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Abstract

We propose a new methodology to estimate long-run intergenerational socioeconomic mo-
bility. Our speci�cation takes into account assortative mating in the marriage market and is
general enough to encompass the standard model as well as the speci�cation recently proposed
by Gregory Clark. Our approach does not require to have information about the variable of
interest for individuals in several generations and make use of the correlations among individuals
with di¤erent degrees of kinship in the same generation. In our empirical application we use
census data from Spain and �nd a high degree of persistence that corroborates some of Clark�s
�ndings.

1 Introduction

The analysis of the degree of socioeconomic intergenerational mobility has attracted the attention
of many economists in recent years (see for example Chetty et al 2014). Part of the interest on
this topic is due, at least in the case of income mobility, to its possible relation with the increasing
income inequality experienced recently in some economies (Corak 2013). An additional factor to
explain this interest is the existence of recent studies showing that mobility in the long-run is
perhaps much lower than what most economists used to think (Long and Ferrie 2013, Clark 2014,
Lindahl et al. 2014). This recent literature has started to change the standard view about mobility
across multiple generations, which used to assume that the correlation between grandparents and
grandchildren outcomes is basically the square of the parent-o¤spring correlation. Since for most
relevant outcomes such as income or education, parent-o¤spring correlations are always moderate,
economists had often assumed that the correlation between individuals in one generation and their
ancestors in di¤erent generations decreases really fast as we go back in time, so that after, say,
three or four generations the link is already very weak. However, recent empirical studies suggest a
much higher persistence rate in socioeconomic status and a signi�cant link with grandparents and
even with great-grandparents (Lindahl et al 2014).

An important contribution in this area has been the work by Clark (2014) who claims that
mobility across several generations, for income as well as for other outcomes, is low due to the
existence of a latent variable, the "underlying social competence" of families, which is inherited
from parents and has a high persistence rate. If such latent variable indeed plays an important role
in the transmission of socioeconomic status the standard regressions of o¤spring outcomes against
parent�s outcomes will be downward biased and the true persistence will be higher than suggested

�We are grateful to Gregory Clark for very helpful comments and suggestions. (a) Universidad de Alicante; (b)
Universidad Carlos III
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by the regression coe¢ cient. Clark (2014) asses the role of such latent variable using a methodology
based on the use of surnames. His approach requires information on the outcome of interest for
individuals in several generations. Using data from a series of countries and periods of time Clark
�nds a very low degree of intergenerational mobility. Furthermore, the degree of mobility is very
similar across countries and time. Lindahl et al (2014) and Braun and Stuhler (2016) also �nd a
low degree of long-run intergenerational mobility but not as low as in Clark (2014).

One main problem with the approach adopted in these works is the data requirement, since
for many countries it is di¢ cult to obtain comparable information for more than two generations
about outcomes such as income or educational levels. For instance, in many countries we typically
�nd that there is very little variation in years of formal education for older generations because the
majority of the population had just basic education. Thus, we propose a new approach to asses
the degree of long-run intergenerational mobility that does not require information on previous
generations. To apply our methodology we just need "horizontal" information, that is, information
about individuals of the same generation, or very close generations, who are relatives of a certain
degree, for example siblings, cousins, second cousins, parent-child, uncle-nephew1. The idea behind
our method is quite simple. Say that we would like to asses the link between grandparents and
grandsons but we don�t have data for grandparents to directly measure it. But if instead we have
good data for cousins we can infer the grandparents-grandsons link from the cousins links. Thus,
horizontal information can overcome the lack of vertical information2. In particular, we compute the
correlation for years of schooling for di¤erent degrees of kinship (brothers, fathers-sons, �rst-cousins
and uncles-nephews) using census data from a Spanish region. If we have enough of these moments
we can calibrate all the parameters of a reduced form model on intergenerational mobility. Our
results from this calibration exercise are very much consistent with the high persistence hypothesis
proposed by Clark. In particular we �nd that the persistence rate for the "underlying social
competence" of families is around 0.8. Consistent with this result, our approach predicts that the
educational levels of individuals in the current generation are still correlated in a non-negligible
magnitude with the socioeconomic status of their ancestors as much as four or �ve generations back
in time.3

Our approach is also related to the literature on siblings correlations (See Solon 1999, Levine
and Mazumder 2007, Björklund and Jäntti 2009 and Schnitzlein 2014). Most of the papers in
this literature aim at estimating the impact of family background on an observable outcome such
as income, education, etc. The family background is a latent component that accounts for all
factors shared by siblings that are orthogonal to the parental outcome. We extend these models by
decomposing the family background into an inheritable and a non-inheritable component. The idea
is that by using correlations on outcomes of relatives of di¤erent degrees of kinship we are able to
disentangle the non-inheritable part of family background that is only shared by sibling from the
inheritable part that is also partially shared by cousins, second cousins, etc., through their common
ancestor. Our decomposition of the family background into the inheritable and non-inheritable
components is related to the nature and nurture decomposition. Many papers in this literature
try to estimate the relative importance of nature and nurture by looking at the correlations in

1Hällsten (2014) also computes the correlation in some observed outcomes for cousins and second cousins and
points to the advantage of using data for the same generation.

2Güell et al. (2015) also make use of "horizontal" information to estimate intergenerational mobility, but their
approach is quite di¤erent and based on the used of surnames.

3Collado et al (2014) analyze long-run mobility in the same Spanish region using census data from the XIX and
the XX century. They �nd a higher level of mobility than the one in this paper. This discrepancy might be explained
because they only consider two socioeconomic levels whereas than here individuals are classi�ed according to 10
possible levels of education (years of schooling)
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observed outcomes for di¤erent type of siblings like MZ twins, DZ twins, siblings, half siblings,
adoptees, etc. (See Sacerdote 2011 for a literature review). The standard approach in this literature
decomposes the total variance of the output of interest into three additive terms, the �rst term
representing the genetic factors, the second one represents the environmental factors shared by
the siblings and a third factor that is idiosyncratic to the individuals. Among these papers, the
most related to our work are Behrman and Taubman (1989) and Björklund et al. (2005). Both
papers make use of correlations across several sibling types and �nd the values of the parameters
that best �t the empirical correlations in a similar way as we do here. Behrman and Taubman
focus on years of schooling and assume that family environment and genes are uncorrelated (see
Goldberger 1979 for a critique of this approach). Björklund et al. (2005) focus on earnings and
consider di¤erent possible models, and in particular they allow for the possibility that environment
and genes are correlated. Our approach di¤ers from these works in several fundamental aspects.
First, we do not make use of twins and our analysis is based on correlations for all type of relatives.
Second, and more importantly, we focus on intergenerational mobility and "persistence", not on the
nature-nurture debate. As noticed, we decompose the family background into an inheritable and a
non-inheritable component rather than into genetic and environmental components. An advantage
of our approach is that we don�t have to deal with the complicated problem of the relationship
between genes and environment. In our case, by de�nition, the non-inherited component captures
all the e¤ects that siblings share and are not correlated with the non-inheratable components.
Furthermore, since we are not interested on measuring the direct e¤ect of genes4, our analysis is
not based on the correlations of di¤erent types of twins.

Thus, we propose a new method to asses the degree of long-run mobility that can be seen as
complementary to the one used recently by several economists. We believe that our method has an
important advantage since it does not require information on individuals in previous generations,
and therefore, it can be applied to study long-run intergenerational mobility in many countries in
which there is no comparable data on individuals in several generations.

The empirical results suggest that long-run intergenerational mobility might be quite low. Be-
cause we only calibrate a reduced form model it�s di¢ cult to get policy conclusions from our �ndings.
However, the fact that the latent variable underlying the social competence of families explains a
high part of the variance in levels of education suggests that public intervention policies should pay
more attention to the role of the family.

The paper proceeds as follows. Section 2 sets out the basic model and develops our method.
Section 3 presents our main empirical �ndings and the robustness checks. Section 4 extends the
basic model to account for assortative mating and the potential in�uence of mothers. Section 5
concludes. We include some additional information about the models in the Appendixes.

2 Theory

Suppose that y is the outcome of interest in our economy, for example income, education or wealth.
Since in our empirical exercise such outcome will be the level of education henceforth we identify
y with years of schooling but all our theoretical results are valid to study other outcomes as, for
example, income. We want to study the link of such variable y between individuals and their
ancestors. We consider a reduced form of Becker-Tomes (1979) model similar to the one in Solon

4 In recent years, the availability of molecular genetic data has allowed the use of a new methodology to asses the
in�uence of genetic factors. See Okbay et al. (2016) for the results of a genome-wide association study (GWAS) for
years of schooling.
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(2014)
yit = �yt�1 + z

i
t + xt + u

i
t (1)

where t � 1 denotes the father�s generation and t the children�s generation, yt�1 denotes years of
schooling of his father, zit denotes a latent variable that is inherited from the parents, xt is a shock
shared by all brothers in the family which is uncorrelated with the other variables (in particular
with zt), and uit is an individual�s white-noise error term. In principle the variable z

i
t might include

common genes and family values and depending on whether there are perfect credit markets or
not father�s wealth could be also part of it. The variable xt could capture factors like the type
of neighborhood, common friends and perhaps the in�uence of one sibling on another. These are
factors that siblings might share but are not inherited from parents.

The latent variable zit is often omitted in this type of analysis and it has been introduced by
Clark (2014) who sees it as the "underlying social competence" of families and assumes that

zit = zt�1 + e
i
t (2)

where zt�1 denotes the father�s value of such latent variable and eit is an individual white-noise
term.5 Thus, the "underlying social competence" is passed from fathers to their sons with persistence
rate .

The traditional approach does not consider the existence of such variable z while Clark�s ap-
proach assumes that � = 0:6 We take a more general view and a priory do not exclude any
possibility and let the data determine which model is the correct one. If the traditional approach
is the correct one we should �nd that z is zero (or close to zero) whereas if Clark�s model is the
correct one we should �nd very low values of � and signi�cant values of z and : As noticed, many
recent papers also allow for the possibility of an unobservable variable. The identi�cation strategy
is usually based on twins, adoptees and instrumental variables (see Holmlund 2011 for a survey of
this literature). However, they neither estimate the magnitude of our heritable variable z nor the
persistence parameter .

We suppose we are in the steady state and therefore the persistence parameters � and , the
distribution of zt�1 and yt�1 and all the covariances remain the same across generations. Under
the standard approach the parameter � is estimated by regressing child�s years of schooling on
parental years of schooling. Since z is unobservable, estimating  in Clark�s model requires to
have observations not only on sons years of schooling and fathers years of schooling but also on
grandparents years of schooling (see Clark 2014). Unfortunately, in many cases it�s di¢ cult to
get good data on the outcome of interest for a large sample of individuals from more than two
di¤erent generations. We propose a new methodology that only requires information on the years
of schooling of individuals in two generations, and sometimes only information from one generation.
The idea behind our method is quite simple: if the model speci�ed by (1) and (2) is correct and we
have the necessary data, we can compute the correlations on years of schooling for di¤erent degrees
of kinship, for example the correlation for brothers, father-son, �rst-cousins, second-cousins, uncle-
nephew and so on. If we have enough of these moments we can calibrate all the parameters of the
model.7 To compute some of these moments we need information about individuals from the same
generation (brothers, �rst-cousins, second cousins,...) and if we have information about a previous

5We assume that siblings errors eit are uncorrelated: Our results are robust to imposing the restriction that siblings
get the same realization of et.

6Clark (2014) does not need to include x because he does not use data on brothers, cousins, etc.
7 If we have enough moments we can consider an even more general model in which the parameter � in the current

generation could be di¤erent from the one in the previous generation.
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generation we might also compute correlations for father-sons and uncle-nephews. In some cases
one can have data on grandparents and compute the grandfather-grandson correlation.

Write as �2y, �
2
z and �

2
x the variances of y, z and x respectively. We can write the covariance in

years of schooling between brothers i and j in generation t as

Covb(y
i
t; y

j
t ) = �

2�2y +
2��2z
1� � + 

2�2z + �
2
x

and the correlation as

�b =
Covb(y

i
t; y

j
t )

�2y
(3)

In Appendix A we show the corresponding correlations for father-son, grandfather-grandson, uncle-
nephew, �rst-cousins, second-cousins and third-cousins. If we know at least four of the previous
correlations we can calibrate the model to determine the values of those unknowns. Notice that
when computing the correlations for cousins i and j we assume that Cov(xi; xj) = 0 because
otherwise the model would be under-identi�ed. In Section 3 we provide some empirical evidence to
justify this assumption.

We might not �nd an exact solution to such system of equations within the range of values
that we consider feasible in our economy. In that case we determine �; ; �2z and �

2
x by solving the

following minimization problem

Minf�;;�2z ;�2xg2F
X
i2C

pi(�i � �i)2 (4)

where �i is the value of the observed correlation, pi is the sample size used to calculate correlation
�i, F is the set of feasible values for the four unknowns, and C is the set of correlations for which
we have reliable data (for example brothers, cousins, second-cousins, fathers-son).

3 Empirical Application I

In this section we apply the method proposed in section 2 to calibrate the model using census data
from the Spanish region of Cantabria.

3.1 The data

To apply our methodology we need data on extended families. The 2001 population census for
Spain, which is available nationwide, does not allow to identify families unless they are living in
the same house. However, for the region of Cantabria we have information on the full name of
each person and we can use this information to identify fathers and sons, brothers, uncles and
nephews, and cousins. The census contains information, among other variables, on the gender,
age and educational level of all individuals living in the region (526; 339 persons). We de�ne the t-
generation as all males born in Cantabria between 1956 and 1976 (71; 479males and 68; 830 females)
and the (t� 1)-generation as their parents. Surnames in Spain are passed from parents to children
according to the following rule: A newborn person, regardless of gender, receives two surnames that
will keep for life. The �rst surname is the father�s �rst surname and the second the mother�s �rst
surname. This name convention allows us to identify fathers and mothers. For each person i in
generation t we de�ne the set of potential parents as all the couples born before 1956 such that the
husband �rst surname coincides with person i �rst surname and the wife �rst surname coincides
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with person i second surname. Then, we say that we identify the parents if there is only one couple
in the set of potential parents and the age di¤erence between both parents and the son is at least
16 years. We identify the parents for 25; 860 males and 24; 610 females which is approximately
36:2% and 35:8% of the male and female population respectively. We use the information on the
educational level to assign years of schooling to each person following Calero et.al.8 We measure
the years of schooling as deviations from the corresponding mean in each generation. Table 1 shows
some basic descriptive statistics.

The matched sample is almost 2 years younger than the unmatched one. The reason is that
the older a person is the more likely the parents are not living together or one of them has died.
Since the matched sample is younger it is also more educated (0:8 more years of schooling than the
unmatched sample)

Table 1
Men Women

Matched Unmatched Matched Unmatched

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Age 33.61 5.91 35.42 6.16 33.70 5.92 35.50 6.15

Years of schooling 10.53 3.71 9.71 3.64 10.99 3.71 10.11 3.69

Number of observations 25,860 45,619 24,610 44,220

Once we have identi�ed parents and children, siblings are immediately identi�ed. Finally, we
identify siblings in the parents generation when there are only two individuals in that generation
sharing the same two surnames. Once siblings in the parents generation are identi�ed, uncles
and nephews, and cousins are immediately identi�ed. The strategy to identify siblings in the
parents�generation is quite conservative in the sense that it is unlikely that we identify as brothers
individuals who actually are not brothers, but we pay the price of having smaller sample sizes for
cousins and uncles-nephews than for fathers-sons or brothers.

3.2 The benchmark case

We use the sample of males and the correlations between brothers, cousins (whose fathers are
brothers), fathers and sons, and nephews and uncles (the uncle being brother of the father). The
empirical covariances are �rst computed for each family and then averaged across families as sug-
gested in Solon, Page and Duncan (2000). The empirical correlations are obtained by dividing the
empirical covariances by the product of the standard deviations.9 The empirical correlations and

8We assign 2 years of education to those who did not complete primary education, 5 years to primary education,
8 to compulsory education, 10 to vocational training, 12 to secondary education, 15 to sort university degrees, 17 to
long university degrees other than engineering and medicine, 18 for engineers and medical doctors and 19 for Ph.D.
All our results are robust to other reasonable ways to assign years of education as, for example, assigning 0 years of
education to those who did not complete primary education, 4 years to primary education, 9 to vocational training
and 11 to secondary education.

9Notice that the standard deviation of y is 3:705 for the current generation and 3:831 for the parents generations.
Therefore, the empirical correlations for fathers and sons, and uncles and nephews would have been slightly larger if
we would have divided the covariances by the variance of y

6



the number of families and pairs used to compute those correlations are presented in Table 2.

Table 2
Brothers Father-son Cousins Uncle-nephew

Correlations 0.467 0.379 0.196 0.232
Number of families 6,022 17,663 746 1,921
Number of pairs 11,109 25,860 1,654 2,843

These correlations are within the values estimated in some other developed countries (see Hertz
2007 and Björklund and Salvanes 2011). We solve the minimization problem (4) with the four
moments to obtain10

Table 3
�  �2z �2x
0 0.790 6.586 2.303

We next compare the empirical correlations with the predicted correlations for these values of
�; ; �2z and �

2
x

Table 4
Correlations Brothers Father-son Cousins Uncle-nephew
Observed 0.467 0.379 0.196 0.232
Predicted 0.467 0.374 0.187 0.236
% Error 0% -0.025% -4.784% 1.859%

Since we don�t have data on the correlation for other relatives, as grandfather-grandson, we
cannot compare it with the correlation predicted by the model. However, we can compare the
square of the father-son correlation with the grandfather-grandson correlation predicted by the
model

Predicted grandfather-son (father-son)2

0.299 0.144

This result is in accordance with Clark�s view and with some recent empirical evidence (Lindahl
et al 2015). The grandfather-grandson correlation is much stronger than the squared of the father-
son correlation.

It�s useful to asses how much of the total variance of yt is explained by the di¤erent components
of the model. We have

�2y = �2�2y + �
2
z + 2�Cov(yt�1; zt) + �

2
x + �

2
u (5)

= �2�2y + �
2
z + 2

��2z
1� � + �

2
x + �

2
u

The part of the variance �2y explained directly by the father�s years of schooling is �
2�2y: The part

directly explained by the latent variable z is �2z while the part explained by the shocks shared
by brothers is �2x: We standardize years of schooling so that �

2
y = 1 and obtain the following

decomposition

Table 5
Total explained �2�2yt�1 �2z �2x 2�Cov(yt�1; zt)

0.648 0 0.480 0.168 0

10We use Mathematica to solve all the minimization problems in this paper. The codes and the details of all the
computations are available upon request.
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Thus, the results in our benchmark case favour Clark�s view that long-run mobility is much
lower than suggested by most economists, and that a large share of the persistence is explained by
an inherited latent variable with a high rate of persistence ( = 0:79).

It�s important to mention that both x and z are essential to obtain a satisfactory calibration of
the model. Thus, if we drop x from the model and repeat our previous procedure we again obtain
a very high value of the persistence parameter . However, in this case the (over-identi�ed) model
performs quite poorly at predicting the correlations. This is not surprising since previous works
have already shown the importance of this type of shock to understand the correlations between
brothers11 (Branigan et al. 2013). If we now drop z, we obtain a non negligible � = 0:384 but the
�t regarding cousins and uncle-nephew correlations is very poor. The predictions based on these
two models are presented in Table 6

Table 6
Correlations Brothers Father-son Cousins Uncle-nephew
Observed 0.467 0.379 0.196 0.232
Dropping x:
Predicted 0.367 0.397 0.313 0.339
% Error -21.47% 4.691% 59.82% 46.09%
Dropping z:
Predicted 0.475 0.384 0.070 0.182
% Error 1.794% 1,190% -64.33% -21.42%

To better appreciate the consequences of these �ndings, Figure 1 shows the predicted correla-
tions for individuals at the current generation and their ancestors, i.e. their fathers, grandfathers,
great-grandfathers, etc., based on the full model and on the model without z.

11 In the standard ACE approach the outcome of interest is decomposed in the genetic componet (A), a family or
shared environment componet (C), and the idiosyncratic componet (E). Our variable x might be seen as a part of the
environment component C, since x only captures the inheritated shared environment. In many studies the componet
C explains a very small part of the total variance. In our case just the component x explains about 17% of the total
variance. However, in the meta-analysis on educational attainment carried out by Branigan et al. (2013) the part of
the variance explained by C is usually larger than 20%, what is consistent with our �nding.
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Figure 1

As it is very clear from the �gure, the persistence based on the model without z is low, so
that after a few generations the in�uence of ancestors vanishes almost completely. Our approach,
however, provides a more pessimistic view about intergenerational mobility in the long run. Thus,
we �nd that, under the assumption of stability of the parameters of the model, the correlation
between the levels of y of individuals in the current generation and the levels of y of their ancestors
seven generations back in time is still as high as 9%.

A possible concern is that our estimate of  is biased because of the assumption that the shocks
x for cousin pairs are uncorrelated. One would suspect that an important component of these
shocks is related to the geographical location of the individuals, and cousins might tend to live in
the same region. Remember that x captures the shocks that are shared by siblings and are not
inherited from parents, so that if cousins live in the same location as their parents that is part of
the inherited components and is not incorporated in x. Thus, we check in our data the location
of cousins who do not live in the same location as their parents: Among the pairs of cousins such
that at least one of them does not live in the same municipality than his parents, the probability
that they live in the same municipality is 10%, basically the same probability as for two men taken
randomly from the whole population (11%). However, such probability is 34.5% for couples of
brothers that do not live in the same municipality as their parents. Thus, we are con�dent that
our results do not critically depend on the assumption of uncorrelated non-inherited environments
among cousins.

A second concern is that the minimization problem (4) might present some additional local
minimum with value of the objetive function very close to the value of the global minimum but
with very di¤erent values of �; ; �2z and �

2
x. Indeed, in our case we �nd a local minimum at

� = 0:25;  = 1; �2z = 3:4 and �2x = 1:22 that also yields an acceptable prediction of our four
moments. However, we rule out this case because the extreme value  = 1 implies the unreasonable
situation in which the latent variable z is passed from fathers to sons without any noise. It�s
interesting to notice that such set of values would predict a correlation for 2nd cousins of 0.16,
much higher than the correlation of 0.116 predicted by our chosen values. Unfortunately we don�t
have information on 2d cousins but such di¤erence in predictions suggest that having such additional
"horizontal" information could really overidenti�ed the model12.

3.3 Robustness checks

One possible concern with our previous analysis is about the robustness of our �ndings to changes
in the values of the observed empirical correlations. For this reason we repeat our procedure for
1,000 di¤erent sets of values of the four correlations �b; �fs; �un, �c1: These values are obtained by
carrying out 1,000 random draws from our original sample, each draw selecting 75% of the original
individuals in the current generation.13 Table 7 reports the mean values of the four unknowns
obtained under this procedure and compares it with the ones reported in the above benchmark
case. Notice that the average value of � is 0.065 which is very close with the estimated causal e¤ect
of schooling in the survey of Holmlund et al. (2011).

12The 2nd cousins correlations in GPA provided in Hällsten (2014) are always lower than 0.12, except for the
correlation among the wealthiest 1%.
13Since the number of pairs of uncle-nephew is not that large we consider that draws of 75% of the whole sample

are better than draws of 50%. The results for the 50% case, which are in the vast majority of cases very similar to
the ones reported here, are available upon request.
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Table 7
�  �2z �2x

Mean value 0.065 0.840 5.136 2.500
Benchmark case 0 0.790 6.586 2.303

Table 8 shows the mean correlations predicted by the model and the observed ones.

Table 8
Mean correlations Brothers Father-son Cousins Uncle-nephew
Predicted 0.460 0.377 0.215 0.257
Observed 0.471 0.383 0.207 0.246

Figure 2 shows for these 1,000 subsamples the values of � and  and the standardized �2z, �
2
x

as well as �2�2y (the part of the variance of yt directly explained by yt�1).
14 The di¤erent cases are

ordered according to the obtained values of �.

14Notice that we have normalized �2z and �
2
x to �

2
y:

10



Figure 2

The basic facts that arise from this robustness check exercise are: i) The persistence parameter
is always quite high and in almost all the cases greater than 0.75;15 ii) The largest values of � are
around 0.2, but even for those cases the part of the total variance of yt explained directly by yt�1
is small and in all the simulations but one, smaller than the part of the variance explained by the
latent variable z:

Thus, the main �ndings and conclusions obtained in the benchmark case are robust to these
changes in the values of the observed correlations.16

4 A model with assortative mating

The model we were considering did not take into account the potential in�uence of the mother
in the outcome of the children. We now extend the previous model to incorporates mothers and
assortative mating. We assume that the value of the output y for an individual from generation t
is given by

ykt = �
keykt�1 + zkt + xkt + ukt (6)

where the superscript k stands for males (k = m) and for females (k = f). We assume that

eykt�1 = �kyymt�1 + (1� �ky)yft�1
15Only 18% of the estimated  are smaller 0.79, the value found for the benchmark case.
16We have carried out additional robustness checks. In particular we �rst have repeated the same robustness check

as the one here but for draws of 50% of the original sample, and second we have solved our minimization problem for
other 256 economies obtained by considering values of the correlations within a �10% deviation from the benchmark
case values. The results are again similar and are provided upon request.
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where �ky 2 [0; 1];so that eykt�1 can be seen as the weighted average years of schooling of parents.
The socioeconomic status of the child, zkt ; depends on the father z

m
t�1 as well as on the mother z

f
t�1

zkt = 
kezkt�1 + ektezkt�1 = �kzzmt�1 + (1� �kz)zft�1 (7)

where �kz 2 [0; 1]
Regarding the shocks, we assume that xkt is shared by all siblings of the same gender, can

be correlated across siblings of di¤erent gender and is uncorrelated with the other variables (in
particular with zt and yt�1). Finally ukt is an individual�s white-noise error term.

We assume there is assortative mating both in years of schooling and in socioeconomic status
(see Berhman and Rosenzweig 2002 for a related model with assortative mating in two dimensions).
In particular we consider the linear projections of zft�1 and y

f
t�1 on z

m
t�1 and y

m
t�1: 

zft�1
yft�1

!
=

�
rmzz rmzy
rmyz rmyy

��
zmt�1
ymt�1

�
+

�
wmt�1
"mt�1

�
(8)

where wmt�1 and "
m
t�1 might be correlated but are uncorrelated with z

m
t�1 and y

m
t�1; and the r

m
sd (s; d =

y; z) coe¢ cients are functions of the following correlations and standard deviations �zmym ; �zmzf ;
�zmyf ; �ymzf ; �ymyf ; �zm ; �zf ; �ym and �yf : Alternatively, we can consider the linear projections

of zmt�1 and y
m
t�1 on z

f
t�1 and y

f
t�1:�

zmt�1
ymt�1

�
=

 
rfzz rfzy
rfyz rfyy

! 
zft�1
yft�1

!
+

 
wft�1
"ft�1

!
(9)

where wft�1 and "
f
t�1 might be correlated but are uncorrelated with z

f
t�1 and y

f
t�1; and the r

f
sd (s; d =

y; z) coe¢ cients are functions of the following correlations and standard deviations �zfyf ; �zmzf ;
�zmyf ; �ymzf ; �ymyf ; �zm ; �zf ; �ym and �yf . In Appendix B we provide the formulas for all these
coe¢ cients and we show that �zmym and �zfyf are functions of the other parameters through two
steady state equations. Then, since we can directly estimate �ym ; �yf and �ymyf from the data, we
have 16 unknown parameters that write as the vector v:

v = f�m; m; �zm ; �xm ; �f ; f ; �zf ; �xf ; �xmxf ; �zmzf ; �zmyf ; �ymzf ; �my ; �mz ; �fy ; �fz ; g

and therefore we need at least 16 correlations between relatives of di¤erent kinship to calibrate these
parameters. The inclusion of females into the model allows us to use the following 22 correlations:
husband and wife, brothers, sisters, brother-sister, three types of male cousins (fathers are brothers,
mothers are sisters, and father and mother are brother an sister) and analogously three of female
cousins, four types of male-female cousins (fathers are brothers, mothers are sisters, father of the
male is brother of the mother of the female, and mother of the male is sister of the father of
the female), son-father, daughter-father, son-mother, daughter-mother, two types of nephew-uncle
(brother of the father and brother of the mother) and analogously two of nice-uncle.17

17The formulas for these correlations as functions of the parameters are presented in Appendix B.
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4.1 Empirical Application II

We calibrate the parameters in v by solving the following minimization problem18

Minv2F
X
i2C

pi(�i � �i)2 (10)

where �i are the theoretical correlations, �i the empirical correlations, pi the number of families
used to calculate each correlation (see Table 10), F is the set of feasible values for the unknown
parameters19, and C is the set of correlations we mentioned above.

The calibrated parameters are presented in Table 9

Table 9
�m m �2zm �2xm
0 0.818 6.600 2.252
�f f �2

zf
�2
xf

0 0.839 5.491 2.006
�xmxf �zmzf �zmyf �ymzf

0.779 0.895 0.579 0.601
�mz �my �fz �fy
0.828 - 0.488 -

The picture we obtain is again consistent with Clark�s results. Both �m and �f are basically zero,
whereas m and f are around 0:8. This means that the observable outcome is transferred from
parents to children indirectly through the latent variable z, which is very persistent. Another
remarkable result is the large degree of assortative mating in z ( correlation of 0.895 between zm

and zf ) which suggests that the possible genetic part of it cannot be that large, and probably
culture and identi�able preferences and values form the largest part of z20. Notice that since �m

and �f are zero �my and �
f
y are not identi�ed.

Regarding the �tting, we have computed the predicted correlations based on this parameters
and we compare them with the empirical correlations. The results are presented in Table 10. The
�t is remarkable taking into account that we try to match 22 moments using 12 parameters. As
we expected, the empirical correlations based on a large number of pairs of observations, which are
likely to be quite accurate, are very close to the predicted ones, whereas those based on a smaller
number of pairs are less close. This result is not only due to the weights used, a quite similar �t
arises when we use equal weights.

18We have used Mathematica to solve the minimization problem. This is a more complex problem than the one
discussed in Section 3 since there are many local minima. The code is in the online appendix.
19The parameters �m; m; �f ; f ; �my ; �

m
z ; �

f
y ; �

f
z ; have to be between 0 and 1, but the correlation can take negative

values.
20Cavalli-Sforza and Feldman (1981) suugest that a high correlation in this type of variable might be explained by

the existence of "horizontal transmission" of cultural attitudes, which makes that the values of z for the father and for
the mother converge by the time they raise their o¤spring. However, it�s not clear how such horizontal transmission
could explain our �nding since in our model z exclusively refers to vertical transmitted values.
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Table 10
N. families Empirical Predicted Error (%)

brothers 6022 0.467 0.467 0.010%

sisters 5662 0.437 0.437 0.000%

brother-sister 9525 0.414 0.414 -0.003%

male cousins

(fathers are brothers) 746 0.196 0.190 -3.070%

(mothers are sisters) 670 0.213 0.190 -11.020%

(father and mother are brother and sister) 1146 0.209 0.188 -10.282%

female cousins

(fathers are brothers) 670 0.170 0.174 2.616%

(mothers are sisters) 608 0.193 0.201 4.282%

(father and mother are brother and sister) 1063 0.207 0.185 -10.554%

male-female cousins

(fathers are brothers) 1100 0.186 0.182 -2.127%

(mothers are sisters) 1003 0.168 0.195 16.254%

(father-male is brother of mother-female) 1112 0.218 0.193 -11.360%

(mother-male is sister of father-female) 1115 0.157 0.180 14.435%

son-father 17663 0.379 0.379 -0.007%

daughter-father 16982 0.360 0.360 -0.139%

son-mother 17663 0.328 0.328 -0.066%

daughter-mother 16982 0.335 0.335 0.042%

nephew-uncle (brother of the father) 1921 0.232 0.239 3.182%

nephew-uncle (brother of the mother) 1350 0.228 0.238 4.412%

nice-uncle (brother of the father) 1852 0.216 0.228 5.662%

nice-uncle (brother of the mother) 1298 0.247 0.245 -0.893%

We now decompose the variance of y into its di¤erent components as

�2yk = (�
k)2�2ey + �2zk + �kCov(eykt�1; zkt ) + �2xk + �2uk

The results of these decompositions for males and females are presented in Table 11.21 We can see
that the model explains 64:5% of variance in years of schooling for males and 54:4% for females,
with z and x accounting respectively for around 70% and 30% of the explained variance. Thus, the
family factors (z and x) play a more determinant role in explaining years of schooling among men
than among women.

Table 11
Total explained (�k)2�2eykt �2

zk
�2
xk

2�kCov(eykt�1; zkt )
Males 0.645 0 0.481 0.164 0
Females 0.544 0 0.399 0.146 0

We can compute the predicted correlations for individuals at the current generation and their
ancestors. However, we have now di¤erent possible "ancestors lines". Figure 3 shows those corre-
lation for the male paternal line (son, fathers, grandfathers, great-grandfathers,...), and the female
maternal line (daughter, mother, grandmother, great-grandmother,....). These correlations seem
consistent with the ones provided in Figure 1.
21We standardize the di¤erent components to �2ym for males and to �2yf for females.
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Figure 3

One might wonder here about the existence of other minimum in the problem (10). Indeed, we
�nd a local minimum that yields a very close value of the objective function as the one above and
takes values of the parameters �m = 0:28; �f = 0:26; m = 1; f = 0:96:As in our benchmark case
without assortative mating, we rule out this case because the value of  = 1 implies that the latent
variable z is passed from fathers to sons without any noise.

5 Conclusions

We have proposed a method to asses the degree of intergenerational mobility which takes into
account the possibility that a substantial part of the persistence in socioeconomic status might
be due to the existence of a latent variable that is inherited from parents. The method is based
on the correlations between a series of relatives and does not demand much information about
individuals in previous generations. Our �ndings suggest that indeed such latent variable plays a
very important role and is the reason why persistence in socioeconomic status is much stronger than
what is commonly thought. Thus, our results are in line with Clark�s claims about the low degree
of social mobility in the long run. However, our exercise does not provide any new information
in favor or against the possibility that the degree of intergenerational mobility is constant across
di¤erent economies and time. We have applied our method to asses the degree of intergenerational
mobility in a Spanish region and the extension to other regions and countries is an important task
which is left for future research.
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Consider a reduced form of Becker-Tomes (1979) model similar to the one in Solon (2014)

yit = �yt�1 + z
i
t + xt + u

i
t

where t� 1 denotes the father�s generation and t the children�s generation, yt�1 is father�s years of
schooling, yit is child i�s years of schooling, z

i
t is the child i�s status, xt is not inherited, is uncorrelated

with yt�1 and zit but is shared among brothers, and u
i
t is a random error that is uncorrelated with

yt�1 and zit:
Status is partially inherited so that

zit = zt�1 + e
i
t

where eit that is not correlated across brothers. Notice that when � = 0 we are in Clark�s model.
We assume that the second order moments of all variables are time invariant. We present below

the formulas for the covariances in years of scholing for relatives of di¤erent degrees of kinship. The
correlations are computed by dividing the covariances by the variance of y.
Covariances
Brothers
We �rst compute the covariances between yt�1 and zt�1

Cov(yit; z
i
t) = Cov(�yt�1 + z

i
t; z

i
t) = �Cov(yt�1; z

i
t) + �

2
z

= �Cov(yt�1; zt�1) + �
2
z = �Cov(yt�1; zt�1) + �

2
z

and in the steady state we have Cov(yt; zt) = Cov(yt�1; zt�1), so that

Cov(yt�1; zt�1) =
�2z

1� � (11)

and the covariance between brothers is

Covb(y
i
t; y

j
t ) = �

2�2y + 2�Cov(yt�1; zt�1) + 
2�2z + �

2
x (12)

Cousins
We �rst compute the following covariances for their fathers (who are brothers)

Covb(z
i
t�1; z

j
t�1) = 

2�2z

and
Covb(y

i
t�1; z

j
t�1) = �Cov(yt�2; zt�2) + 

2�2z

The covariance for male cousins whose fathers are brothers is

Covc(y
i
t; y

j
t ) = �

2Covb(y
i
t�1; y

j
t�1) + 2�Covb(y

i
t�1; z

j
t�1) + 

2Covb(z
m;i
t�1; z

m;j
t�1)

Son-Father

Covsf (y
i
t; yt�1) = ��

2
y + Cov(yt�1; zt�1)

Nephew and uncle (brother of the father)
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Covneph�u(y
i
t; y

j
t�1) = �Covb(y

i
t�1; y

j
t�1) + Covb(y

i
t�1; z

j
t�1)

Second cousins
We �rst compute the following covariances for their fathers (who are cousins)

Covc(z
i
t�1; z

j
t�1) = 

2Covb(z
i
t�2; z

j
t�2)

and
Covc(y

i
t�1; z

j
t�1) = �Covb(yt�2; zt�2) + 

2Covb(z
i
t�2; z

j
t�2)

The covariance for second cousins whose fathers are brothers is

Covc2(y
i
t; y

j
t ) = �

2Covc(y
i
t�1; y

j
t�1) + 2�Covc(y

i
t�1; z

j
t�1) + 

2Covc(z
i
t�1; z

j
t�1)

Third cousins
We �rst compute the following covariances for their fathers (who are second cousins)

Covc2(z
i
t�1; z

j
t�1) = 

2Covc(z
i
t�2; z

j
t�2)

and
Covc2(y

i
t�1; z

j
t�1) = �Covc(yt�2; zt�2) + 

2Covc(z
i
t�2; z

j
t�2)

The covariance for second cousins whose fathers are brothers is

Covc3(y
i
t; y

j
t ) = �

2Covc2(y
i
t�1; y

j
t�1) + 2�Covc2(y

i
t�1; z

j
t�1) + 

2Covc2(z
i
t�1; z

j
t�1)

Appendix B
The model we were considering did not take into account the potential in�uence of the mother

in the outcome of the children. We now extend the previous model to incorporates mothers and
assortative mating. We assume that the value of the output y for an individual from generation t
is given by

ykt = �
keykt�1 + zkt + xkt + ukt (13)

where the superscript k stands for males (k = m) and for females (k = f). We assume that

eykt�1 = �kyymt�1 + (1� �ky)yft�1
and the socioeconomic status of the child, zkt ; depends on the father z

m
t�1 as well as on the mother

zft�1
zkt = 

kezkt�1 + ektezkt�1 = �kzzmt�1 + (1� �kz)zft�1 (14)

Regarding the shocks, we assume that xkt is shared by all siblings of the same gender, can
be correlated across siblings of di¤erent gender and is uncorrelated with the other variables (in
particular with zt and yt�1). Finally ukt is an individual�s white-noise error term.

We assume there is assortative mating both in years of schooling and in socioeconomic status
(see Berhman and Rosenzweig 2002 for a related model with assortative mating in two dimensions).
In particular we consider the linear projections of zft�1 and y

f
t�1 on z

m
t�1 and y

m
t�1: 

zft�1
yft�1

!
=

�
rmzz rmzy
rmyz rmyy

��
zmt�1
ymt�1

�
+

�
wmt�1
"mt�1

�
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where wmt�1 and "
m
t�1 might be correlated but are uncorrelated with z

m
t�1 and y

m
t�1; and�

rmzz rmzy
rmyz rmyy

�0
=

�
�2zm �zmym

�zmym �2ym

��1�
�zmzf �zmyf
�ymzf �ymyf

�
=

1

�2zm�
2
ym � �2zmym

�
�2ym ��zmym

��zmym �2zm

��
�zmzf �zmyf
�ymzf �ymyf

�
=

1

�2zm�
2
ym(1� �2zmym)

�
�2ym�zmzf � �zmym�ymzf �2ym�zmyf � �zmym�ymyf
�2zm�ymzf � �zmym�zmzf �2zm�ymyf � �zmym�zmyf

�

=
1

(1� �2zmym)

 �
zf

�zm
(�zmzf � �zmym�ymzf )

�
yf

�zm
(�zmyf � �zmym�ymyf )

�
zf

�ym
(�ymzf � �zmym�zmzf )

�
yf

�ym
(�ymyf � �zmym�zmyf )

!

We then have that�
rmzz rmzy
rmyz rmyy

�
=

1

(1� �2zmym)

 �
zf

�zm
(�zmzf � �zmym�ymzf )

�
zf

�ym
(�ymzf � �zmym�zmzf )

�
yf

�zm
(�zmyf � �zmym�ymyf )

�
yf

�ym
(�ymyf � �zmym�zmyf )

!
(15)

and
rmzz =

1

(1� �2zmym)
�zf

�zm
(�zmzf � �zmym�ymzf )

rmzy =
1

(1� �2zmym)
�zf

�ym
(�ymzf � �zmym�zmzf )

rmyz =
1

(1� �2zmym)
�yf

�zm
(�zmyf � �zmym�ymyf )

rmyy =
1

(1� �2zmym)
�yf

�ym
(�ymyf � �zmym�zmyf )

and the coe¢ cients of the linear projections depend on �zmym ; �zmzf ; �zmyf ; �ymzf and �ymyf :
Notice that the variance matrix of (wmt�1; "

m
t�1) is given by

V ar

�
wmt�1
"mt�1

�
= V ar

 
zft�1
yft�1

!
�
�
rmzz rmzy
rmyz rmyy

�
V ar

�
zmt�1
ymt�1

��
rmzz rmzy
rmyz rmyy

�0
We use these matching functions to write years of schooling, ykt ; and social status, z

k
t ; as a

function of father�s years of schooling, ymt�1; and social status z
m
t�1: We write (14) as

zkt = k
�
�kzz

m
t�1 + (1� �kz)z

f
t�1

�
+ ekt

= k
�
�kzz

m
t�1 + (1� �kz)

�
rmzzz

m
t�1 + r

m
zyy

m
t�1 + w

m
t�1
��
+ ekt

= Gkzmz
m
t�1 +G

k
ymy

m
t�1 + g

k
m!

m
t�1 + e

k
t

where

Gkzm = k(�kz + (1� �kz)rmzz)
Gkym = k(1� �kz)rmzy
gkm = k(1� �kz)
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and (13) as

ykt = �k
�
�kyy

m
t�1 + (1� �ky)y

f
t�1

�
+ zkt + x

k
t + u

k
t

= �k
�
�kyy

m
t�1 + (1� �ky)

�
rmyzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1
��
+ zkt + x

k
t + u

k
t

= �k
�
�kyy

m
t�1 + (1� �ky)

�
rmyzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1
��

Gkzmz
m
t�1 +G

k
ymy

m
t�1 + g

k
m!

m
t�1 + e

k
t + x

k
t + u

k
t

ykt = B
k
ymy

m
t�1 +B

k
zmz

m
t�1 + b

k
m"

m
t�1 + g

k
m!

m
t�1 + e

k
t + x

k
t + u

k
t

where

Bkym = �k
�
�ky + (1� �ky)rmyy

�
+Gkym

Bkzm = �k(1� �ky)rmyz +Gkzm
bkm = �k(1� �ky)

All these expressions will be used to compute correlations between relatives that are related
through their fathers. However, when we consider relatives that are related through their mothers,
we need to consider ykt and z

k
t as functions of mother�s years of schooling, y

f
t�1; and social status

zft�1: We then also consider the linear projections of z
m
t�1 and y

m
t�1 on z

f
t�1 and y

f
t�1:�

zmt�1
ymt�1

�
=

 
rfzz rfzy
rfyz rfyy

! 
zft�1
yft�1

!
+

 
wft�1
"ft�1

!

where wft�1 and "
f
t�1 might be correlated but are uncorrelated with z

f
t�1 and y

f
t�1; and

 
rfzz rfzy
rfyz rfyy

!0
=

�
�2
zf

�zfyf
�zfyf �2

yf

��1�
�zf zm �zfym
�yf zm �yfym

�
=

1

�2
zf
�2
yf
� �2

zfyf

�
�2
yf

��zfyf
��zfyf �2

zf

��
�zf zm �zfym
�yf zm �yfym

�
=

1

�2
zf
�2
yf
(1� �2

zfyf
)

�
�2
yf
�zf zm � �zfyf�yf zm �2

yf
�zfym � �zfyf�yfym

�2
zf
�yf zm � �zfyf�zf zm �2

zf
�yfym � �zfyf�zfym

�

=
1

(1� �2
zfyf

)

 �zm
�
zf
(�zf zm � �zfyf�yf zm)

�ym

�
zf
(�zfym � �zfyf�yfym)

�zm
�
yf
(�yf zm � �zfyf�zf zm)

�ym

�
yf
(�yfym � �zfyf�zfym)

!

We then have that 
rfzz rfzy
rfyz rfyy

!
=

1

(1� �2
zfyf

)

 �zm
�
zf
(�zf zm � �zfyf�yf zm) �zm

�
yf
(�yfzm � �zfyf�zfzm)

�ym

�
zf
(�zfym � �zfyf�yfym)

�ym

�
yf
(�yfym � �zfyf�zfym)

!
(16)

and
rfzz =

1

(1� �2
zfyf

)

�zm

�zf
(�zf zm � �zfyf�yf zm)
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rfzy =
1

(1� �2
zfyf

)

�zm

�yf
(�yf zm � �zfyf�zf zm)

rfyz =
1

(1� �2
zfyf

)

�ym

�zf
(�zfym � �zfyf�yfym)

rfyy =
1

(1� �2
zfyf

)

�ym

�yf
(�yfym � �zfyf�zfym)

and the coe¢ cients of the linear projections depend on �zfyf ; �zmzf ; �zmyf ; �ymzf and �ymyf :

Notice that the variance matrix of (wft�1; "
f
t�1) is given by

V ar

 
wft�1
"ft�1

!
= V ar

�
zmt�1
ymt�1

�
�
 
rfzz rfzy
rfyz rfyy

!
V ar

 
zft�1
yft�1

! 
rfzz rfzy
rfyz rfyy

!0
We use these matching functions to write years of schooling, ykt ; and social status, z

k
t ; as a

function of mother�s years of schooling, yft�1; and social status z
f
t�1: We write (14) as

zkt = k
�
�kzz

m
t�1 + (1� �kz)z

f
t�1

�
+ ekt

= k
�
�kz

�
rfzzz

f
t�1 + r

f
zyy

f
t�1 + w

f
t�1

�
+ (1� �kz)z

f
t�1

�
+ ekt

= Gkzfz
f
t�1 +G

k
yfy

f
t�1 + g

k
f!

f
t�1 + e

k
t

where

Gkzf = k(�kzr
f
zz + (1� �kz))

Gkyf = k�kzr
f
zy

gkf = k�kz

and (13) as

ykt = �k
�
�kyy

m
t�1 + (1� �ky)y

f
t�1

�
+ zkt + x

k
t + u

k
t

= �k
�
�ky

�
rfyzz

f
t�1 + r

f
yyy

f
t�1 + "

f
t�1

�
+ (1� �ky)y

f
t�1

�
+ zkt + x

k
t + u

k
t

= �k
�
�ky

�
rfyzz

f
t�1 + r

f
yyy

f
t�1 + "

f
t�1

�
+ (1� �ky)y

f
t�1

�
Gkzfz

f
t�1 +G

k
yfy

f
t�1 + g

k
f!

f
t�1 + e

k
t + x

k
t + u

k
t

ykt = B
k
yfy

f
t�1 +B

k
zfz

f
t�1 + b

k
f"
f
t�1 + g

k
f!

f
t�1 + e

k
t + x

k
t + u

k
t

where

Bkyf = �k
�
�kyr

f
yy + (1� �ky)

�
+Gkyf

Bkzf = �k�kyr
f
yz +G

k
zf

bkf = �k�ky

Notice that !ft�1 and "
f
t�1 are related to !

m
t�1 and "

m
t�1: We can write
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wft�1
"ft�1

!
=

�
zmt�1
ymt�1

�
�
 
rfzz rfzy
rfyz rfyy

! 
zft�1
yft�1

!

=

�
zmt�1
ymt�1

�
�
 
rfzz rfzy
rfyz rfyy

!��
rmzz rmzy
rmyz rmyy

��
zmt�1
ymt�1

�
+

�
wmt�1
"mt�1

��

=

"
I2 �

 
rfzz rfzy
rfyz rfyy

!�
rmzz rmzy
rmyz rmyy

�#�
zmt�1
ymt�1

�
+

 
rfzz rfzy
rfyz rfyy

!�
wmt�1
"mt�1

�

We assume that the second order moments of all variables are time invariant. We present below
the formulas for the covariances in years of scholing for relatives of di¤erent degrees of kinship.
The correlations are computed by dividing the covariances by �2m, �

2
f or �m�f depending on the

gender.
We �rst compute the covariances between ymt and zmt

Cov(ymt ; z
m
t ) = Cov(�

meymt�1 + zmt ; zmt ) = �mCov(eymt�1; zmt ) + �2zm
Cov(eymt�1; zmt ) = Cov(�my y

m
t�1 + (1� �my )y

f
t�1; G

m
zmz

m
t�1 +G

m
ymy

m
t�1 + g

m
m!

m
t�1)

= Cov(�my y
m
t�1 + (1� �my )

�
rmyzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1
�
; Gmzmz

m
t�1 +G

m
ymy

m
t�1 + g

m
m!

m
t�1)

= Cov(
�
�my + (1� �my )rmyy

�
ymt�1 + (1� �my )rmyzzmt�1 + (1� �my )"mt�1; Gmzmzmt�1 +Gmymymt�1 + gmm!mt�1)

=
�
�my + (1� �my )rmyy

�
Gmym�

2
ym

+
��
�my + (1� �my )rmyy

�
Gmzm + (1� �my )rmyzGmym

�
Cov(ymt�1; z

m
t�1)

+(1� �my )rmyzGmzm�2zm + (1� �my )gmmCov("mt�1; wmt�1)

and

Cov(ymt ; z
m
t ) = �m

�
�my + (1� �my )rmyy

�
Gmym�

2
ym

+�m
��
�my + (1� �my )rmyy

�
Gmzm + (1� �my )rmyzGmym

�
Cov(ymt�1; z

m
t�1)

+(1 + bmmr
m
yzG

m
zm)�

2
zm + b

m
mg

m
mCov("

m
t�1; w

m
t�1)

In the steady state we have Cov(ymt ; z
m
t ) = Cov(ymt�1; z

m
t�1), then this equation implicitely

de�nes Cov(ymt ; z
m
t ) since r

m
yy, G

m
ym, r

m
yz and G

m
zm depend on Cov(y

m
t ; z

m
t ):

Analogously we compute the covariances between yft and z
f
t

Cov(yft ; z
f
t ) = Cov(�

f eyft�1 + zft ; zft ) = �fCov(eyft�1; zft ) + �2zf
Cov(eyft�1; zft ) = Cov(�fyy

m
t�1 + (1� �fy)y

f
t�1; G

f
zfz

f
t�1 +G

f
yfy

f
t�1 + g

f
f!

f
t�1)

= Cov(�fy

�
rfyzz

f
t�1 + r

f
yyy

f
t�1 + "

f
t�1

�
+ (1� �fy)y

f
t�1; G

f
zfz

f
t�1 +G

f
yfy

f
t�1 + g

f
f!

f
t�1)

= Cov(
�
�fyr

f
yy + (1� �fy)

�
yft�1 + �

f
yr
f
yzz

f
t�1 + �

f
y"
f
t�1; G

f
zfz

f
t�1 +G

f
yfy

f
t�1 + g

f
f!

f
t�1)

=
�
�fyr

f
yy + (1� �fy)

�
Gfyf�

2
yf

+
��
�fyr

f
yy + (1� �fy)

�
Gfzf + �

f
yr
f
yzG

f
yf

�
Cov(yft�1; z

f
t�1)

+�fyr
f
yzG

f
zf�

2
zf + �

f
yg
f
fCov("

f
t�1; w

f
t�1)
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and

Cov(yft ; z
f
t ) = �f

�
�fyr

f
yy + (1� �fy)

�
Gfyf�

2
yf

+�f
��
�fyr

f
yy + (1� �fy)

�
Gfzf + �

f
yr
f
yzG

f
yf

�
Cov(yft�1; z

f
t�1)

+(1 + bffr
f
yzG

f
zf )�

2
zf + b

f
fg
f
fCov("

f
t�1; w

f
t�1)

In the steady state we have Cov(yft ; z
f
t ) = Cov(y

f
t�1; z

f
t�1), then this equation implicitely de�nes

Cov(yft ; z
f
t ) since r

f
yy, G

f
yf , r

f
yz and G

f
zf depend on Cov(y

f
t ; z

f
t ):

Covariances
Husband and wife

Covh�w(y
m
t�1; y

f
t�1) = Covhw(y

m
t�1; r

m
yzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1) = r

m
yzCov(y

m
t�1; z

m
t�1) + r

m
yy�

2
ym

Brothers

Covb(y
m;i
t ; ym;jt ) = Cov(Bmymy

m
t�1+B

m
zmz

m
t�1+b

m
m"

m
t�1+g

m
m!

m
t�1+x

m
t ; B

m
ymy

m
t�1+B

m
zmz

m
t�1+b

m
m"

m
t�1+g

m
m!

m
t�1+x

m
t )

=
�
Bmym

�2
�2ym + (B

m
zm)

2 �2zm + 2B
m
ymB

m
zmCov(y

m
t�1; z

m
t�1) + (b

m
m)

2 �2"m

+(gmm)
2 �2wm + �

2
xm + 2b

m
mg

m
mCov("

m
t�1; !

m
t�1)

alternatively we cam write it as a function of the mother

Covb(y
m;i
t ; ym;jt ) = Cov(Bmyfy

f
t�1+B

m
zfz

f
t�1+b

m
f "

f
t�1+g

m
f !

f
t�1+x

m
t ; B

m
yfy

f
t�1+B

m
zfz

f
t�1+b

m
f "

f
t�1+g

m
f !

f
t�1+x

m
t )

=
�
Bmyf

�2
�2
yf
+
�
Bmzf

�2
�2
zf
+ 2BmyfB

m
zfCov(y

f
t�1; z

f
t�1) +

�
bmf

�2
�2
"f

+
�
gmf

�2
�2
wf
+ �2xm + 2b

m
f g

m
f Cov("

f
t�1; !

f
t�1)

Sisters

Covs(y
f;i
t ; y

f;j
t ) = Cov(B

f
ymy

m
t�1+B

f
zmz

m
t�1+b

f
m"

m
t�1+g

f
m!mt�1+x

f
t ; B

f
ymy

m
t�1+B

f
zmz

m
t�1+b

f
m"

m
t�1+g

f
m!mt�1+x

f
t )

=
�
Bfym

�2
�2ym +

�
Bfzm

�2
�2zm + 2B

f
ymB

f
zmCov(ymt�1; z

m
t�1) +

�
bfm
�2
�2"m

+
�
gfm
�2
�2wm + �

2
xf
+ 2bfmg

f
mCov("mt�1; !

m
t�1)

alternatively we cam write it as a function of the mother

Covb(y
f;i
t ; y

f;j
t ) = Cov(B

f
yfy

f
t�1+B

f
zfz

f
t�1+b

f
f"
f
t�1+g

f
f!

f
t�1+x

f
t ; B

f
yfy

f
t�1+B

f
zfz

f
t�1+b

f
f"
f
t�1+g

f
f!

f
t�1+x

f
t )

=
�
Bfyf

�2
�2
yf
+
�
Bfzf

�2
�2
zf
+ 2BfyfB

f
zfCov(y

f
t�1; z

f
t�1) +

�
bff

�2
�2
"f

+
�
gff

�2
�2
wf
+ �2

xf
+ 2bffg

f
fCov("

f
t�1; !

f
t�1)

Brother-sister

Covb�s(y
m;i
t ; yf;jt ) = Cov(B

m
ymy

m
t�1+B

m
zmz

m
t�1+b

m
m"

m
t�1+g

m
m!

m
t�1+x

m
t ; B

f
ymy

m
t�1+B

f
zmz

m
t�1+b

f
m"

m
t�1+g

f
m!mt�1+x

f
t )

= BmymB
f
ym�2ym +B

m
zmB

f
zm�2zm +

�
BmymB

f
zm +B

f
ymBmzm

�
Cov(ymt�1; z

m
t�1) + b

m
mb

f
m�2"m

+gmmg
f
m�2wm + �xm;xf +

�
bmmg

f
m + b

f
mgmm

�
Cov("mt�1; !

m
t�1)
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alternatively we cam write it as a function of the mother

Covb�s(y
m;i
t ; yf;jt ) = Cov(B

m
yfy

f
t�1+B

m
zfz

f
t�1+b

m
f "

f
t�1+g

m
f !

f
t�1+x

m
t ; B

f
yfy

f
t�1+B

f
zfz

f
t�1+b

f
f"
f
t�1+g

f
f!

f
t�1+x

f
t )

= BmyfB
f
yf�

2
yf
+BmzfB

f
zf�

2
zf
+
�
BmyfB

f
zf +B

f
yfB

m
zf

�
Cov(yft�1; z

f
t�1) + b

m
f b

f
f�

2
"f

+gmf g
f
f�

2
wf
+ �xm;xf +

�
bmf g

f
f + b

f
fg
m
f

�
Cov("ft�1; !

f
t�1)

Male cousins (fathers are brothers)
We �rst compute the following covariances for their fathers (who are brothers)

Covb(z
m;i
t�1; z

m;j
t�1) = Cov(Gmzmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2; G

m
zmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2)

= (Gmzm)
2�2zm +

�
Gmym

�2
�2ym + 2G

m
zmG

m
ymCov(y

m
t�2; z

m
t�2) + (g

m
m)

2�2wm

and

Covb(y
m;i
t�1; z

m;j
t�1) = Cov(Bmymy

m
t�2 +B

m
zmz

m
t�2 + b

m
m"

m
t�2 + g

m
m!

m
t�2; G

m
zmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2)

=
�
BmymG

m
zm +B

m
zmG

m
ym

�
Cov(ymt�2; z

m
t�2) +B

m
ymG

m
ym�

2
ym

+BmzmG
m
zm�

2
zm + b

m
mg

m
mCov("

m
t�2; w

m
t�2) + (g

m
m)

2�2wm

The covariance for male cousins whose fathers are brothers is

Covmc_fb(y
m;i
t ; ym;jt ) = Cov(Bmymy

m;i
t�1 +B

m
zmz

m;i
t�1; B

m
ymy

m;j
t�1 +B

m
zmz

m;j
t�1)

= (Bmym)
2Covb(y

m;i
t�1; y

m;j
t�1) + 2B

m
ymB

m
zmCovb(y

m;i
t�1; z

m;j
t�1)

+(Bmzm)
2Covb(z

m;i
t�1; z

m;j
t�1)

Male cousins (mothers are sisters)
We �rst compute the following covariances for their mothers (who are sisters)

Covs(z
f;i
t�1; z

f;j
t�1) = Cov(Gfzmz

m
t�2 +G

f
ymy

m
t�2 + g

f
m!

m
t�2; G

f
zmz

m
t�2 +G

f
ymy

m
t�2 + g

f
m!

m
t�2)

= (Gfzm)
2�2zm +

�
Gfym

�2
�2ym + 2G

f
zmG

f
ymCov(y

m
t�2; z

m
t�2) + (g

f
m)

2�2wm

and

Covs(y
f;i
t�1; z

f;j
t�1) = Cov(Bfymy

m
t�2 +B

f
zmz

m
t�2 + b

f
m"

m
t�2 + g

f
m!

m
t�2; G

f
zmz

m
t�2 +G

f
ymy

m
t�2 + g

f
m!

m
t�2)

=
�
BfymG

f
zm +B

f
zmG

f
ym

�
Cov(ymt�2; z

m
t�2) +B

f
ymG

f
ym�

2
ym

+BfzmG
f
zm�

2
zm + b

f
mg

f
mCov("

m
t�2; w

m
t�2) + (g

f
m)

2�2wm

The covariance for male cousins whose mothers are sisters is

Covmc_ms(y
m;i
t ; ym;jt ) =

�
Bmyf

�2
Covs(y

f;i
t�1; y

f;j
t�1) + 2B

m
yfB

m
zfCovs(y

f;i
t�1; z

f;j
t�1)

+
�
Bmzf

�2
Covs(z

f;i
t�1; z

f;j
t�1)

Male cousins (father and mother are brother and sister)
We �rst compute the following covariances for their father and mother (who are brother and

sister)
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Covb�s(z
m;i
t�1; z

f;j
t�1) = Cov(Gmzmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2; G

f
zmz

m
t�2 +G

f
ymy

m
t�2 + g

f
m!

m
t�2)

= GmzmG
f
zm�

2
zm +G

m
ymG

f
ym�

2
ym + (G

m
zmG

f
ym +G

f
zmG

m
ym)Cov(y

m
t�2; z

m
t�2) + g

m
mg

f
m�

2
wm

and

Covb�s(y
m;i
t�1; z

f;j
t�1) = Cov(Bmymy

m
t�2 +B

m
zmz

m
t�2 + b

m
m"

m
t�2 + g

m
m!

m
t�2; G

f
zmz

m
t�2 +G

f
ymy

m
t�2 + g

f
m!

m
t�2)

=
�
BmymG

f
zm +B

m
zmG

f
ym

�
Cov(ymt�2; z

m
t�2) +B

m
ymG

f
ym�

2
ym

+BmzmG
f
zm�

2
zm + b

m
mg

f
mCov("

m
t�2; w

m
t�2) + g

m
mg

f
m�

2
wm

Covb�s(y
f;i
t�1; z

m;j
t�1) = Cov(Bfymy

m
t�2 +B

f
zmz

m
t�2 + b

f
m"

m
t�2 + g

f
m!

m
t�2; G

m
zmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2)

=
�
BfymG

m
zm +B

f
zmG

m
ym

�
Cov(ymt�2; z

m
t�2) +B

f
ymG

m
ym�

2
ym

+BfzmG
m
zm�

2
zm + b

f
mg

m
mCov("

m
t�2; w

m
t�2) + g

f
mg

m
m�

2
wm

The covariance for male cousins whose father and mother are brother and sister is

Covmc_fb�ms(y
m;i
t ; ym;jt ) = Cov(Bmymy

m;i
t�1 +B

m
zmz

m;i
t�1; B

m
yfy

f;j
t�1 +B

m
zfz

f;j
t�1)

= BmymB
m
yfCovb�s(y

m;i
t�1; y

f;j
t�1) +B

m
ymB

m
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

+BmyfB
m
zmCovb�s(y

f;i
t�1; z

m;j
t�1) +B

m
zmB

m
zfCovb�s(z

m;i
t�1; z

f;j
t�1)

Female cousins (fathers are brothers)

Covfc_fb(y
f;i
t ; y

f;j
t ) = (Bfym)

2Covb(y
m;i
t�1; y

m;j
t�1) + 2B

f
ymB

f
zmCovb(y

m;i
t�1; z

m;j
t�1)

+(Bfzm)
2Covb(z

m;i
t�1; z

m;j
t�1)

Female cousins (mothers are sisters)

Covfc_ms(y
f;i
t ; y

f;j
t ) =

�
Bfyf

�2
Covs(y

f;i
t�1; y

f;j
t�1) + 2B

f
yfB

f
zfCovs(y

f;i
t�1; z

f;j
t�1)

+
�
Bfzf

�2
Covs(z

f;i
t�1; z

f;j
t�1)

Female cousins (father and mother are brother and sister)

Covfc_fb�ms(y
f;i
t ; y

f;j
t ) = BfymB

f
yfCovb�s(y

m;i
t�1; y

f;j
t�1) +B

f
ymB

f
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

+BfyfB
f
zmCovb�s(y

f;i
t�1; z

m;j
t�1) +B

f
zmB

f
zfCovb�s(z

m;i
t�1; z

f;j
t�1)

Male-female cousins (fathers are brothers)

Covm�fc_fb(y
m;i
t ; yf;jt ) = BmymB

f
ymCovb(y

m;i
t�1; y

m;j
t�1) +

�
BmymB

f
zm +B

f
ymB

m
zm

�
Covb(y

m;i
t�1; z

m;j
t�1)

+BmzmB
f
zmCovb(z

m;i
t�1; z

m;j
t�1)

Male-female cousins (mothers are sisters)
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Covm�fc_ms(y
m;i
t ; yf;jt ) = BmyfB

f
yfCovs(y

f;i
t�1; y

f;j
t�1) +

�
BmyfB

f
zf +B

f
yfB

m
zf

�
Covs(y

f;i
t�1; z

f;j
t�1)

+BmzfB
f
zfCovs(z

f;i
t�1; z

f;j
t�1)

Male-female cousins (father of the male is brother of the mother of the female)

Covm�fc_fb�ms(y
m;i
t ; yf;jt ) = BmymB

f
yfCovb�s(y

m;i
t�1; y

f;j
t�1) +B

m
ymB

f
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

+BfyfB
m
zmCovb�s(y

f;i
t�1; z

m;j
t�1) +B

m
zmB

f
zfCovb�s(z

m;i
t�1; z

f;j
t�1)

Male-female cousins (mother of the male is sister of the father of the female)

Covm�fc_ms�fb(y
m;i
t ; yf;jt ) = BmyfB

f
ymCovb�s(y

m;i
t�1; y

f;j
t�1) +B

f
ymB

m
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

+BmyfB
f
zmCovb�s(y

f;i
t�1; z

m;j
t�1) +B

m
zfB

f
zmCovb�s(z

m;i
t�1; z

f;j
t�1)

Son-Father

Covsf (y
m
t ; y

m
t�1) = Cov(Bmymy

m
t�1 +B

m
zmz

m
t�1 + b

m
m"

m
t�1 + g

m
m!

m
t�1; y

m
t�1)

= Bmym�
2
ym +B

m
zmCov(y

m
t�1; z

m
t�1)

alternatively we can write it as a function of the mother

Covsf (y
m
t ; y

m
t�1) = Cov(Bmyfy

f
t�1 +B

m
zfz

f
t�1 + b

m
f "

f
t�1 + g

m
f !

f
t�1; r

f
yzz

f
t�1 + r

f
yyy

f
t�1 + "

f
t�1)

= Bmyfr
f
yy�

2
yf + (B

m
yfr

f
yz +B

m
zfr

f
yy)Cov(y

f
t�1; z

f
t�1)

+Bmzfr
f
yz�

2
zf + b

m
f �

2
"f + g

m
f Cov(!

f
t�1; "

f
t�1)

Son-Mother

Covsm(y
m
t ; y

f
t�1) = Cov(Bmyfy

f
t�1 +B

m
zfz

f
t�1 + b

m
f "

f
t�1 + g

m
f !

f
t�1; y

f
t�1)

= Bmyf�
2
yf +B

m
zfCov(y

f
t�1; z

f
t�1)

alternatively we can write it as a function of the father

Covsm(y
m
t ; y

f
t�1) = Cov(Bmymy

m
t�1 +B

m
zmz

m
t�1 + b

m
m"

m
t�1 + g

m
m!

m
t�1; r

m
yzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1)

= Bmymr
m
yy�

2
ym + (B

m
ymr

m
yz +B

m
zmr

m
yy)Cov(y

m
t�1; z

m
t�1)

+Bmzmr
m
yz�

2
zm + b

m
m�

2
"m + g

m
mCov(!

m
t�1; "

m
t�1)

Daughter-Father

Covdf (y
f
t ; y

m
t�1) = Cov(Bfymy

m
t�1 +B

f
zmz

m
t�1 + b

f
m"

m
t�1 + g

f
m!

m
t�1; y

m
t�1)

= Bfym�
2
ym +B

f
zmCov(y

m
t�1; z

m
t�1)

alternatively we can write it as a function of the mother
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Covdf (y
f
t ; y

m
t�1) = Cov(Bfyfy

f
t�1 +B

f
zfz

f
t�1 + b

f
f"
f
t�1 + g

f
f!

f
t�1; r

f
yzz

f
t�1 + r

f
yyy

f
t�1 + "

f
t�1)

= Bfyfr
f
yy�

2
yf + (B

f
yfr

f
yz +B

f
zfr

f
yy)Cov(y

f
t�1; z

f
t�1)

+Bfzfr
f
yz�

2
zf + b

f
f�

2
"f + g

f
fCov(!

f
t�1; "

f
t�1)

Daughter-Mother

Covdm(y
f
t ; y

f
t�1) = Cov(Bfyfy

f
t�1 +B

f
zfz

f
t�1 + b

f
f"
f
t�1 + g

f
f!

f
t�1; y

f
t�1)

= Bfyf�
2
yf +B

f
zfCov(y

f
t�1; z

f
t�1)

alternatively we can write it as a function of the father

Covdm(y
f
t ; y

f
t�1) = Cov(Bfymy

m
t�1 +B

f
zmz

m
t�1 + b

f
m"

m
t�1 + g

f
m!

m
t�1; r

m
yzz

m
t�1 + r

m
yyy

m
t�1 + "

m
t�1)

= Bfymr
m
yy�

2
ym + (B

f
ymr

m
yz +B

f
zmr

m
yy)Cov(y

m
t�1; z

m
t�1)

+Bfzmr
m
yz�

2
zm + b

f
m�

2
"m + g

f
mCov(!

m
t�1; "

m
t�1)

Nephew and uncle (brother of the father)

Covneph�u_bf (y
m;i
t ; ym;jt�1) = B

m
ymCovb(y

m;i
t�1; y

m;j
t�1) +B

m
zmCovb(y

m;i
t�1; z

m;j
t�1)

Nephew and uncle (brother of the mother)

Covneph�u_bm(y
m;i
t ; ym;jt�1) = B

m
yfCovb�s(y

f;i
t�1; y

m;j
t�1) +B

m
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

Nephew and aunt (sister of the father)

Covneph�au_sf (y
m;i
t ; yf;jt�1) = B

m
ymCovb�s(y

m;i
t�1; y

f;j
t�1) +B

m
zmCovb�s(y

f;i
t�1; z

m;j
t�1)

Nephew and aunt (sister of the mother)

Covneph�au_sm(y
m;i
t ; yf;jt�1) = B

m
yfCovs(y

f;i
t�1; y

f;j
t�1) +B

m
zfCovs(y

f;i
t�1; z

f;j
t�1)

Nice and uncle (brother of the father)

Covnice�u_bf (y
f;i
t ; y

m;j
t�1) = B

f
ymCovb(y

m;i
t�1; y

m;j
t�1) +B

f
zmCovb(y

m;i
t�1; z

m;j
t�1)

Nice and uncle (brother of the mother)

Covnice�u_bm(y
f;i
t ; y

m;j
t�1) = B

f
yfCovb�s(y

f;i
t�1; y

m;j
t�1) +B

f
zfCovb�s(y

m;i
t�1; z

f;j
t�1)

Nice and aunt (sister of the father)

Covnice�au_sf (y
f;i
t ; y

f;j
t�1) = B

f
ymCovb�s(y

m;i
t�1; y

f;j
t�1) +B

f
zmCovb�s(y

f;i
t�1; z

m;j
t�1)

Nice and aunt (sister of the mother)

Covnice�au_sm(y
f;i
t ; y

f;j
t�1) = B

f
yfCovs(y

f;i
t�1; y

f;j
t�1) +B

f
zfCovb�s(y

f;i
t�1; z

f;j
t�1)

Grandson-Grandfather (father-line)
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We have that

Covsf (z
m
t�1; y

m
t�2) = Cov(Gmzmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2; y

m
t�2)

= GmzmCov(z
m
t�2; y

m
t�2) +G

m
ym�

2
ym

and

Covgs�gf (y
m
t ; y

m
t�2) = Cov(Bmymy

m
t�1 +B

m
zmz

m
t�1 + b

m
m"

m
t�1 + g

m
m!

m
t�1; y

m
t�2)

= BmymCovsf (y
m
t�1; y

m
t�2) +B

m
zmCovsf (z

m
t�1; y

m
t�2)

Great-grandson-Great-grandfather (father-line)
We have that

Covgs�gf (z
m
t�1; y

m
t�3) = Cov(Gmzmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2; y

m
t�3)

= GmzmCovsf (z
m
t�2; y

m
t�3) +G

m
ymCovsf (y

m
t�2; y

m
t�3)

and

Covggs�ggf (y
m
t ; y

m
t�3) = Cov(Bmymy

m
t�1 +B

m
zmz

m
t�1 + b

m
m"

m
t�1 + g

m
m!

m
t�1; y

m
t�3)

= BmymCovgs�gf (y
m
t�1; y

m
t�3) +B

m
zmCovgs�gf (z

m
t�1; y

m
t�3)

Great-great-grandson-Great-great-grandfather (father-line)
We have that

Covggs�ggf (z
m
t�1; y

m
t�4) = Cov(Gmzmz

m
t�2 +G

m
ymy

m
t�2 + g

m
m!

m
t�2; y

m
t�4)

= GmzmCovgsgf (z
m
t�2; y

m
t�4) +G

m
ymCovgsgf (y

m
t�2; y

m
t�4)

and

Covgggs�gggf (y
m
t ; y

m
t�4) = Cov(Bmymy

m
t�1 +B

m
zmz

m
t�1 + b

m
m"

m
t�1 + g

m
m!

m
t�1; y

m
t�4)

= BmymCovggs�ggf (y
m
t�1; y

m
t�3) +B

m
zmCovggs�ggf (z

m
t�1; y

m
t�4)

Variance decomposition
We have that

ykt = �
keykt�1 + zkt + xkt + ukt

Then
�2yk = (�

k)2�2eyk + �2zk + �kCov(eykt�1; zkt ) + �2xk + �2uk
� �2

uk
is obtained as a residual.

� �k; �2
xk
and �2

zk
are directly estimated.

� �2eyk
�2eyk =

�
�ky

�2
�2ym +

�
1� �ky

�2
�2yf + �

k
y(1� �ky)�ymyf�ym�yf

and we use the estimates of �ky and the empirical values for �ym ; �yf and �ymyf
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� Cov(eykt�1; zkt )
Cov(eykt�1; zkt ) =

�
�ky + (1� �ky)rkyy

�
Gkym�

2
ym

+
�h
�ky + (1� �ky)rkyy

i
Gkzm + (1� �ky)rkyzGkym

�
Cov(ymt�1; z

m
t�1)

+(1� �ky)rkyzGkzm�2zm + (1� �ky)gkmCov("kt�1; wkt�1)

and we use the estimates of �ky ; r
k
yy; r

k
yz; G

k
ym; G

k
zm; g

k
m; �

2
zm ; Cov("

m
t ; w

m
t ) and Cov(y

m
t ; z

m
t ):
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