimizing
the effects of temperature by choosing not to work or not to do certain tasks when temperatures are dangerous
(avoidance).
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tries are often listed in government reports as being exposed to outdoor temperatures and

vulnerable to climate change (e.g., Jacklitsch et al. 2016), and this classification has been

used elsewhere in the research literature (e.g., Graff Zivin and Neidell 2014). Under this clas-

sification, 23 percent of the U.S. workforce is employed in an industry with high exposure to

outdoor temperatures.

A drawback of characterizing workers’ temperature exposure using industry is that there

is considerable heterogeneity in exposure within industry. For example, the construction in-

dustry consists of laborers, carpenters, civil engineers, accountants, and secretaries. While

laborers and carpenters are likely exposed to outdoor temperatures frequently, accountants

and secretaries likely rarely are and civil engineers are likely only occasionally exposed.

Classifying workers based on industry means that a lot of workers who are rarely exposed

to outdoor temperatures are classified as being exposed to them regularly. To obtain a more

granular measure of temperature exposure, I match the ACS data to data from the Occu-

pational Information Network (O*NET), which is a Bureau of Labor Statistics (BLS) tool

that collects and summarizes occupational information from job incumbents, occupational

experts, and occupational analysts. Relevant to this study are O*NET’s variables about how

often an occupation is outside and how often an occupation works in a non-climate-controlled

building, both of which are measures of exposure to outdoor temperatures.8

Panel A of Table 1 shows characteristics of U.S. workers by their occupational temper-

8Since the ACS classifies occupations using Census occupation codes and the O*NET classifies occupa-
tions using the Standard Occupational Classification (SOC) codes, merging O*NET data to the ACS requires
a crosswalk between Census codes and SOC codes, which I obtain from the BLS. As many Census occupation
codes cannot be matched to the level of granularity in O*NET, the occupations of 54 percent of workers in
the 2014 ACS cannot be matched to a unique occupation in O*NET. For instance, the 2010 Census code
of 0950 (Other Financial Specialists) matches to an SOC code of 13-2099 in the BLS crosswalk, but the
O*NET has different entries for SOC codes of 13-2099.02 (Risk Management Specialists) and 13-2099.04
(Fraud Examiners, Investigators and Analysts). For the ACS observations that do not have a unique match
in the O*NET, I assign the temperature exposure of the least-exposed occupation in the broader set of SOC
matches when determining which workers are exposed to outdoor temperatures more than once per week
and the temperature exposure of the most-exposed occupation when determining which workers are never
exposed to outdoor temperatures. While this incomplete match means the O*NET-matched data are not
good for estimating the number of workers with different temperature exposures, this approach means that
workers who are classified as being regularly or never exposed to temperature are unlikely to be misclassified.
In Section 5, I follow the same approach with CPS data, which also uses Census occupation codes.
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ature exposure. The first column displays characteristics of workers in industries with high

exposure to outdoor temperatures, the second column displays characteristics of workers in

other industries, the third column displays characteristics of workers in occupations that are

exposed to outdoor temperatures more than once per week, and the fourth column displays

characteristics of workers in occupations that are never exposed to outdoor temperatures as

part of their jobs. Panel B of Table 1 shows the equivalent information for Texas workers. The

main differences in the demographic characteristics of workers with different temperature ex-

posures come from their gender and education. Only 22 percent of workers in high-exposure

industries are female and only 19 percent have bachelors’ degrees, while 55 percent of workers

in other industries are female and 37 percent have bachelors’ degrees. The differences are

even starker when workers’ temperature exposure is characterized using O*NET data. Just

9 percent of U.S. workers in occupations that are exposed to temperature have a bachelor’s

degree, and only 9 percent are female. In contrast, 70 percent of U.S. workers who are never

exposed to temperature are female and 38 percent have a bachelor’s degree.

Texas has similar characteristics to the nation as a whole except for Texas’s high share

of Hispanic workers. In Texas, 37 percent of workers are Hispanic, while only 17 percent of

workers in the United States as a whole are Hispanic. Among Hispanic people, the shares

with high exposure to temperature are similar in both Texas and the rest of the nation. The

difference in the Hispanic share between Texas and the rest of the nation has the potential

to affect the generalizability of the results that use Texas WC data if temperatures affect

Hispanics differently than non-Hispanics. While I am unaware of any research that suggests

that biological reactions to temperature vary by race or ethnicity, Hispanics are much more

likely to lack documentation and therefore may not participate in WC at the same rate

conditional on being injured as non-Hispanic workers (McInerney 2016). Texas having a

larger share of undocumented immigrants likely biases the estimates of the level effects

downward with the Texas WC analysis but should not have an effect in percentage terms as

long as Hispanic workers’ participation in WC conditional on being injured is unrelated to
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temperature.

4 The Effect of Temperature on Occupational Health

4.1 Evidence from Texas Workers’ Compensation Medical Claims

Data

Texas Workers’ Compensation Insurance and the Medical Claims Data

To examine the effect of temperature on workers’ health, I first use WC administrative

data that contain information on all medical bills paid for by WC insurers in Texas. WC

insurance is regulated at the state level, and benefits to injured workers are set by the state.

While WC pays for medical care immediately after an injury occurs, injured workers become

eligible for income replacement benefits after missing 3-7 days of work, depending on the

state. In Texas, injured workers become eligible for income replacement benefits after missing

at least seven days of work.9

Texas differs from all states other than Oklahoma in that Texas employers are not re-

quired to purchase WC insurance. Despite this, 81 percent of Texas workers work for firms

with WC insurance as of 2012 (Texas Department of Insurance 2012). Other than not being

compulsory, Texas WC is generally similar to other states’ WC programs along most dimen-

sions (Morantz 2010).10 The WC insurer pays medical providers a fixed amount for services

performed and must report all WC medical spending to TDI, which compiles the informa-

tion into the data set used in this paper.11 The non-compulsory nature of WC insurance in

Texas will bias the estimates of the effects in levels towards zero since some workers will not

be eligible to file a WC claim. However, the estimated effects in percent terms will remain

9For a thorough overview of WC, refer to Sengupta and Baldwin (2015).
10Relatively few studies have examined firms’ decisions to opt out of WC insurance in Texas (Morantz

2010). An exception is Butler (1996), who finds that safety levels are likely similar between subscribing and
non-subscribing firms.

11Employers in Texas may self-insure or purchase insurance from an insurance company. Both self-insurers
and insurance companies are subject to TDI’s reporting requirements.
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unbiased since non-subscription is unrelated to transitory temperature fluctuations.

The raw data consist of all medical bills paid for by Texas WC from 2006 to 2014. Each

bill contains the cost of the bill, the International Classification of Diseases (ICD-9) code

for the bill, the zip code where treatment was received, the date treatment was received,

the birth month of each claimant, the gender of the claimant, and a unique identifier for

each claim. Since the data contain information about the underlying claims as well as all

treatment, they allow for distinguishing between claims and bills. Each injury or illness has

one claim associated with it, while each claim generally consists of multiple bills. I create

an intermediate data set with claims as the unit of observation and restrict attention to

claimants ages 18 to 64. I define the start date of the claim as the earliest date medical

treatment was received and the MSA as the MSA of the first place of treatment.12

I use ICD-9 codes from the first day of treatment to create a series of indicator variables

that describes the medical issue that underlies each claim. First, I create an indicator equal

to one if the provider specifically identifies a condition as being an illness stemming from

the heat. To consider the possibility that temperature affects injury rates, I create another

indicator variable equal to one if the claim is for an injury. Because research often finds

differences in treatment and reporting patterns based on how traumatic and visible injuries

are, I create an indicator equal to one if the claim is related to an open wound, a crushing

injury, or a fracture and another indicator variable equal to one if the claim is for a strain,

sprain, bruise, or other muscle-related issue.13

Table 2 contains descriptive statistics for this intermediate data set, which consists of

12Approximately 94 percent of the U.S. population belongs to an MSA, and approximately 92 percent of
Texas WC claims were first treated in a Texas MSA. An alternative to using MSA as the level of geography
is to use county, which has an advantage in that all of the U.S. population can be assigned to a county. The
advantage of using MSA codes is that many temperature-exposed workers, such as those in construction,
may be likely to cross county boundaries for work, so they may experience weather across an MSA. In results
available upon request, I have verified that the main analysis is robust to aggregation at the county level.

13For examples of research that considers differences based on visibility/trauma of an injury, refer to
Bronchetti and McInerney (2017), Campolieti and Hyatt (2006), Card and McCall (1996), Dillender (2015)
and Hansen (2016). The corresponding ICD-9 codes are as follows: illnesses from the heat: 992; injuries: 710
to 740 and 800 to 959; open wound, crushing, and fracture injuries: 800 to 829, 870 to 898, and 925 to 929;
sprain, strain, bruise, and muscle-related injuries: 710 to 739, 840 to 848, and 920 to 924. Claims can have
multiple ICD-9 codes on the first day of treatment, so some claims fall into multiple classifications.
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1,916,590 claims. Males account for 60 percent of all claims in Texas, likely because males

tend to work in more dangerous and physical jobs. Injury ICD-9 codes account for the vast

majority of claims at 91.3 percent. I next collapse this intermediate data set to the MSA

level to produce daily counts of claims. I then combine the counts of claims with monthly

MSA employment data from the BLS’s Local Area Unemployment Statistics (LAUS) and

create daily rates of claims per 100,000 workers for each MSA in Texas.

The weather data come from the National Climatic Data Center Summary of the Day

Data. These data contain the daily maximum temperatures, the daily minimum tempera-

tures, and daily precipitation for numerous weather stations throughout the United States. I

incorporate all of this information into the analysis but focus on the maximum temperatures

since most work is done during the day, meaning that more work is done closer to the day’s

maximum temperature than to the day’s minimum temperature. To calculate an MSA’s

weather measures, I take an inverse-distance weighted average of all the valid measurements

from stations that are located within 124 miles (200 kilometers) of each MSA’s centroid.14 I

restrict the sample to include only weekdays since most work is done during the week. The

main analysis sample includes 154,968 MSA-days.

The Texas Climate

There are several advantages to using data from Texas to study the effects of high tem-

peratures. First, while high temperatures are common across Texas, Texas’s size means that

different parts of the state can experience substantially different weather than other parts on

any given day or in a particular month. Second, as explained earlier, if places can adapt to

high temperatures with the available technology, Texas likely would have already adapted.

Third, climate change will move the climates of most states towards the climate of Texas

rather than away from it. Finally, according to the Köppen climate classification, Texas has

14This approach follows Deschenes and Greenstone (2011). Results are similar if I simply use information
the weather station closest to each MSA’s centroid. Also following Deschenes and Greenstone, I only use a
station’s information for years in which the station has valid measurements for the full year.
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multiple climates. On the eastern side of the state, the climate is mostly humid subtropical,

while the western side of the state consists of semi-arid and desert climates. Thus, I can test

for differential effects of temperature based on climate zone.

Despite hot summers being the norm in Texas, there is considerable heterogeneity by

location. Figure 1 shows the total number of days of 100◦F or more by year for Amarillo,

Austin, Dallas-Ft. Worth, Laredo, and Lubbock. Laredo experienced more days 100◦F or

more than the other MSAs most years, but the magnitudes of the difference vary by year.

Other MSAs’ relative rankings vary more over time. For example, while Austin usually has

more days 100◦F or more than Dallas, Dallas has more in some years. The rankings of

Amarillo and Lubbock also vary by year. Figure 2 shows the total number of days with low

temperatures below 32◦F for each of the five MSAs and also displays variation in temperature

across time and geography.

Estimation and Results

Graph A of Figure 3 shows means of monthly claim rates per 100,000 workers for all

claims and for claims arising from injuries. For both series, mean rates peak in August.

Graph B of Figure 3 shows means of monthly heat-related claim rates per 100,000 workers

and shows that these types of claims peak in the summer and do not occur in the winter.

Drawing causal inferences from these graphs is difficult because different types of work are

done in different seasons. Also, some months have more holidays and missed work, which

results in lower injury rates in those months for reasons unrelated to temperature.

To obtain estimates of the effect of temperature, I estimate fixed effect models of the

following form:

yjt = δt + γjm + α ∗ othweatherjt + β ∗ temperaturejt + εjt, (1)

where j indexes the MSA, t indexes the exact date, m indexes the year and month, y
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represents the various dependent variables, δ is a vector of day fixed effects, γ is a vector

of MSA-year-month fixed effects, othweather is a vector that includes controls for the day’s

precipitation as well as for the precipitation and temperature on the days surrounding a given

day, and temperature represents the day’s temperature. For specifications that include days

with precipitation, I control for indicator variables for a day’s precipitation falling into one

of the following bins: less than 0.05 inches but greater than 0 inches, greater than or equal

to 0.05 inches but less than 0.50 inches, greater than or equal to 0.50 inches but less than

1.00 inch, greater than or equal to 1.00 inch but less than 2.00 inches, and greater than or

equal to 2.00 inches.15 I specify temperature as a vector of indicator variables for the day’s

high temperature falling into three-degree temperature bins. I include all temperatures below

35◦F in one bin and all temperatures over 100◦F in another. The indicator variable for 59◦F

to 61◦F is omitted, so all estimates can be interpreted as the effect of a given temperature

bin relative to the effect of a day with a high temperature of 59◦F to 61◦F. I weight the

regressions by the number of employed people in the MSA in the month of the observation.

The extensive controls in Equation (1) mean that the estimation strategy requires few

assumptions. The δ coefficients account for the fact that baseline injury rates may be different

on Tuesdays rather than Fridays, that baseline injury rates are different in December versus

June, and that injury rates may be different in 2011 compared to 2006 for idiosyncratic

reasons other than temperatures. The γ coefficients account for the fact that MSAs may have

different economic conditions or employment patterns in July of 2011 versus March of 2011

as well as the fact that MSAs may have different baseline claim levels for reasons unrelated

to temperature. The main assumption of the estimation strategy is that temperatures are

15While the paper considers possible interactive effects of temperature and precipitation in Figure 5, the
first goal of the analysis is to understand the effects of temperature on occupational health apart from the
effect of precipitation. A potential concern with including days with precipitation in the analysis is that
precipitation and temperature can be correlated (Auffhammer et al. 2013) and precipitation may have its
own effect on labor force participation (Connolly 2008) or on occupational health, which has the potential to
confound the analysis. Therefore, I begin by estimating separate specifications for days without precipitation.
To avoid classifying days with heavy dew or a light drizzle as being rainy, I consider a day to have positive
precipitation if it has more than 0.05 inches of precipitation. When the sample is restricted to days without
precipitation, the controls for the day’s precipitation are excluded.
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determined independently of workers’ health.16

A critical decision for the empirical implementation is how long to allow workers to report

and receive treatment for an occupational health incident. Certain injuries, such as fractures

or open wounds, likely receive immediate treatment, while others, such as sprains or strains,

may not be treated until a few days have passed. Not allowing enough time for workers to

report their injuries and receive treatment will fail to produce valid estimates of the effect of

temperature because health issues from one day’s temperature will be attributed to another

day’s temperature. But allowing workers too much time to report and receive treatment will

introduce unnecessary noise into the estimation.

To consider how to specify the dependent variable and what number of surrounding days’

weather to control for, I begin by controlling for the weather during the five days before and

the four days after a particular day and estimating separate regressions of the effect of a

day’s temperature on health outcomes the day of the temperature as well as up to four days

after the day’s temperature. Figure 4 shows the various estimates separately for all days

and for days without precipitation. As with all the figures that display estimates, the bars

in Figure 4 represent the 95-percent confidence interval for each estimate calculated using

robust standard errors clustered at the MSA level. All point estimates are shown in tables

in the appendix. The first two graphs in Figure 4 display estimates of the effect of a day’s

temperature on that day’s WC claims. The results suggest that same-day claim rates start

rising with temperature once temperatures reach the 70s. A day of 86◦F to 88◦F increases

claim rates by 0.309 to 0.329 per 100,000 workers, or by 5.0 to 5.2 percent, relative to a day

with a high temperature of 59◦F to 61◦F, while a day above 100◦F increases claim rates by

0.484 to 0.507, or by 7.6 to 8.2 percent. The results do not provide strong evidence that low

temperatures affect same-day claim rates.

Graphs C and D display estimates of the effect of a day’s temperature on the next day’s

16While the estimation strategy has the advantage of requiring few assumptions to estimate the impact
of temperature on common measures of occupational health, it should be noted that it will not capture the
impact of temperature on conditions like cancer that may take years to develop.
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claim rates. For days with high temperatures in the mid-forties and below, claim rates rise as

the daily high falls. I find no evidence that high temperatures have next-day effects. These

results are consistent with cold weather being more likely to affect strains, sprains, and other

muscle-related issues (Scott et al. 2016), which are often not treated on the day of the injury.

Graphs E and F, which display estimates of the effect of a day’s temperature on claims two

days later, tell a similar story. Two days later there is still some evidence that a cold day

causes an increase in claim rates. However, all of the effect of a day’s temperature appears

to have been realized by the third day. The estimates of the effect of today’s temperatures

on claim rates three and four days later, displayed in graphs G through J, do not indicate

an effect of temperature.

Based on the analysis shown in Figure 4, I define the dependent variables based on

three-day claim rates for the main WC analysis and control for the weather three days

prior and two days after the day of the observation, which means that preceding weather

that affects today’s occupational health outcomes is controlled for as is the future weather

that is correlated with today’s temperature and also affects three-day claim rates. Given the

similarities between the analysis that controls for precipitation and the analysis that excludes

days with precipitation in Figure 4, I include days with precipitation for the remainder of

the analysis and control for the precipitation indicator variables.

Figure 5 shows coefficients on the temperature indicators for a variety of specifications

with the three-day claim rate per 100,000 workers as the dependent variable. Graph A

displays the baseline temperature coefficients from Equation (1) and confirms that both

high and low temperatures have harmful effects on occupational health. A day with high

temperatures of 86◦F to 88◦F raises claim rates by 0.333 per 100,000 workers, or by about

2.1 percent relative to claim rates when temperatures range from 59◦F to 61◦F. A day with a

high temperature above 100◦F raises injury rates by 0.553 per 100,000 workers, or by about

3.5 percent relative to claim rates when temperatures range from 59◦F to 61◦F. A day with

high temperatures below 35◦F increases three-day claim rates by 0.922 claims per 100,000
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workers, or by about 5.8 percent.

Graphs B through F consider a variety of alternative specifications. An alternative to

computing rates as in the baseline specification is to set the dependent variable to be the

log or inverse hyperbolic sine (IHS) of claims. A concern with specifying the dependent

variable in rates is that regressions with the rate as the dependent variable may be more

sensitive to outliers than a regression that uses a log or IHS transformation as the dependent

variable because these alternative transformations tend to downweight outliers. Taking the

log or IHS of the dependent variable also allows the coefficients to be interpreted as percent

changes in three-day claim rates. Because 8.8 percent of the observations in the sample have

three-day claim counts of zero, I consider the robustness of the results to taking the IHS of

three-day claim counts, which approximates the log transformation but has the advantage

of being defined at zero. The estimates with IHS of three-day claim counts as the dependent

variable are shown in graph B of Figure 5 and tell a similar story as the estimates that use

claim rates as the dependent variable. These estimates indicate that high temperatures of

86◦F to 88◦F increase three-day claim rates by 2.8 percent, that high temperatures above

100◦F increase three-day claim rates by 3.7 percent, and that high temperatures below 35◦F

increase three-day claim rates by 3.4 percent.17

As previously explained, I focus on high temperatures because high temperatures are

most likely more relevant to occupational health than low temperatures are since more work

is done during the day. In graphs C through E, I consider the implications of this decision.

While the point estimates may fall and the standard errors may become larger with the

inclusion of controls for the day’s low temperatures because daily high and low temperatures

are highly correlated with each other, the coefficients on the high temperatures falling to

zero might suggest that the daily low temperatures are more relevant than assumed by the

main specification. In graph C, I set the dependent variable to be three-day claim rates and

control for the daily low temperature. The point estimates on colder daily highs fall, but

17For more information on the IHS transformation, refer to Pence (2006). The results are almost identical
if I instead use the log(three-day claim counts + 1), which is defined for all MSA-days.
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the point estimates display a similar pattern. Graphs D and E display coefficients on low

temperatures in three-degree temperature bins. The regression in graph E controls for the

day’s high temperatures, while the results in graph D do not. When daily high temperatures

are not controlled for, the distribution of coefficients follows a similar pattern as the main

estimates. When controls are included for high temperatures, the coefficient estimates on the

daily low temperature bins fall towards zero and are no long statistically significant. Overall,

these estimates suggest that high temperatures are the relevant temperatures to consider.

Figure 4 showed that the qualitative conclusions are unaltered regardless of whether

days with precipitation are included or excluded from the analysis, suggesting that precip-

itation does not confound the analysis. Apart from precipitation confounding the analysis,

though, the interaction between temperature and precipitation may matter. For instance,

cold weather may be especially harmful on days with precipitation, since ice may form. In

contrast, though, a day with extreme temperatures may not have similar effects when it is

raining because people may be less likely to work. As climate change will alter precipitation

patterns, interactive effects of temperature and precipitation are relevant for assessing the

potential impacts of climate change. To test for differential effects of temperature on days

with precipitation, I supplement Equation (1) with controls for the day’s temperature, allow

days with precipitation to have separate day, MSA-year-month, and other weather effects,

and interact each temperature indicator with an indicator variable for the day having pre-

cipitation. Graph F of Figure 5 displays the estimates on the interaction terms, which are

estimates of the differential effects of temperature on days with precipitation. The profile

of estimates does not provide strong evidence that temperature has interactive effects with

precipitation.

An advantage of studying Texas is that Texas spans multiple climates. According to

the Köppen climate types, most of east Texas has a humid subtropical climate, while west

Texas is comprised of semi-arid and desert climates. As the names imply, humid subtropical

climates are much more humid than desert and semi-arid climates. Based on the Köppen
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climate regions, I test for differential effects for MSAs east of the 98th meridian in graph G.

I find no evidence of differential effects of temperature based on an MSA’s typical humidity.

Temperatures may have different effects depending on previous days’ weather. For in-

stance, extreme temperatures may have larger effects if they are a shock than if people have

time to acclimate to them. On the other hand, consecutive days of extreme temperatures

may intensify their effects or may make avoiding working during the temperature extremes

more difficult. In graph H of Figure 5, I test for differential effects of a cold day in the fall

or of a hot day in the spring by including each day’s temperature as a control and then

interacting select temperature bins with indicators for spring and fall. As spring and fall are

seasons when temperatures are in transition, extreme temperatures are much less common

and are more likely to be shocks during these seasons. Although the results are imprecisely

estimated for lower temperatures, the estimates of the effect of hot days in spring are neg-

ative and marginally statistically significant, suggesting that hot days may have less of an

effect in spring than in the rest of the year. These results are inconsistent with acclimation

being a major mitigating factor of the effect of temperature on occupational health.

Previous research has found that elderly people and young children are most susceptible

to the effects of temperature. If the effects of high temperatures are driven solely by older

workers, then a possible avenue for adaptation to climate change would be for workers to

shift out of temperature-exposed jobs as they age. On the other hand, younger workers being

sensitive to high temperatures too suggests fewer options in terms of shifting younger workers

to temperature-exposed jobs. I next test for differential effects of temperature based on age.

As the LAUS employment data do not contain separate MSA-level employment estimates

by age, I use employment information from the ACS to compute the claim rates and weights.

Because of confidentiality concerns, the ACS does not provide identifiers for small areas,

so only 28 MSAs are included in the analysis.18 Graph A of Figure 6 considers how the

18I assign people to MSAs using the ACS’s Public Use Micro Areas (PUMAs) variable. I obtain the
crosswalk from PUMAs to MSAs from the Missouri Census Data Center. As the ACS does not include the
month of the observation, all employment estimates are at the year, meaning that the MSA-year-month fixed
effects now absorb variation in employment across months within a year.
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results from using information available in the ACS compare to the baseline results when

not accounting for age. The coefficients presented in graph A follow a similar pattern as the

baseline results presented in Figure 5 and indicate that using information from the ACS does

not drastically alter the results.

Graph B shows estimates separately for workers ages 18 to 40, while graph C shows

estimates separately for workers ages 41 to 64. The estimated effects of cold temperatures

appear to be larger for older workers than for younger workers, while the effects of high

temperatures appear to be similar for both age groups. Graph D shows estimates of the

differential effects of temperature on older workers from a single regression and confirms

that the effects of cold temperatures are statistically significantly larger for older workers

than for younger workers.19 High temperatures appear to have similar adverse effects on both

age groups.

Figure 7 considers the types of claims that temperature affects. As explained earlier, high

temperatures can have direct physiological effects, which can include heat stroke, sunstroke,

heat syncope, heat cramps, heat exhaustion, and heat fatigue. Graph A focuses solely on

claims with ICD-9 codes of 992, which is the ICD-9 code for illnesses from the heat. The

results show a strong effect of high temperatures on these kinds of claims. The estimates

first become statistically significant once temperatures reach the mid-80s and appear to rise

non-linearly as temperatures rise. A day with a high temperature above 100◦F increases the

rate of heat-related claims by 0.072 per 100,000 workers.

As explained in Section 2, temperatures also have the potential to affect injury rates.

Whether or not injuries are affected is important since injuries comprise the majority of

work-related medical issues. Graph B considers the effect of temperature on injury claims

and reveals a pattern that mirrors the estimates for all claims. While the effects are not as

19To obtain the estimates in graph D, I create a sample with two observations for each MSA and day
combination, one that includes claim rates and employment for older individuals and another that includes
claim rates and employment for younger individuals. I include the daily high temperatures as controls and
allow older and younger age groups to have different day and year-month-MSA fixed effects, as well as
different effects from the surrounding weather.
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dramatic as they are for claims identified by medical providers as being heat-related, the

level effects for injuries are much higher.

Graphs C and D consider two broad types of injuries. Graph C focuses on the effect of

temperature on claims for open wounds, crushing injuries, and fractures, which are injuries

that are visible, traumatic, or require immediate care. Graph D focuses on the effect of

temperature on claims for sprains, strains, bruises, and muscle issues, which are typically less

visible on the day of the injury and may not be debilitating until they have had time to swell.

The results presented in graphs C and D confirm that the main effects of low temperatures

appear to be accounted for by increases in swelling injuries, while high temperatures appear

to result in larger percent increases in more traumatic injuries.

Even with the large increases in claim rates arising from temperatures at both extremes,

if the medical issues caused by temperature extremes are not costly to treat or do not result

in the need for further treatment, then climate change may still not have major occupational

health implications. Graphs A and B of Figure 8 consider medical treatment 3 to 30 and 31

to 180 days after claims begin. Both sets of results indicate that high and low temperatures

lead to medical issues that require subsequent treatment. A day below 35◦F increases the

rate of claims that require treatment 3 to 30 days later by 6.3 percent and the rate of claims

that require treatment 31 to 180 days later by 7.0 percent. The equivalent numbers are 1.7

percent and 2.4 percent for days with highs of 86 to 88 and 3.0 and 2.6 percent for days with

highs above 100◦F.20

Graphs C and D of Figure 8 examine whether the claims that arise from temperature ex-

tremes have six-month medical costs that are above or below the median six-month spending,

which is $1,257 in 2014 dollars. The estimates suggest that a majority of the claims induced

by low temperatures have above-median spending, while the claims induced by high temper-

20A potential concern with the interpretation of the results as presenting evidence that extreme tempera-
tures affect occupational health is that workers may falsely report injuries to avoid working in uncomfortable
temperatures. Given that low temperatures do not have same-day effects, that high temperatures affect
fractures and open wounds, both of which would be difficult to fake, and that many of these medical issues
are still being treated throughout the year, malingering does not seem to be a plausible explanation for the
increase in claim rates.
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atures are more evenly split.21

4.2 Evidence from Mining Injury Data

Mining Safety and Health Administration Data

To extend the analysis beyond Texas, I now draw on data from the U.S. Department of

Labor’s Mining Safety and Health Administration (MSHA), which is tasked with tracking

and improving workplace safety for the U.S. mining industry. To construct the analysis data

set, I combine information from three MSHA data sets. The first is a site-level data set

that has basic information about each site, including its zip code and whether the site is

an underground mine, a surface mine, or a facility. The second data set contains quarterly

employment information for each site, including the number of workers working in a mill, an

open pit quarry, and an office. To restrict attention to workers who are likely experiencing

temperatures reflective of the temperatures at the weather stations, I focus on non-office

workers working in surface mines.

The third data set consists of information on injuries and illnesses that occur at each

site. Federal law requires all employers in the mining industry to immediately notify MSHA

of all occupational injuries and illnesses that require medical treatment beyond first aid.

These data contain information on the date of the injury, the site where the injury occurred,

and the injured worker’s occupation. As with the employment data, I focus on injuries and

illnesses for non-office workers.

I merge these three data sets with the weather data to create a site-day level data set

with daily injury rates per 100,000 workers, the weather of each day, and the weather of the

21The WC data used for this project cover most of 2015, which allows for follow-up care and six-month
costs to be calculated for claims that occur throughout the whole sample period. I did not include 2015 data
in most of the analysis because the data for the last few months of 2015 are incomplete and because the
diagnosis codes switch from ICD-9 to ICD-10 in the middle of 2015.
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surrounding days.22 I focus the analysis on sites that operate each year from 2006 to 2014 so

that the time period is consistent with the Texas WC analysis. To ease the computational

burden of the analysis, I restrict the sample to sites that employ at least 5 workers each year,

which leaves 1,114 sites. As with the previous analysis, I focus only on weekdays. From 2006

to 2014, these sites had 13,013 weekday injuries. The resulting data set consists of 2,538,188

site-days.

The Texas data have several advantages over the MSHA data. One is that the Texas

WC data contain a much wider set of occupations and industries than the mining data,

making the results more generalizable.23 Another advantage is that the WC data contain

information on approximately two million injuries from an underlying population of over 10

million workers, which facilitates the thorough analysis presented in the previous section.

A third advantage is that the WC data capture a fuller set of injuries. Compared to WC

data, injury data recorded by employers tend to miss illnesses and injuries that are often

not treated on the day of the injury. Instead, employer-recorded data are better at capturing

traumatic injuries that are easier to observe and relate to the workplace, such as surface and

open wounds and traumatic injuries to bones. Injuries like strains, sprains, and other muscle-

related injuries—i.e., cold-weather injuries—as well as most illnesses are underreported in

these data (Boden and Ozonoff 2008; Rosenman et al. 2006; Ruser 2008). For this reason,

the main analysis focuses on same-day injury rates and the discussion centers on the effects

of high temperatures.24

Despite the drawbacks of the mining data, they have a major advantage over the WC

data in that the mining sample spans 47 states, which allows for testing for heterogeneous

22For ease of discourse, I use the term injuries to refer to injuries and illnesses. I compute the rate
per 100,000 workers to make the results comparable to the Texas WC results, though most sites employer
fewer than 100 workers at a time. As with all the analysis for this study, I include only information from the
continental United States, meaning sites in Alaska, Hawaii, Puerto Rico, and the Virgin Islands are excluded.

23While a disadvantage in some ways, the mining data representing a few occupations from a single
industry has the advantage of demonstrating the effect of temperature on some of the most temperature-
exposed workers.

24Estimates of the effect of temperature on subsequent days do not provide evidence of delayed effects
and are shown in the appendix.
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effects based on temperature norms. It is possible that Texans may be able to adapt or

acclimate to the heat and that the effects of a hot day will be much more severe in other

parts of the country. Alternatively, it is also possible that workers in cooler parts of the

country may have better options in terms of shifting work to avoid dangerous work on hot

days.

Estimation and Results

The empirical approach with the mining data can still be represented by Equation (1),

except that j now indexes the site rather than the MSA. The model includes controls for

precipitation, the weather of the previous three days and proceeding two days, site-year-

month fixed effects, and day fixed effects. As the goal of this analysis is to provide separate

estimates for sites in different climates, I first calculate the mean daily high temperature in

June through September for each site and then categorize sites as being in warmer or cooler

climates based on their location in this distribution. I consider sites in the top quartile of this

distribution to be in warmer climates and sites in the bottom quartile of this distribution to be

in cooler climates. The top quartile includes all sites with a mean summer high temperature

of 89.9◦F or above, while the bottom quartile includes all sites with a mean summer high

temperature of 81.3◦F or below.

Figure 9 displays the estimates of the effect of temperature on same-day claim rates

separately for sites in warmer climates, cooler climates, and the middle 50 percentiles of

the summer temperature distribution, both for the sample of all days and for the sample of

days with no precipitation. As can be seen in graphs A and B, injury rates begin rising with

temperature once temperatures reach the mid-70s or mid-80s at sites in warmer climates.

A day with temperatures over 100◦F increases injury rates by 6.92 per 100,000 workers,

which is a 67.0 percent increase from when the temperature is 59◦F to 61◦F. Note that the

estimated effects of temperature are likely larger with the mining data because the mining

analysis focuses exclusively on workers with high exposure to outdoor temperatures.
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Graphs C and D in Figure 9 display the equivalent estimates for sites in the middle of

the summer temperature distribution, while graphs E and F show estimates for sites in the

bottom quartile of the summer temperature distribution. A similar pattern of estimates is

not observed for sites in cooler climates, regardless of whether or not days with precipitation

are included.

The final two graphs in Figure 9 display estimates of the differential effects of temperature

at sites in warmer climates versus all other sites in a single regression. To obtain these

estimates, I allow sites in warm climates to have separate day fixed effects and separate

effects of other weather. I also include the day’s temperature as a control and then interact

the temperature bins with being in a warmer climate. The interactions between temperature

bins and being in warmer climates are estimates of the differential impact of temperature on

sites in warmer climates. The point estimates indicate that the effects of higher temperatures

are statistically significantly larger in warmer climates at at least the ten-percent level for

three out of the five hottest temperature bins. For days with no precipitation, the estimated

effects of high temperatures are statistically significantly larger in warmer climates at the

five-percent level for three out of four of the hottest temperature bins.

Unlike with the Texas WC data, the mining data have information on whether injuries

resulted in missed work. Figure 10 replicates the analysis in Figure 9 using the rate of

time-loss injuries as the dependent variable. The results show that high temperatures affect

time-loss injuries in warmer climates, which supports the finding from the Texas WC analysis

that many of the injuries that are caused by high temperatures are not trivial. Again, the

results provide no evidence that high temperatures have similar effects in cooler climates.
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5 Extensions

5.1 Avoidance Behavior: The Effect of Temperature on Hours

Worked

Research on the effects of temperature on mortality finds evidence that people are capable

of adapting to their climates. One piece of evidence consistent with adaptation is that hot

days have smaller mortality effects in warmer climates than in cooler climates (e.g., Barreca

et al. 2016; Heutel, Miller, and Molitor 2017). The results presented in Section 4, however,

indicate that the occupational health effects of high temperatures are likely larger in warmer

climates, suggesting that temperature-exposed workers may not able to adapt in similar ways

as the rest of the population. Instead, the results presented in Section 4 are consistent with

the idea that engaging in avoidance behavior during high temperatures is easier when high

temperatures are rare. Avoidance behavior varying by temperature norms would be expected

in settings where the marginal cost of missing work increases with the amount of work missed

or where the cost of delaying certain tasks increases with the length of the delay.25

Avoidance behavior can take many forms. If a worker divides her time between a climate-

controlled space and a non-climate controlled space, one possible avoidance strategy for

the worker would be to arrange her work so that she is in the climate-controlled space

when outdoor temperatures are at their most dangerous levels. Alternatively, even if workers

spend all their time outside, they can redistribute their tasks so that they do more dangerous

tasks during more favorable temperatures. For instance, a construction worker may avoid

high-beam work on particularly hot days and may instead do tasks on the ground, where

dizziness or fatigue would have less severe effects. Finally, a worker may simply work less

once temperatures reach dangerous levels. In this section, I use basic monthly CPS data to

examine this third type of avoidance behavior.

25These conditions are met in many settings. For instance, many crops have typical harvesting or planting
windows of a few weeks, while many industries operate with incentivized deadlines or tasks that must be
done sequentially. In these industries, the marginal cost of delaying tasks increases as delays increase.
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To consider the effect of temperature on hours worked, I use data from the 2006 to 2014

basic monthly CPS collected by the BLS. Each month the CPS asks respondents to report

their hours worked at their main jobs as well as their hours worked at all other jobs during

the week that contains the twelfth day of the month. The systematic reference week of the

CPS is crucial to the design of this study as it allows the temperature conditions faced

by workers to be matched to the week for which they report hours worked.26 In addition

to hours worked, other information collected in the CPS used in this study includes the

industry and occupation of the worker’s main job, the worker’s usual hours worked, and

various demographic characteristics of the worker.

Only one other study has examined the effect of temperature on time use. Using the

2003 to 2006 American Time Use Surveys (ATUS), Graff Zivin and Neidell (2014) examine

how temperature affects people’s time allocation among indoor leisure, outdoor leisure, and

work. Most relevant to the current study are their findings about the effect of temperature

on hours worked, which indicate that a day with a high temperature above 85◦F decreases

time allocated to labor. Graff Zivin and Neidell do not find evidence of an effect of low

temperatures on hours worked, though they cannot rule out meaningful effects.

As its name implies, the ATUS is uniquely suited to studying many dimensions of time

use. In addition to allowing for matching a day’s time use to the same day’s weather, the

ATUS also allows Graff Zivin and Neidell (2014) to consider the effects of temperature

on leisure and on intraday labor substitution.27 Despite the ATUS’s advantages, the basic

monthly CPS has a major advantage over the ATUS in that the sample sizes in the basic

monthly CPS are much larger than those in the ATUS, which makes the CPS more con-

26Refer to Bureau of Labor Statistics (2017a) for an overview of the CPS and its collection procedures.
To avoid interviewing households during holidays, November and December sometimes have reference weeks
that do not include the twelfth day of the month. To avoid assigning workers the wrong temperatures, I
exclude observations from November and December from the analysis.

27Having hours worked at the day level also facilitates the study of interday substitution, which is not
possible with hours worked at the week level. For instance, if a particularly hot day results in zero hours
being worked on that day but twice as many hours being worked the following day, daily data can identify
this interday substitution, while the strongest conclusion that could be reached with weekly data would be
that the hot day did not affect weekly hours worked. Graff Zivin and Neidell (2014) find no evidence that
high or low temperatures cause interday substitution of labor.
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ducive to heterogeneity analysis. At approximately 4.5 million observations, the sample size

with identifiable MSA codes from the 2006 to 2014 CPS has over 160 times as many work-

ers with narrowly identified geographies as the 2003 to 2006 ATUS does at 27,482.28 This

increased sample size allows for focusing more narrowly on occupations exposed to outdoor

temperatures and for a more precise analysis of differential effects of temperature based on

temperature norms.

To evaluate the effect of temperature on hours worked, I restrict the CPS sample to

workers ages 18 to 64 who report their hours worked and their occupations in the previous

week and are located in one of the 254 MSAs consistently identified in the CPS during the

time period studied.29 I match the CPS data to the O*NET data and focus on the subset

of workers who are in occupations that are exposed to outdoor temperatures more than

one day per week. Since the CPS only contains information about one week in each month,

the estimation strategy no longer relies on within-month variation. Instead, I now estimate

models of the following form:

yijm = γj + δm + λ ∗Xijm + α ∗ othweatherjm + β ∗ temperaturejm + εijm, (2)

where i indexes the individual, γ is a vector of MSA fixed effects, δ is a vector of year-month

fixed effects, X is a vector of demographic and job characteristics that includes controls

for race, sex, age, years of education, usual hours worked, occupation, and industry, and

othweather is the number of weekdays in the previous week that fell into each precipita-

28The ATUS is collected from a randomly selected person over the age of 15 from each household finishing
its eighth month in the CPS. In addition to only conducting one interview from one person from each
household, the ATUS sample size is smaller because it excludes some households oversampled by the CPS
and because only about half of respondents chosen for the ATUS complete the survey. The current study also
has a larger sample size because it uses more years of data. For more information on the ATUS’s sampling
procedures, refer to the Bureau of Labor Statistics (2017b).

29I drop workers with imputed hours or occupations because the Census “hot deck” matching procedure
used for imputation does not restrict donor matches to individuals in the same local area, which can result
in biased estimates in area-level analysis. Refer to Autor, Katz, and Kearney (2008), Buchmueller, DiNardo,
and Valletta (2011), and Lemieux (2006) for discussions about potential bias of the hot decking procedure.
Despite concerns about bias from imputation, the results are very similar when observations with imputed
hours and occupations are included.
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tion bin and the number of weekend days in each temperature and precipitation bin. The

temperature variable is now the number of weekdays in the reference week with highs in

each temperature bin.

This part of the analysis ultimately seeks to test for heterogeneous effects of high or low

temperatures in places where they are rare compared to places where they are common. By

definition, places experience uncommonly high or low temperatures rarely, meaning cooler

MSAs experience only a few days over 100◦F over the time period. Also, unlike with the

occupational health analysis, the CPS data also must be aggregated to the week level rather

than to the day level, which introduces noise into the estimation. Thus, despite the CPS’s

large sample sizes, precision remains an issue. To improve precision, I use ten-degree tem-

perature bins and set 90◦F and above as the hottest bin and 40◦F and below as the coldest

temperature bin. I omit the number of days that are 50◦F to 59◦F, so the coefficients on the

temperature bins can be interpreted as the effect of an additional day with a temperature

in that bin on hours worked relative to hours worked when all five workdays are in the 50s.

The coefficients on the temperature bins from estimating Equation (2) are shown in

Figure 11. Graph A shows the basic results for all MSAs. Each day with a high below 40◦F

decreases weekly hours worked by 0.185 hours on average, which is a 0.5 percent decline from

when temperatures are in the 50s. The estimated effect of a day above 90◦F is a statistically

insignificant -0.045 hours per week. Graphs B, C, and D display the results separately for

MSAs with different temperature norms.30 The coefficient estimates on the number of days

below 40◦F are negative for all three climates, but the point estimate is largest in warmer

climates. The point estimate for the effect of an additional day with a high below 40◦F is

-1.011 for warmer MSAs, -0.160 for cooler MSAs, and -0.107 for all other MSAs. The point

estimate of -1.011 translates into a 2.6 percent decline in weekly hours worked for each day

with highs below 40◦F in warmer climates. The results in graph D suggest that additional

hot days decrease hours worked in cooler climates. An additional day with a high above

30To keep the results comparable, I use the same cutoffs for characterizing temperature norms as in the
mining analysis of 81.3◦F and 89.9◦F.
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90◦F decreases weekly hours worked in cooler climates by 0.364 hours per week, which is

equivalent to a 0.9 percent decline in weekly hours worked. I do not find evidence that high

temperatures affect weekly hours worked in other MSAs.

To compute estimates of the differences in effects, I allow MSAs in different climates to

have separate year-month fixed effects and othweather effects. I control for separate indicator

variables for the number of days in each possible temperature bin and interact the number

of days in each ten-degree temperature bin with an indicator for the specific climate-type

in question. Graph E displays estimates of the differences in the effects of temperature in

warmer MSAs compared to all other MSAs. A day with a high below 40◦F decreases hours

worked by 0.602 per week more in warmer MSAs than in all other MSAs. Graph F shows

estimates of the differential effects of temperature in cooler MSAs relative to all other MSAs.

A day with a high above 90◦F decreases hours worked in a week by 0.392 more in MSAs in

cooler climates than MSAs in other climates.

The results presented here provide evidence that workers in warmer climates reduce their

hours worked more in response to low temperatures while workers in cooler climates reduce

their hours more in response to high temperatures.31 These results are consistent with three

possible explanations. First, workers in warmer areas may be able to avoid working on colder

days more easily than they can avoid working on hot days since hot days are too common

to avoid. Second, workers in warmer areas may be able to acclimate to high temperatures,

and since high temperatures do not affect them, they do not need to adjust their labor

force participation. Third, workers in warmer areas may have methods to adapt to high

temperature so that they do not have to adjust their hours worked, whereas workers in cooler

climates have not adopted the same technologies and therefore have to reduce hours. While

this study cannot rule out the possibility of acclimation or adaptation, considering these

hours-worked results along with the occupational health results suggests that differences in

31These results differ from Graff Zivin and Neidell (2014) in two main ways. First, I find evidence that
workers adjust their hours in response to cold temperatures. Second, I find evidence of heterogeneous effects
based on temperature normals. It should be noted that our studies use different samples and have different
focuses. Also, neither finding from this analysis can be ruled out by their confidence intervals.
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the feasibility of avoidance behavior explain part of the differential hours-worked responses

between warmer and cooler environments.32

5.2 Implications of Climate Change

Despite its size giving it more climate variation than most other states, Texas is still one

of the hottest states in the country. Graph A of Figure 12 displays the average share of days

with highs that fell into various temperature bins for Texas counties as well as for counties in

the nine Census divisions from 2006 to 2014.33 Texas’s distribution is represented by the thick

red line and shows that counties in Texas averaged more days with daily high temperatures

of 95◦F or higher than any of the Census divisions. During this same time period, Texas

counties averaged fewer days at the bottom end of the temperature distribution than any of

the Census divisions.

As asserted in the introduction, Texas is an especially useful laboratory for considering

the implications of climate change because climate change will move other states towards

the Texas climate. To demonstrate the relevance of the Texas environment in assessing the

impact of climate change, graph B of Figure 12 graphs Texas’s temperature distribution from

2006 to 2014 with the predicted distribution of daily high temperatures for 2070 to 2099 for

each Census division calculated from the Hadley Climate Model 3 under the assumption

of no major emission changes.34 Only two Census divisions are predicted to have a smaller

share of days with highs of 95◦F or higher than Texas had from 2006 to 2014.

Despite resulting in fewer days with low temperatures that are dangerous for workers,

climate change will result in more days that are dangerous for workers on net under the

32It should be noted that, especially with cold weather, firms, workers, and local governments can almost
certainly adapt at least partially. Towns’ investments in cold-adaptive infrastructure and technology and
people’s knowledge of how to drive on slick roads are part of why a light snow can shut down a southern
city while having minimal effects on northern cities.

33I use counties for this part of the analysis because counties are all self-contained in states and Census
divisions. Some states are warmer than Texas, but they are in divisions with states that have fewer days
over 95◦F than Texas.

34The Hadley climate model is a general circulation model that uses both atmospheric and oceanic data
for its forecasts and was one of the main models used by the International Panel on Climate Change’s Special
Report on Emissions Scenarios. For more information on this model, refer to Collins, Tett, and Cooper (2001).
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assumption of no emission changes. According to the Hadley Climate Model 3, U.S. counties

will average 30.0 fewer days with high temperatures of 40◦F or below, 65.8 more days 80◦F

or above, and 76.1 more days of 95◦F or above. The effects of climate change will not be felt

equally across the country. For example, New England will average 40.7 fewer days under

40◦F per year and 40.4 more days of at least 95◦F, while the Southern Atlantic states will

average 12.0 fewer days under 40◦F per year and 83.6 more days of at least 95◦F.

5.3 Industrial and Occupational Distributions by Temperature

Normals

The results from this study suggest that temperatures at either tail of the temperature

distribution are harmful to workers and provide little evidence that temperature-exposed

workers can adapt to temperature extremes. A type of adaptation that Section 4 cannot

consider could involve specialization of labor based on the distribution of temperature norms.

Climate-based specialization of labor might involve today’s warmer areas shifting towards

work that is conducive to climate-controlled environments as the earth warms and today’s

cooler areas shifting towards temperature-exposed work. Though this type of specialization

may be able to mitigate the harmful effects of climate change on workers, the potential for

this type of specialization may be limited as many temperature-exposed jobs are location-

dependent. For instance, many jobs are based on the locations of natural resources, while

construction and transportation jobs are typically required broadly.35 Furthermore, non-

climate-related factors, such as the availability of cheap land, also factor into firms’ location

decisions. In addition, much of the industrial composition of the United States has likely

arisen for historical reasons, and relocating can be costly for firms.

If occupational specialization based on climate is cost-effective, it plausibly would have

35Climate change will not shift the distribution of mineral resources. However, as agriculture often requires
specific climates, the location of the agriculture industry may shift as the climate changes. Construction and
transportation will still be required broadly as the climate changes, though demand for these industries is
affected by the distribution of people, which may be altered by climate change.
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already partially occurred. To consider the presence of and potential for this type of spe-

cialization, I examine the correlation between an MSA’s frequency of dangerous temper-

atures and its share of temperature-exposed jobs. A strong negative correlation between

the number of days with dangerous temperatures and temperature-exposed employment

shares would provide suggestive evidence that temperature-based specialization of labor is

cost-effective, that it has already occurred, and that it can continue to occur as the dis-

tribution of temperatures changes. No correlation between dangerous temperature shares

and temperature-exposed employment shares may suggest that the potential for adaptation

through specialization is currently limited.

Figure 13 plots the share of workers in high-exposure industries and occupations for each

MSA identifiable in the ACS along with the MSA’s share of days from 2006 to 2014 with

highs above 90◦F or below 40◦F. Regardless of how temperature-exposed jobs are defined,

the correlation coefficient between temperature-exposed work and dangerous temperatures is

small. When defining temperature exposure based on industry, the correlation coefficient is

0.108. When defining temperature exposure based on occupation, the correlation coefficient

is -0.009. While this descriptive analysis does not rule out specialization either now or in

the future, these patterns are not supportive that climate-based specialization of labor has

already shaped the distribution of temperature-exposed jobs in the United States.

6 Discussion and Conclusion

This study constructs and studies the first data sets to my knowledge to link temperature

and occupational health. Using a data set derived from Texas WC claims, I find strong

evidence that both hot and cold temperatures have adverse effects on workers’ health. Once

daily high temperatures reach the 70s or low 80s, higher temperatures are associated with

worse health outcomes. Illnesses identified by medical professionals as being directly related

to the heat see the sharpest increase, but higher temperatures appear to affect a broad swath
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of injuries. A day with a high temperature over 100◦F increases same-day claim rates by 7.6

to 8.2 percent and three-day claim rates by 3.5 to 3.7 percent. Three-day claim rates also

begin to rise as high temperatures fall below 40◦F. A day with high temperatures below 35◦F

increases three-day claim rates by 3.4 to 5.8 percent.

To be able to consider heterogeneous effects of high temperature on occupational health

based on temperature norms, I draw on injury data from the mining industry. These data

confirm that high temperatures are harmful to workers’ health in warm climates like Texas,

but they provide no evidence that high temperatures harm workers’ health in cooler climates,

which indicates that workers in climates where hot days are rare are better able to deal with

a hot day than workers in climates where hot days are common.

These results are at odds with an adaptation/acclimatization story. With the available

technology, workers in warmer climates do not appear to be able to adapt to high tempera-

tures. Instead, these results are consistent with avoidance behavior being more feasible when

high temperatures are rare. Using CPS data, I provide evidence that avoiding working dur-

ing extreme temperatures is easier when extreme temperatures are rare. The CPS analysis

indicates that high temperatures result in larger decreases in hours worked in cooler places

than in warm places. Similarly, cold temperatures reduce hours worked more in places that

are normally warm than they do in places that often experience cold temperatures.

These results are policy-relevant as countries around the world continue to grapple with

climate change and decide what actions to take now to prevent temperatures from continuing

to rise in the future. The evidence of adaptation from the literature on the mortality effects

of temperature suggests reason for optimism that the negative effects of high temperatures

can be mitigated using currently available technology. But the analysis presented in this

paper suggests less cause for optimism in terms of our ability to deal the occupational health

effects of high temperatures and indicates that the adverse effects of hot days on workers

may intensify as hot days become more common due to climate change.
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Table 1: Demographic Characteristics of Temperature-Exposed Workers

High-Exposure Other High-Exposure Low-Exposure
Industries Industries Occupations Occupations

A. United States

% Male 78 45 91 30
% Ages 18 to 35 32 41 36 38
% Ages 36 to 50 38 33 37 34
% Ages 51 to 64 30 26 27 27
% with High School Degree 85 93 82 95
% with Bachelor’s Degree 19 37 9 38
% White 77 74 79 75
% Black 9 12 8 12
% Hispanic 21 16 24 14

n 300,390 1,010,158 133,706 396,584

B. Texas

% Male 81 46 93 31
% Ages 18 to 35 35 43 38 41
% Ages 36 to 50 38 34 38 34
% Ages 51 to 64 27 23 24 24
% with High School Degree 78 90 70 93
% with Bachelor’s Degree 20 33 7 33
% White 78 74 80 74
% Black 9 13 7 13
% Hispanic 43 35 53 32

n 26,236 79,831 10,969 31,580

Notes: The data come from the 2014 IPUMS ACS. High exposure industries include agriculture,
forestry, fishing, and hunting; construction; manufacturing; mining; and transportation. High-
exposure occupations are those that are exposed to outdoor temperatures at least once per
week according to O*NET data. Low-exposure occupations are those that are never exposed
to outdoor temperatures according to O*NET data. The means are weighted using IPUMS
weights.
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Table 2: Characteristics of WC Claims

% Male 60.0
% Ages 18 to 35 39.5
% Ages 36 to 50 37.7
% Ages 51 to 64 22.8
% Claims for Illnesses from the Heat 0.4
% Injury Claims 91.3
% Open Wound, Crushing, and Fracture Claims 23.0
% Sprain, Strain, Bruise, and Muscle-Related Claims 65.0

n 1,916,590

Notes: The data come from 2006 to 2014 Texas WC claims.
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Figure 1: Total Days with Highs over 100◦F by Year for Selected MSAs.
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Figure 3: Mean of Daily Claims per 100,000 Workers by Month. The data come
from 2006 to 2014 Texas WC claims. The unit of observation is an MSA-day. The means are
weighted using the number of workers in an MSA during the month of the observation from
LAUS data.
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A. Effect of Today's Temperature on Today's Claims
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B. Effect of Today's Temperature on Today's Claims, Only Dry Days
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C. Effect of Today's Temperature on Tomorrow's Claims
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D. Effect of Today's Temperature on Tomorrow's Claims, Only Dry Days
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E. Effect of Today's Temperature
on the Day after Tomorrow's Claims
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F. Effect of Today's Temperature
on the Day after Tomorrow's Claims, Only Dry Days
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G. Effect of Today's Temperature
on 2 Days after Tomorrow's Claims
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H. Effect of Today's Temperature
on 2 Days after Tomorrow's Claims, Only Dry Days
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I. Effect of Today's Temperature
on 3 Days after Tomorrow's Claims
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J. Effect of Today's Temperature
on 3 Days after Tomorrow's Claims, Only Dry Days

Figure 4: The Effect of Temperature on Daily Claim Rates. The underlying data
come from 2006 to 2014 Texas WC claims. Each graph displays coefficient estimates on the
temperature bins from a single regression. All estimates are relative to days with high tem-
peratures of 59◦F to 61◦F. 95-percent confidence intervals calculated using standard errors
clustered at the MSA level are displayed along with the estimates. All regressions control
for day fixed effects, year-month-MSA fixed effects, and high temperature and precipitation
indicator variables for each of the preceding five days and proceeding four days. Regressions
that include days with precipitation also control for the day’s precipitation. The mean num-
ber of claims per 100,000 workers when temperatures are 59◦F to 61◦F for each panel is
as follows: A: 6.2, B: 6.2, C: 5.4, D: 5.4, E: 4.3, F: 4.4, G: 4.2, H: 4.2, I: 4.5, and J: 4.5.
The sample contains 154,968 MSA-days and 124,964 MSA-days without precipitation. The
regressions are weighted using the number of workers in an MSA during the month of the
observation from LAUS data.
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A. Basic Specification
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B. IHS of Claims as Dependent Variable

-.5

0

.5

1

1.5

2

be
lo
w
 3

5

35
 - 

37

38
 - 

40

41
 - 

43

44
 - 

46

47
 - 

49

50
 - 

52

53
 - 

55

56
 - 

58

62
 - 

64

65
 - 

67

68
 - 

70

71
 - 

73

74
 - 

76

77
 - 

79

80
 - 

82

83
 - 

85

86
 - 

88

89
 - 

91

92
 - 

94

95
 - 

97

98
 - 

10
0

gr
ea

te
r t

ha
n 

10
0

C. Controlling for Low Temperatures
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D. Coefficients on Low Temperatures
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E. Coefficients on Low Temperatures with Controls for High Temperatures
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F. Temperature Interacted with Rainy Day Indicator
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G. Temperature Interacted with Humid Climate Indicator
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H. Time of Year Heterogeneity

Figure 5: The Effect of Temperature on Three-Day Claim Rates. The underlying data
come from 2006 to 2014 Texas WC claims. Each graph displays coefficient estimates on the
temperature bins from a single regression. All estimates are relative to days with high tem-
peratures of 59◦F to 61◦F. 95-percent confidence intervals calculated using standard errors
clustered at the MSA level are displayed along with the estimates. All regressions control for
day fixed effects, year-month-MSA fixed effects, precipitation indicator variables, and high
temperature and precipitation indicator variables for the preceding three days and proceed-
ing two days. The mean three-day claim rate per 100,000 workers when temperatures are
59◦F to 61◦F is 15.8. The sample contains 154,968 MSA-days. The regressions are weighted
using the number of workers in an MSA during the month of the observation from LAUS
data.
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A. Calculating Claim Rates Using Employment from ACS
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B. 40 or Younger
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C. Older than 40
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D. Differential Effects of Temperatures on Older Workers

Figure 6: The Effect of Temperature on Three-Day Claim Rates, Heterogeneity
by Age. The underlying data come from 2006 to 2014 Texas WC claims. Each graph dis-
plays coefficient estimates on the temperature bins from a single regression. All estimates
are relative to days with high temperatures of 59◦F to 61◦F. 95-percent confidence intervals
calculated using standard errors clustered at the MSA level are displayed along with the
estimates. All regressions control for day fixed effects, year-month-MSA fixed effects, pre-
cipitation indicator variables, and high temperature and precipitation indicator variables for
the preceding three days and proceeding two days. The regression in graph D also controls
for interactions of being an observation from the over-40 sample. The mean three-day claim
rate per 100,000 workers when temperatures are 59◦F to 61◦F for each graph is as follows: A
and D: 16.2, B: 15.4, C: 17.3. The sample in graphs A, B and C contains 62,614 MSA-days.
The sample in graph D contains 125,228 MSA-days. The regressions are weighted using the
number of workers in an MSA during the year of the observation estimated from ACS data.
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A. Claims for Illnesses from the Heat
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B. Injury Claims
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C. Open Wound, Crushing, and Fracture Claims
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D. Sprain, Strain, Bruise, and Muscle-Related Claims

Figure 7: The Effect of Temperature on Three-Day Claim Rates for Different
Types of Claims. The underlying data come from 2006 to 2014 Texas WC claims. Each
graph displays coefficient estimates on the temperature bins from a single regression. All
estimates are relative to days with high temperatures of 59◦F to 61◦F. 95-percent confidence
intervals calculated using standard errors clustered at the MSA level are displayed along with
the estimates. All regressions control for day fixed effects, year-month-MSA fixed effects,
precipitation indicator variables, and high temperature and precipitation indicator variables
for the preceding three days and proceeding two days. The mean three-day claim rate per
100,000 workers when temperatures are 59◦F to 61◦F for each graph is as follows: A: 0.0,
B: 14.6, C: 3.6, and D: 10.6. The sample contains 154,968 MSA-days. The regressions are
weighted using the number of workers in an MSA during the month of the observation from
LAUS data.
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A. Continued Treatment 3 to 30 Days Later
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B. Continued Treatment 31 to 180 Days Later
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C. Claims in Bottom Half of Cost Distribution
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D. Claims in Top Half of Cost Distribution

Figure 8: The Effect of Temperature on Medical Costs and Later Treatment. The
underlying data come from 2006 to 2014 Texas WC claims. Each graph displays coefficient
estimates on the temperature bins from a single regression. All estimates are relative to
days with high temperatures of 59◦F to 61◦F. 95-percent confidence intervals calculated
using standard errors clustered at the MSA level are displayed along with the estimates. All
regressions control for day fixed effects, year-month-MSA fixed effects, precipitation indicator
variables, and high temperature and precipitation indicator variables for the preceding three
days and proceeding two days. The mean three-day claim rate per 100,000 workers when
temperatures are 59◦F to 61◦F for each graph is as follows: A: 11.6, B: 6.2, C: 8.9, and D:
8.8. The sample contains 154,968 MSA-days. The regressions are weighted using the number
of workers in an MSA during the month of the observation from LAUS data.
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A. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days--Warmer Climates
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C. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates
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D. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days--Warmer Climates
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E. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates
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F. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days--Cooler Climates
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G. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses
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H. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses, Only Dry Days

Figure 9: The Effect of Temperature on Injuries in Mining Data. The underlying
data come from the 2006 to 2014 MSHA injury logs. Each graph displays coefficient estimates
on the temperature bins from a single regression. All estimates are relative to days with high
temperatures of 59◦F to 61◦F. 95-percent confidence intervals calculated using standard
errors clustered at the site level are displayed along with the estimates. All regressions
control for day fixed effects, year-month-site fixed effects, precipitation indicator variables,
and high temperature and precipitation indicator variables for the preceding three days and
proceeding two days. The means of injuries per 100,000 workers when temperatures are 59◦F
to 61◦F are as follows: A: 10.34, B: 10.94, C: 10.90, D: 10.06, E: 10.08, F: 8.99, G: 10.47, and
H: 9.90. The sample contains 2,615,672 site-days and 1,820,433 site-days without rain.

50



   

   

  

-20

-15

-10

-5

0

5

10

15

20

be
lo
w
 3

5

35
 - 

37

38
 - 

40

41
 - 

43

44
 - 

46

47
 - 

49

50
 - 

52

53
 - 

55

56
 - 

58

62
 - 

64

65
 - 

67

68
 - 

70

71
 - 

73

74
 - 

76

77
 - 

79

80
 - 

82

83
 - 

85

86
 - 

88

89
 - 

91

92
 - 

94

95
 - 

97

98
 - 

10
0

gr
ea

te
r t

ha
n 

10
0

A. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates Only Dry Days
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C. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates
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D. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates Only Dry Days
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E. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates
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F. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates Only Dry Days
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G. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses
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H. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses, Only Dry Days

Figure 10: The Effect of Temperature on Time-Loss Injuries in Mining Data. The
underlying data come from the 2006 to 2014 MSHA injury logs. Each graph displays coeffi-
cient estimates on the temperature bins from a single regression. All estimates are relative
to days with high temperatures of 59◦F to 61◦F. 95-percent confidence intervals calculated
using standard errors clustered at the site level are displayed along with the estimates. All
regressions control for day fixed effects, year-month-site fixed effects, precipitation indicator
variables, and high temperature and precipitation indicator variables for the preceding three
days and proceeding two days. The means of injuries per 100,000 workers when temperatures
are 50◦F to 64◦F are as follows: A: 6.99, B: 7.25, C: 7.32, D: 7.00, E: 6.76, F: 5.57, G: 7.07,
and H: 6.55. The sample contains 2,615,672 site-days and 1,820,433 site-days without rain.
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A. The Effect of Temperature on Weekly Hours Worked, All MSAs
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B. The Effect of Temperature on Weekly Hours Worked, Warmer Climates
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C. The Effect of Temperature on Weekly Hours Worked, Middle Climates
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D. The Effect of Temperature on Weekly Hours Worked, Cooler Climates
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E. Differential Effect on Weekly Hours Worked in Warmer Climates
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F. Differential Effect on Weekly Hours Worked in Cooler Climates

Figure 11: The Effect of Temperature on Hours Worked for Workers Exposed to
Outdoor Temperatures More than Once per Week. The data come from the 2006 to
2014 basic monthly CPS. Each graph displays coefficient estimates on the temperature bins
from a single regression. All estimates are relative to weeks with high temperatures of 50◦F
to 59◦F each day. 95-percent confidence intervals calculated using standard errors clustered
at the MSA level are displayed along with the estimates. All regressions control for MSA
fixed effects, year-month fixed effects, the number of days in the week with precipitation,
and the individual’s race, sex, age, education, usual hours worked, occupation, and industry.
The means of hours worked when temperatures are 50◦F to 59◦F all week are as follows: A,
E, and F: 39.1, B: 38.7, C: 39.0, and D: 39.2. The sample sizes for each graph are as follows:
A, E, and F: 325,395, B: 65,758, C: 145,549, and D: 114,088.
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A. Census Divisions and Texas in 2006 to 2014
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B. Census Divisions in 2070 to 2099; Texas in 2006 to 2014

Figure 12: Temperature Distributions of Texas and Census Divisions. The thick red
line in both graphs represents the distribution of daily high temperatures of Texas from 2006
to 2014. Graph A also displays the distribution of daily high temperatures for each Census
region from 2006 to 2014, while graph B displays the predicted distribution of daily high
temperatures for each Census region from 2070 to 2099 using the Hadley 3 climate forecast
model.
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Figure 13: Correlation between MSAs’ Share of Days with Dangerous Tempera-
tures and Share of Workforce in Temperature-Exposed Jobs. The share of dangerous
days is from 2006 to 2014. The industry shares come from the 2014 ACS. The occupation
shares come from the 2014 ACS and the O*NET.
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Appendices

A Appendix: Estimates Corresponding to Figures

Table A.1: Estimates from Figure 4

A B C D E F G H I J

below 35 -0.302 -0.085 0.921*** 0.913*** 0.337** 0.231 0.192 -0.008 0.163 0.106
(0.192) (0.246) (0.168) (0.195) (0.164) (0.197) (0.149) (0.174) (0.145) (0.157)

35 - 37 -0.101 0.179 0.562*** 0.529** 0.406** 0.237 -0.012 -0.318** 0.097 0.074
(0.195) (0.269) (0.211) (0.230) (0.154) (0.163) (0.119) (0.153) (0.116) (0.154)

38 - 40 -0.130 -0.183 0.567*** 0.534*** 0.158** 0.012 0.109 -0.028 -0.016 -0.091
(0.116) (0.154) (0.118) (0.182) (0.078) (0.112) (0.114) (0.143) (0.136) (0.155)

41 - 43 -0.091 0.018 0.232** 0.320*** 0.052 0.011 -0.011 0.090 -0.008 -0.157
(0.077) (0.094) (0.094) (0.113) (0.059) (0.106) (0.092) (0.130) (0.083) (0.113)

44 - 46 -0.150** -0.094 0.105 0.141 0.083 0.002 -0.132* -0.200* 0.040 -0.028
(0.069) (0.103) (0.069) (0.090) (0.055) (0.081) (0.075) (0.102) (0.059) (0.117)

47 - 49 -0.142* -0.073 0.124* 0.141* 0.032 0.066 -0.062 -0.099 -0.023 -0.039
(0.080) (0.090) (0.064) (0.080) (0.045) (0.069) (0.080) (0.082) (0.071) (0.080)

50 - 52 -0.111 0.046 0.120 0.183** 0.071 0.130* -0.073 -0.130 0.050 -0.010
(0.092) (0.094) (0.081) (0.077) (0.063) (0.067) (0.078) (0.097) (0.070) (0.080)

53 - 55 -0.060 0.005 -0.021 -0.013 -0.018 0.008 0.048 -0.003 0.120** 0.112*
(0.052) (0.054) (0.067) (0.046) (0.050) (0.065) (0.048) (0.060) (0.060) (0.067)

56 - 58 -0.103** -0.076 0.016 0.000 0.046 0.060 -0.068 -0.083 -0.078* -0.087*
(0.049) (0.062) (0.059) (0.056) (0.038) (0.042) (0.061) (0.063) (0.045) (0.050)

62 - 64 -0.029 -0.016 -0.043 -0.041 0.005 0.049 -0.048 -0.069 -0.026 -0.073
(0.050) (0.052) (0.051) (0.041) (0.046) (0.048) (0.053) (0.069) (0.031) (0.044)

65 - 67 0.049 0.064 -0.017 0.016 -0.039 -0.009 -0.035 -0.065 -0.033 -0.043
(0.032) (0.044) (0.052) (0.047) (0.041) (0.048) (0.066) (0.072) (0.044) (0.062)

68 - 70 0.094** 0.087** -0.042 -0.010 -0.019 0.009 -0.016 -0.039 -0.032 -0.066
(0.035) (0.037) (0.049) (0.047) (0.060) (0.055) (0.062) (0.071) (0.036) (0.049)

71 - 73 0.107** 0.052 -0.079* -0.027 -0.001 0.060 0.020 -0.008 -0.028 -0.057
(0.048) (0.051) (0.045) (0.059) (0.052) (0.065) (0.063) (0.075) (0.047) (0.055)

74 - 76 0.139*** 0.108** 0.005 0.054 -0.018 0.037 0.026 -0.005 -0.079* -0.089
(0.045) (0.054) (0.058) (0.048) (0.045) (0.049) (0.072) (0.097) (0.044) (0.059)

77 - 79 0.195*** 0.196*** -0.058 0.011 -0.062 -0.015 0.011 -0.026 -0.083** -0.099*
(0.048) (0.056) (0.055) (0.063) (0.055) (0.056) (0.067) (0.089) (0.038) (0.057)

80 - 82 0.230*** 0.234*** -0.031 0.050 0.005 0.074 0.067 0.008 -0.094 -0.167**
(0.054) (0.074) (0.068) (0.060) (0.063) (0.069) (0.077) (0.098) (0.057) (0.071)

83 - 85 0.277*** 0.286*** -0.034 0.057 0.040 0.083 0.065 -0.000 -0.088* -0.155***
(0.057) (0.069) (0.074) (0.065) (0.064) (0.075) (0.075) (0.096) (0.050) (0.052)

86 - 88 0.309*** 0.329*** 0.023 0.093 -0.004 0.072 0.021 -0.040 -0.089 -0.133*
(0.057) (0.067) (0.057) (0.061) (0.075) (0.081) (0.077) (0.091) (0.066) (0.078)

89 - 91 0.414*** 0.489*** 0.035 0.079 0.032 0.120 0.052 0.039 -0.032 -0.120*
(0.049) (0.073) (0.065) (0.072) (0.072) (0.083) (0.082) (0.098) (0.058) (0.071)

92 - 94 0.429*** 0.458*** -0.073 -0.037 -0.033 -0.006 0.069 0.019 -0.054 -0.116
(0.072) (0.106) (0.075) (0.087) (0.078) (0.093) (0.085) (0.110) (0.074) (0.086)

95 - 97 0.477*** 0.473*** 0.016 0.061 0.047 0.062 0.050 -0.006 -0.082 -0.154**
(0.063) (0.105) (0.087) (0.088) (0.075) (0.087) (0.086) (0.113) (0.067) (0.072)

98 - 100 0.426*** 0.411*** 0.014 0.032 -0.005 0.021 0.032 0.010 -0.078 -0.160**
(0.065) (0.100) (0.096) (0.107) (0.086) (0.101) (0.098) (0.118) (0.063) (0.070)

greater than 100 0.507*** 0.484*** 0.050 0.088 -0.029 0.046 -0.014 -0.043 0.059 -0.016
(0.105) (0.140) (0.111) (0.134) (0.075) (0.090) (0.093) (0.115) (0.078) (0.088)

Notes: These are the corresponding estimates from Figure 4.
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Table A.2: Estimates from Figure 5, Graphs A - C and F - H

A B C F G H

below 35 0.922*** 0.034* 0.327 -0.311 0.334 0.293
(0.305) (0.018) (0.390) (0.742) (0.540) (0.672)

35 - 37 0.892** 0.036* 0.552 -1.128 -0.023 -0.429
(0.370) (0.021) (0.341) (0.867) (0.608) (0.823)

38 - 40 0.657*** 0.032*** 0.491*** -0.160 0.599* 0.731
(0.178) (0.011) (0.159) (0.501) (0.335) (0.518)

41 - 43 0.311** 0.022*** 0.199* -0.395 0.156 -0.656
(0.142) (0.008) (0.114) (0.403) (0.340) (0.421)

44 - 46 0.053 0.006 -0.058 0.257 0.544
(0.097) (0.007) (0.109) (0.465) (0.342)

47 - 49 0.045 0.003 0.025 -0.099 0.083
(0.115) (0.008) (0.100) (0.295) (0.240)

50 - 52 0.046 0.003 0.031 -0.884** -0.116
(0.188) (0.007) (0.167) (0.373) (0.305)

53 - 55 -0.102 -0.002 -0.117 -0.522 -0.010
(0.072) (0.004) (0.072) (0.318) (0.183)

56 - 58 -0.046 -0.005 -0.039 -0.016 -0.068
(0.095) (0.007) (0.095) (0.253) (0.196)

62 - 64 -0.072 0.002 -0.051 -0.492** -0.054
(0.081) (0.004) (0.084) (0.224) (0.142)

65 - 67 -0.024 0.002 -0.012 -0.205 0.083
(0.084) (0.005) (0.083) (0.245) (0.199)

68 - 70 0.034 0.006 0.036 -0.306 -0.329
(0.096) (0.003) (0.104) (0.276) (0.202)

71 - 73 0.011 0.007* -0.020 -0.041 -0.021
(0.086) (0.004) (0.096) (0.288) (0.181)

74 - 76 0.120 0.011** 0.067 -0.085 -0.007
(0.089) (0.005) (0.096) (0.289) (0.212)

77 - 79 0.075 0.012** 0.016 -0.306 -0.238
(0.104) (0.005) (0.112) (0.292) (0.237)

80 - 82 0.206* 0.019*** 0.138 -0.408 -0.069
(0.112) (0.005) (0.114) (0.333) (0.247)

83 - 85 0.306** 0.021*** 0.218 -0.370 -0.264
(0.132) (0.006) (0.133) (0.305) (0.282)

86 - 88 0.333*** 0.028*** 0.229** -0.349 -0.081
(0.108) (0.005) (0.105) (0.319) (0.256)

89 - 91 0.501*** 0.032*** 0.384*** -0.316 -0.127
(0.118) (0.005) (0.116) (0.343) (0.286)

92 - 94 0.342** 0.029*** 0.224* -0.015 -0.117 0.017
(0.131) (0.006) (0.117) (0.355) (0.307) (0.112)

95 - 97 0.553*** 0.036*** 0.436*** -0.234 -0.202 -0.265*
(0.139) (0.007) (0.130) (0.397) (0.306) (0.136)

98 - 100 0.454*** 0.029*** 0.325** 0.255 -0.121 -0.327*
(0.150) (0.007) (0.138) (0.438) (0.357) (0.185)

greater than 100 0.553*** 0.037*** 0.421** 0.669 -0.153 -0.436
(0.180) (0.008) (0.174) (0.640) (0.350) (0.290)

Notes: These are the corresponding estimates from Figure 5, graphs A - C and F -
H. Column F displays interactions between the temperature bins and a rainy day indi-
cator. Column G displays interactions between the temperature bins and an indicator
for the MSA being in a humid climate. Column H displays interactions between select
temperature bins and the season of the year.
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Table A.3: Estimates from Fig-
ure 5, Graphs D and E

D E

below 14 1.536*** -0.070
(0.532) (0.422)

14 - 16 0.874** 0.324
(0.367) (0.333)

17 - 19 0.722 0.189
(0.466) (0.336)

20 - 22 -0.181 -0.332
(0.261) (0.266)

23 - 25 0.164 -0.077
(0.155) (0.153)

26 - 28 -0.139 -0.276
(0.199) (0.177)

29 - 31 -0.096 -0.154
(0.101) (0.107)

32 - 34 -0.152 -0.195**
(0.111) (0.095)

35 - 37 -0.191** -0.198**
(0.084) (0.081)

38 - 40 -0.146* -0.145*
(0.074) (0.074)

41 - 43 -0.300*** -0.285***
(0.068) (0.074)

44 - 46 -0.224*** -0.229***
(0.075) (0.086)

47 - 49 -0.199*** -0.195***
(0.062) (0.062)

53 - 55 -0.047 -0.041
(0.087) (0.082)

56 - 58 -0.102* -0.117**
(0.056) (0.053)

59 - 61 -0.049 -0.080
(0.093) (0.083)

62 - 64 -0.011 -0.054
(0.094) (0.086)

65 - 67 0.164* 0.108
(0.090) (0.081)

68 - 70 0.136 0.062
(0.104) (0.107)

71 - 73 0.225* 0.143
(0.126) (0.125)

74 - 76 0.129 0.032
(0.132) (0.135)

greater than 76 0.082 -0.021
(0.172) (0.170)

Notes: These estimates of the effect of daily
low temperatures correspond to the esti-
mates from Figure 5, graphs D and E.
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Table A.4: Estimates from Figure 6

A B C D

below 35 1.045*** 0.118 2.114*** 1.969***
(0.352) (0.403) (0.505) (0.577)

35 - 37 1.106** 0.546 1.743** 1.191*
(0.406) (0.328) (0.688) (0.677)

38 - 40 0.847*** 0.483* 1.271*** 0.786*
(0.166) (0.256) (0.284) (0.426)

41 - 43 0.328* 0.100 0.590** 0.490*
(0.172) (0.181) (0.251) (0.269)

44 - 46 0.082 0.156 -0.010 -0.167
(0.108) (0.141) (0.197) (0.266)

47 - 49 0.140 -0.050 0.355* 0.405*
(0.120) (0.157) (0.179) (0.237)

50 - 52 0.039 -0.019 0.115 0.134
(0.211) (0.211) (0.255) (0.196)

53 - 55 -0.025 -0.100 0.060 0.160
(0.091) (0.105) (0.136) (0.157)

56 - 58 0.007 -0.021 0.040 0.062
(0.105) (0.131) (0.114) (0.132)

62 - 64 -0.041 0.025 -0.120 -0.145
(0.088) (0.111) (0.131) (0.166)

65 - 67 0.013 0.071 -0.046 -0.116
(0.096) (0.088) (0.132) (0.106)

68 - 70 0.069 0.227** -0.114 -0.341***
(0.117) (0.105) (0.157) (0.121)

71 - 73 0.063 0.133 -0.021 -0.154*
(0.097) (0.092) (0.119) (0.078)

74 - 76 0.158 0.270** 0.032 -0.237**
(0.103) (0.100) (0.132) (0.106)

77 - 79 0.107 0.244* -0.049 -0.293**
(0.120) (0.127) (0.139) (0.114)

80 - 82 0.251* 0.384*** 0.100 -0.284*
(0.122) (0.135) (0.149) (0.143)

83 - 85 0.384** 0.436*** 0.328* -0.107
(0.149) (0.144) (0.185) (0.141)

86 - 88 0.392*** 0.458*** 0.322** -0.135
(0.122) (0.137) (0.145) (0.143)

89 - 91 0.583*** 0.726*** 0.421** -0.305*
(0.139) (0.154) (0.162) (0.150)

92 - 94 0.417** 0.637*** 0.164 -0.472***
(0.154) (0.169) (0.180) (0.167)

95 - 97 0.633*** 0.813*** 0.429** -0.383***
(0.165) (0.169) (0.178) (0.111)

98 - 100 0.514*** 0.640*** 0.374* -0.265*
(0.173) (0.185) (0.189) (0.144)

greater than 100 0.647*** 0.876*** 0.387 -0.489**
(0.202) (0.218) (0.241) (0.215)

Notes: These are the corresponding estimates from Figure 6. Col-
umn D displays interactions between the temperature bins and an
indicator for the observation being for workers over age 40.
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Table A.5: Estimates from Figure 7

A B C D

below 35 -0.000 0.996*** 0.082 0.999***
(0.003) (0.283) (0.091) (0.237)

35 - 37 0.004* 0.892** 0.103 0.853**
(0.002) (0.389) (0.117) (0.376)

38 - 40 -0.003 0.676*** 0.147** 0.571**
(0.003) (0.204) (0.059) (0.223)

41 - 43 -0.000 0.323** -0.028 0.342***
(0.002) (0.144) (0.052) (0.112)

44 - 46 -0.000 0.059 -0.024 0.077
(0.001) (0.110) (0.048) (0.105)

47 - 49 -0.000 0.079 -0.041 0.159*
(0.002) (0.115) (0.053) (0.094)

50 - 52 0.001 -0.010 0.028 0.006
(0.001) (0.173) (0.045) (0.152)

53 - 55 0.002 -0.097 -0.024 -0.025
(0.001) (0.067) (0.033) (0.075)

56 - 58 0.001* -0.039 0.013 -0.043
(0.001) (0.084) (0.036) (0.064)

62 - 64 0.001 -0.074 0.047 -0.071
(0.001) (0.082) (0.033) (0.073)

65 - 67 0.001 -0.027 0.036 -0.047
(0.001) (0.077) (0.029) (0.069)

68 - 70 0.002 0.041 0.026 -0.005
(0.002) (0.085) (0.030) (0.069)

71 - 73 -0.002 0.018 0.015 -0.007
(0.001) (0.088) (0.035) (0.074)

74 - 76 0.003* 0.107 0.057* 0.044
(0.002) (0.081) (0.030) (0.065)

77 - 79 0.003* 0.082 0.054* 0.027
(0.002) (0.095) (0.030) (0.086)

80 - 82 0.002 0.197* 0.100** 0.083
(0.002) (0.101) (0.043) (0.090)

83 - 85 0.001 0.305** 0.096** 0.174
(0.003) (0.118) (0.040) (0.108)

86 - 88 0.006* 0.305*** 0.144*** 0.164*
(0.003) (0.100) (0.047) (0.087)

89 - 91 0.009** 0.450*** 0.153*** 0.260***
(0.004) (0.105) (0.036) (0.090)

92 - 94 0.010** 0.316** 0.164*** 0.149
(0.005) (0.122) (0.048) (0.092)

95 - 97 0.026*** 0.476*** 0.212*** 0.229**
(0.006) (0.129) (0.056) (0.109)

98 - 100 0.032*** 0.363** 0.188*** 0.133
(0.011) (0.137) (0.050) (0.115)

greater than 100 0.072*** 0.425*** 0.194*** 0.132
(0.013) (0.156) (0.054) (0.137)

Notes: These are the corresponding estimates from Figure 7.
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Table A.6: Estimates from Figure 8

A B C D

below 35 0.736*** 0.434*** 0.260 0.662***
(0.238) (0.142) (0.206) (0.177)

35 - 37 0.747** 0.558*** 0.219 0.673***
(0.287) (0.196) (0.193) (0.242)

38 - 40 0.525*** 0.384*** 0.251** 0.406***
(0.177) (0.120) (0.097) (0.142)

41 - 43 0.210* 0.058 0.182** 0.129
(0.108) (0.072) (0.087) (0.099)

44 - 46 0.161* 0.074 -0.099 0.152**
(0.086) (0.053) (0.062) (0.075)

47 - 49 0.078 0.059 -0.029 0.074
(0.071) (0.071) (0.075) (0.088)

50 - 52 0.058 0.057 0.024 0.023
(0.146) (0.083) (0.113) (0.094)

53 - 55 -0.035 -0.013 -0.083 -0.019
(0.050) (0.038) (0.067) (0.050)

56 - 58 0.048 0.037 -0.017 -0.029
(0.074) (0.040) (0.069) (0.052)

62 - 64 -0.084 -0.105** -0.022 -0.050
(0.061) (0.045) (0.052) (0.055)

65 - 67 0.003 -0.010 -0.026 0.003
(0.062) (0.054) (0.070) (0.053)

68 - 70 0.015 -0.014 0.023 0.011
(0.076) (0.058) (0.057) (0.064)

71 - 73 -0.026 -0.024 0.011 0.000
(0.075) (0.059) (0.052) (0.068)

74 - 76 0.037 0.008 0.091* 0.029
(0.079) (0.051) (0.054) (0.060)

77 - 79 0.050 0.014 0.041 0.034
(0.073) (0.061) (0.068) (0.060)

80 - 82 0.112 0.063 0.127* 0.079
(0.078) (0.061) (0.076) (0.067)

83 - 85 0.215** 0.108 0.215*** 0.091
(0.103) (0.066) (0.079) (0.079)

86 - 88 0.201** 0.150** 0.168** 0.165**
(0.091) (0.068) (0.070) (0.068)

89 - 91 0.335*** 0.183** 0.286*** 0.215***
(0.097) (0.074) (0.076) (0.072)

92 - 94 0.216* 0.129 0.203*** 0.139*
(0.110) (0.081) (0.070) (0.080)

95 - 97 0.297** 0.171* 0.346*** 0.207**
(0.119) (0.087) (0.093) (0.085)

98 - 100 0.252* 0.157* 0.253** 0.202**
(0.139) (0.085) (0.097) (0.092)

greater than 100 0.343** 0.160* 0.349*** 0.205**
(0.147) (0.094) (0.121) (0.097)

Notes: These are the corresponding estimates from Figure 8.
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Table A.7: Estimates from Figure 9

A B C D E F G H

below 35 -3.401 -3.444 -1.132 -1.471 0.504 -1.366 -3.935 -2.904
(5.063) (6.580) (2.738) (3.594) (2.081) (2.639) (5.269) (6.857)

35 - 37 -12.855*** -9.801** -0.313 0.952 -0.799 -2.044 -12.706*** -9.676*
(4.247) (4.632) (2.597) (3.317) (1.814) (2.300) (4.463) (4.950)

38 - 40 -2.158 4.078 -0.606 1.528 0.767 1.421 -2.816 2.118
(4.586) (5.362) (2.044) (2.707) (1.636) (2.044) (4.729) (5.561)

41 - 43 2.140 7.980 -2.249 -1.240 2.072 0.495 1.231 7.632
(4.283) (5.524) (2.041) (2.720) (1.640) (2.048) (4.454) (5.720)

44 - 46 1.136 3.304 -2.519 -0.100 0.392 0.586 1.595 2.475
(3.331) (4.549) (1.842) (2.362) (1.501) (1.820) (3.517) (4.746)

47 - 49 1.621 6.010* -0.855 0.638 1.369 1.660 0.846 4.316
(2.633) (3.465) (1.653) (2.182) (1.387) (1.676) (2.842) (3.700)

50 - 52 -0.218 -0.547 -0.789 1.516 0.375 1.853 -0.320 -2.584
(1.951) (2.230) (1.441) (1.815) (1.259) (1.596) (2.156) (2.510)

53 - 55 0.603 1.143 -1.199 -1.813 -0.473 -0.223 1.437 2.197
(2.014) (2.395) (1.263) (1.553) (1.218) (1.437) (2.191) (2.634)

56 - 58 -0.601 -0.181 0.539 0.520 -0.728 -1.825 -0.710 0.139
(1.605) (1.594) (1.399) (1.466) (1.334) (1.616) (1.849) (1.858)

62 - 64 0.378 0.359 1.748 3.198** -2.449* -2.894* 0.329 -0.257
(1.397) (1.579) (1.429) (1.503) (1.253) (1.531) (1.768) (2.035)

65 - 67 0.736 0.252 0.684 2.181 -2.151 -1.320 1.379 -0.339
(1.467) (1.755) (1.290) (1.583) (1.307) (1.544) (1.724) (2.071)

68 - 70 1.268 0.522 -0.150 2.111 -0.727 0.865 1.773 -0.738
(1.636) (1.807) (1.470) (1.838) (1.483) (1.570) (1.916) (2.149)

71 - 73 3.770* 3.260 -1.254 0.053 0.463 0.111 4.341* 3.391
(2.012) (2.343) (1.671) (1.974) (1.568) (1.957) (2.299) (2.712)

74 - 76 4.650** 5.171** -2.112 -0.361 0.079 1.325 5.745** 4.827
(2.187) (2.594) (1.898) (2.137) (1.823) (2.292) (2.519) (3.021)

77 - 79 4.587* 5.438* -0.541 1.368 -1.088 -0.103 5.338** 5.009
(2.395) (3.036) (1.827) (2.246) (1.711) (2.369) (2.678) (3.404)

80 - 82 2.907 2.967 -0.707 0.526 0.301 2.260 3.171 1.704
(2.343) (2.883) (2.158) (2.427) (1.929) (2.637) (2.746) (3.383)

83 - 85 3.589 3.170 -0.667 1.051 0.350 1.670 3.594 1.946
(2.481) (3.197) (2.162) (2.642) (2.125) (3.072) (2.867) (3.722)

86 - 88 5.372* 7.020** -0.980 0.476 0.039 1.694 5.526 5.868
(2.900) (3.552) (2.438) (2.895) (2.630) (3.703) (3.371) (4.183)

89 - 91 4.866* 6.569* -2.865 -2.241 1.050 3.959 5.864* 6.428
(2.806) (3.402) (2.733) (3.205) (3.456) (4.444) (3.447) (4.223)

92 - 94 6.606** 10.452*** -4.509 -4.264 2.964 4.321 8.624** 11.763**
(2.842) (3.688) (2.838) (3.333) (4.291) (5.413) (3.590) (4.583)

95 - 97 8.240*** 12.326*** -1.893 -3.211 9.515 9.317 7.155 11.784**
(3.129) (4.094) (4.127) (4.495) (5.904) (6.642) (4.532) (5.465)

98 - 100 6.481** 10.876** -6.501 -5.865 3.901 0.389 10.358** 14.201**
(3.276) (4.235) (4.577) (5.489) (8.136) (8.501) (4.920) (6.046)

greater than 100 6.924* 12.306** -2.564 -4.416 -2.867 -4.821 6.025 12.834
(4.003) (4.840) (7.713) (8.702) (9.500) (11.403) (7.547) (8.615)

Notes: These are the corresponding estimates from Figure 9. Columns G and H display interactions between the
temperature bins and a warmer climate indicator.
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Table A.8: Estimates from Figure 10

A B C D E F G H

below 35 -0.577 0.717 -0.914 -2.476 -1.544 -2.876 -0.304 2.445
(5.007) (6.439) (2.428) (3.205) (1.649) (1.961) (5.130) (6.605)

35 - 37 -7.511** -5.661 -1.058 -1.936 -2.019 -2.543 -6.863* -4.661
(3.739) (4.221) (2.302) (2.907) (1.515) (1.911) (3.890) (4.459)

38 - 40 -2.882 1.693 -0.855 -0.723 -0.785 0.246 -2.792 0.975
(3.729) (4.503) (1.744) (2.444) (1.476) (1.823) (3.859) (4.708)

41 - 43 0.047 3.996 -1.696 -1.511 -0.596 -1.655 0.204 4.676
(3.134) (3.910) (1.677) (2.268) (1.354) (1.588) (3.269) (4.085)

44 - 46 0.365 2.225 -2.895** -2.204 -2.545* -2.658* 2.295 3.705
(2.761) (3.856) (1.436) (1.877) (1.343) (1.601) (2.904) (4.024)

47 - 49 1.269 3.433 -0.832 -1.139 -0.955 -1.476 1.568 3.967
(2.126) (2.517) (1.307) (1.630) (1.233) (1.539) (2.290) (2.734)

50 - 52 -0.697 -0.976 -0.819 0.227 -0.916 -0.124 -0.291 -1.466
(1.608) (1.810) (1.227) (1.485) (1.138) (1.356) (1.792) (2.042)

53 - 55 -0.119 -0.356 -0.635 -1.384 -2.112** -1.799 1.121 1.138
(1.642) (1.769) (0.998) (1.199) (1.019) (1.160) (1.781) (1.959)

56 - 58 0.346 0.626 -0.204 -0.546 -1.335 -1.516 0.913 1.491
(1.383) (1.327) (0.912) (1.146) (1.071) (1.369) (1.533) (1.532)

62 - 64 0.684 0.960 1.861 2.711** -2.305** -2.149* 0.504 0.216
(1.165) (1.246) (1.194) (1.249) (1.096) (1.214) (1.516) (1.660)

65 - 67 0.661 0.727 0.615 1.504 -2.463** -1.843 1.529 0.719
(1.130) (1.348) (1.006) (1.286) (1.127) (1.212) (1.348) (1.599)

68 - 70 0.910 0.486 0.321 2.247 -1.831 -0.721 1.621 -0.220
(1.317) (1.392) (1.188) (1.520) (1.269) (1.279) (1.562) (1.685)

71 - 73 2.809 2.517 -0.304 0.529 -0.549 -0.529 3.413* 2.631
(1.843) (1.951) (1.312) (1.593) (1.270) (1.470) (2.041) (2.230)

74 - 76 3.147* 3.266 -0.479 0.754 -0.927 0.389 3.933* 2.734
(1.797) (2.080) (1.503) (1.690) (1.478) (1.700) (2.069) (2.411)

77 - 79 2.797 3.186 -0.125 1.021 -1.832 -0.404 3.779 2.926
(2.062) (2.594) (1.591) (1.796) (1.437) (1.763) (2.310) (2.859)

80 - 82 1.450 1.364 0.124 0.749 -1.134 0.587 2.123 0.755
(1.953) (2.310) (1.858) (2.024) (1.657) (2.014) (2.328) (2.743)

83 - 85 1.405 1.293 0.378 1.403 -1.107 -0.360 1.819 0.870
(2.155) (2.682) (1.787) (2.065) (1.760) (2.296) (2.465) (3.039)

86 - 88 2.817 4.021 1.010 1.762 -1.142 -0.681 2.725 3.373
(2.410) (2.906) (1.966) (2.225) (2.319) (3.029) (2.805) (3.392)

89 - 91 2.022 2.944 -0.882 0.240 -0.425 -0.083 2.950 3.077
(2.303) (2.801) (2.218) (2.487) (2.736) (3.563) (2.859) (3.457)

92 - 94 4.199* 6.530** -2.636 -1.133 0.918 0.127 6.357** 7.620**
(2.437) (3.140) (2.250) (2.652) (3.692) (4.693) (3.039) (3.844)

95 - 97 5.478** 7.696** 1.979 0.667 2.625 1.022 3.437 7.118
(2.684) (3.386) (3.302) (3.361) (4.519) (5.292) (3.810) (4.423)

98 - 100 6.247** 9.280** -2.558 -0.793 -2.046 -7.895 9.010** 11.977**
(2.835) (3.606) (3.624) (4.242) (7.040) (7.030) (4.110) (4.963)

greater than 100 5.647 10.407** 0.434 1.165 -10.050 -14.144** 6.176 12.733*
(3.427) (4.181) (6.143) (7.007) (6.631) (7.075) (5.960) (6.801)

Notes: These are the corresponding estimates from Figure 10. Columns G and H display interactions between
the temperature bins and a warmer climate indicator.
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Table A.9: Estimates from Figure 11

A B C D E F

below 40 -0.185*** -1.011*** -0.107 -0.160*** -0.602** -0.083
(0.066) (0.283) (0.124) (0.059) (0.282) (0.119)

40 - 49 -0.020 0.079 0.029 -0.073 0.228 -0.147
(0.050) (0.186) (0.073) (0.063) (0.199) (0.094)

60 - 69 -0.014 -0.086 0.084 -0.091 -0.081 -0.129*
(0.039) (0.126) (0.053) (0.066) (0.130) (0.074)

70-79 0.047 0.115 0.103* -0.024 0.027 -0.121*
(0.039) (0.100) (0.060) (0.068) (0.107) (0.065)

80-89 0.038 0.104 0.115 -0.085 -0.021 -0.121*
(0.049) (0.105) (0.076) (0.080) (0.113) (0.071)

greater than 90 -0.045 -0.005 0.103 -0.364*** -0.068 -0.392***
(0.063) (0.127) (0.086) (0.106) (0.124) (0.113)

Notes: These are the corresponding estimates from Figure 11. Column E displays inter-
actions between the temperature bins and a warmer climate indicator. Column F displays
interactions between the temperature bins and a cooler climate indicator.
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B Appendix: The Effect of Temperature on Injury Rates

by Day for Mining Analysis
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days
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D. Effect of Today's Temperature on
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E. Effect of Today's Temperature on the Day after
Tomorrow's Injuries/Illnesses
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F. Effect of Today's Temperature on the Day after
Tomorrow's Injuries/Illnesses, Only Dry Days

Figure B.1: The Effect of Temperature on Injuries in Mining Data. The underlying
data come from the 2006 to 2014 MSHA injury logs. Each graph displays coefficient estimates
on the temperature bins from a single regression. All estimates are relative to days with high
temperatures of 59◦F to 61◦F. 95-percent confidence intervals calculated using standard
errors clustered at the site level are displayed along with the estimates. All regressions
control for day fixed effects, year-month-mine fixed effects, precipitation indicator variables,
and high temperature and precipitation indicator variables for the preceding three days and
proceeding two days. The means of injuries per 100,000 workers when temperatures are 59◦F
to 61◦F are as follows: A: 10.47, B: 9.90, C: 9.30, D: 9.07, E: 7.45, and F: 7.60. The sample
contains 2,615,672 site-days and 1,820,433 site-days without rain.
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