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Abstract

The primary objective of this study is to examine the contribution of available
information constrained by parents fields of study to the observed assortative
preferences in their children’s choice of major. Comparable to panel mod-
els, we define within-family transmission functions with one-to-two matches
(one for each parent). Using the confidential major file of the 2011 National
Household Survey from Canada, the results show that children’s choice of field
of study exhibits significant assortative preferences isolated from ability sort-
ing and unobserved differences across majors and other family characteristics.
With some caution, we attribute this persisting assortative tendency to the in-
formation asymmetry across alternative majors built on by parents educational
backgrounds within families.

Keywords: Intergenerational transmission of education; field-of-study homogamy;
choice of field of study; occupational relatedness

JEL Classification : J1, I2, D1

Canada ranks third after South Korea and Japan among OECD countries with close
to 60 percent of population aged between 25 and 34 holding a university degree in
2011 (OECD 2013). This is a positive development if education is to continue to
operate as an engine of the economic and social progress. Yet, educational decisions
are no longer just about the quantity, but about specialization to pursue as well.
As uncertainty increases with the complexity of educational choices, misinformed
decisions made by students in choosing their field of study or by administrators
in allocating their limited resources across disciplines would curtail the progress.
A question from the 2013 National Graduate Survey (NGS) reveals that about
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24 percent of university graduates in Canada would not choose the same field of
study had they studied again. The same is true for about 36 percent of graduates
majoring in Physical and Life Sciences and Technologies. Boudarbat and Chernoff
(2012) report that 35.1 percent of Canadian university graduates are in jobs that are
not related to their education five years after graduation. College attrition is also a
major concern. Recent numbers in the United States, for example, show that about
half of the students entering the college do not earn a bachelor’s degree within six
years, and one-third of them drop out entirely. Arcidiacono et al. (2016) attributes
this attrition problem to information frictions in schooling and work decisions that
are built on the ability component gradually revealed to students as they cumulate
more information.

Although the gap in lifetime income earnings between university majors in
Canada is substantial, recent studies point to significant but quantitatively small
elasticities of major choice to expected earnings (Beffy et al. 2012, Altnoji et al.
2015). Oreopoulos and Salvanes (2009) present evidence that non-pecuniary returns
to schooling as large as pecuniary ones. Expectations about employment opportu-
nities, marriage options, job-family balance, enjoying course work, social status of
available jobs, and own-ability to successfully complete the study associated with
each major are fundamental factors in the choice of field of study. The evidence
shows that there is a substantial error in beliefs (subjective expectations) about
the population values of these determinants (Stinebrickner and Stinebrickner 2014).
When students are provided correct information, they update their beliefs and their
choice of field of study (Wiswall and Zafar 2013, Arcidiacono et al. 2012).

The evidence also shows that parental approval is one of the most important de-
terminants in major choices (Zafar 2011)1. According to the 2013 NGS, close to 60
percent of university graduates report that their parents’ recommendations played
a very important role in their choice of major. This is not surprising as the informa-
tion and its value from different sources becomes more dispersed and questionable.
Altonji et al. (2015), for example, documented that Princeton pushes students to
consider departments with fewer students. Some postsecondary institutions pre-
fer a distribution of students across majors that correlates with the distribution of
faculty members in those majors. Departments in high (low) demand make their
own field of study less (more) attractive when counseling students in their choice
of major. As complex education choices are made under uncertainty about the re-
alization of choice-specific outcomes and personal preferences and abilities, parents
become the least costly and most trustworthy channels of information, especially in
Canada where switching majors is not costless.23 Yet, a significant assortativity (a

1
The peer effect on major choice has not been a subject of much attention. There are two notable

exceptions: Sacerdote (2001) found no effect, De Giorgi et al. (2010) have found a significant effect.
2
As expected, studies (Hoxby and Avery 2013) show that less well-educated parents with no

specialization would not be good transmitters of information.
3
Although the system is different from one where the major is chosen at the university entrance
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child predictably becomes a teacher because it is his father’s and/or mother’s job)
could also suggest systemic biases in decision-making specially when the information
about the realization of the future major-specific outcomes is bounded by parents’
fields of study.4

What then is the parents’ role in the belief formation? To understand that in-
formation is not distributed symmetrically across majors with the same value and
volume, imagine that both parents are accountants and working in the finance in-
dustry. The cost of obtaining the same level of information about other majors,
say on biochemistry, is obvious. This brings us to question how the field-of-study
homogamy and whether the parents work in related occupations affects the magni-
tude of information asymmetry. While we try to address these questions through
this paper, the answer would seem obvious if we change our example to one where
the father is an accountant but the mother is a biochemist, and both are working
in related occupations. The following two empirical questions need to be answered
to assess the role of information asymmetry in choice of major more formally: How
can we quantify the resemblance of fields of study between parents and children
beyond a binary proposition that reflects the assortative tendency, an association
that exposes the attraction of each child to their own parents’ majors? How can
we identify the role of information asymmetry in this assortative tendency, after
removing the other factors that are not observed by the researcher such as implicit
randomness, ability sorting, and individual tastes embedded in the resemblance of
majors between each parent and child? We will try to answer both questions in this
paper.

Whatever the reason is, what would the presence of assortative preferences in
choice of major, if they exist, suggest for a society?5 It is often argued that there are
two postwar trends simultaneously observed in the Western world: a rising number
of post-secondary graduates who are increasingly sorting into homogamous mar-
riages (Schwartz and Mare 2005) and an upsurge in household income inequality
(Western et al. 2008). The leading explanation that connects these two empirical

with a centralized test or a threshold GPA required for each major as in England, France, Chile
and Norway, students in Canada are accepted to universities at three general faculty levels: Arts,
Science, and Business/Commerce. Each of these requires different courses completed in high schools
with competing GPAs at grades 11 and 12. Therefore, although the majors are decided after the
2nd year, roughly after completing 14 to 16 core courses within each faculty, switching majors
across faculties is costly.

4
In addition to information asymmetry, parents could also impose their preferences on their

child’s educational attainment by their willingness to use financial transfers to “distort” their child’s
choice towards (or against) a specific field of study. Zafar (2011) investigates this issue in his recent
paper titled, “Double majors: one for me, one for the parents?”

5
Individually, biased choices may be optimal in the short term when students can benefit from

a rising marginal productivity in their education as parents would be more productive helpers
with schoolwork in similar fields of study. Yet, the long-term personal cost of decisions made with
bounded information is obvious as the evidence suggests that the choice of major does limit a
person’s career choice.
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facts is fairly simple. A shift in the relative demand in favor of skilled workers led to
a higher skill premium (Acemoglu and Autor, 2011) and a more polarized earning
distribution due to skill sorting in mating (Eika et al. 2017). Understanding the
spillover effect of education, therefore, has become a fundamental policy matter,
as intergenerational skill transfers might bolster skill stratifications in every gen-
eration through homogenous marriages leading to progressively dispersed earning
distributions. One empirical challenge in this argument is to measure skill sorting
in marriages and its transmission across generations. In the literature, it is implic-
itly assumed that assortative mating in education (men and women with the same
education measured by earned degrees marrying more or less frequently than the
random patterns) reflects stronger sorting of partners with respect to skills. Yet,
an additional year in a Bachelor of Arts with a history major is quite different
than that of engineering. Large earning and ability differences exist across majors
and the returns to skill have been substantially increasing over time (Gemici and
Wiswall 2014). Hence, understanding the degree of ability sorting in marriages by
field-of-study homogamy and its intergenerational transmission by assortative pref-
erences in children’s choice of major provides an important policy tool, as it shows
the extend to which information constraint drives the spillover effect of education.

This topic is also nested in the discussions on the genetic and environmental
roots of educational inequality that the genome wide association studies have been
increasingly able to address (Nature 2017). The evidence shows that intelligence is
one of the most heritable behavioral traits and that assortative mating is greater
for intelligence than for any other behavioural (personality or psychopathology) or
physical (height or weight) traits (Plomin and Deary 2015). There is a growing
consensus that both high heritability and assortative mating aspects of intelligence
might pump additive genetic variance into the population, which in turn contribute
to rising ability stratifications and social inequalities in every generation to come
(Hugh-Jones et al. 2016). Thus, the role of information boundaries in assortative
preferences in choice of major (in addition to the child’s genetic endowments) is an
important question to answer with significant policy consequences.6

This study’s primary objective is to investigate the role of information asymme-
try in children’s attraction to their parents’ field of study reflected by assortative
tendencies in child-parent matches. We apply conventional intergenerational trans-
mission functions that relate the children’s assortative preferences to field-of-study
homogamy and whether parents work in their trained jobs within Canadian fami-
lies. We use the confidential major file of the 2011 National Household Survey so
that the size of the data and the availability of different levels of aggregation in the
Classification of Instructional Programs (CIP) allows us to develop three indicators:
the degree of children’s attraction to their parents’ field of study (FSA), the de-
gree of field-of-study homogamy (FSH), and the degree of relatedness between each
parent’s field of study and occupation (FOR). To identify the role of information

6
A good summary on this topic can be found in Heckman and Masso (2014).
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asymmetry in assortative patterns, we define quasi-likelihood transmission functions
where the response variables take on fractional values of FSA between each child
(son/daughter) and parent (father/mother) as a function of FSH and FOR. Similar
to difficulties in identifying the role of expected earnings in college major choice, the
challenge here is also to control for selection into each major. To tackle with this
problem, we define within-family transmission functions based on a non-parametric
assortative matching model with one-to-two matches (one for each parent), inspired
by Diamond and Agarwal (2016). Comparable to panel models, this allows us to
reduce unobserved heterogeneity so that the results provide new and more direct
evidence about the intergenerational association of field of study due to information
asymmetry reflected in assortative tendencies, which is, to the best of our knowledge,
the first of its kind in the literature.

The first part of our results shows that children’s choice of field of study exhibits
significant assortative preferences. This finding is a new contribution that reports
intergenerational skill transfers as opposed to educational mobility. We also find
that the assortative tendency is the highest between fathers and sons relative to
all other pairs, namely father-daughter, mother-son, and mother-daughter. This
evidence becomes even stronger when we use more disaggregated CIP codes and
control for educational degrees. A significant skill sorting in mating is also revealed
by the field-of-study homogamy measures, which also indicate gender differences in
the attractiveness of each major in marriage. This finding is consistent with the
evidence that the gain from the marriage could be different for each spouse (Choo
and Siow 2006) and the evidence of a substantial degree of gender heterogeneity in
the preferences for each major (Wiswall and Zafar 2015). These findings, significant
intergenerational skill transfers and greater assortative mating for skills, are in line
with the concerns about the possible progressive skill stratifications and earning
inequalities in societies.

In the second part, the estimation results show that a higher assortativity in
each child-parent combination is strongly associated with a greater homogamy and
field-of-study relatedness in parents’ jobs. The empirical approach that we applied
aims is to identify the role of information boundaries in this relationship. Our find-
ings indicate that asymmetric information is a significant contributor to children’s
assortative tendencies in their choice of major. The remainder of the paper is orga-
nized as follows: Section 1 explains subjective expectations in choice specific models;
Section 2 introduces the data, assortative preferences, homogamy, and occupational
relatedness; the empirical framework is explained in Section 3; the estimation results
are reported in Section 4; and we provide the concluding remarks in Section 5.

1 Conceptual background

This study brings together three different but interrelated fields in the literature:
choice of field of study, assortative mating, and intergenerational transmission of
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education. To date, children’s choice of field of study has been investigated as a
separate subject mostly in relation to prospects of majors, such as expected wage
earnings and employment opportunities (see Altonji, Arcidiacona, and Maurel 2015
for a comprehensive review). The non-pecuniary determinants, such as the effect of
parental influence, have mainly been overlooked due to the lack of available data.
Evidence in recent studies unambiguously indicates that gaining parental approval is
the most important determinant of major choice, in addition to enjoying coursework.
Baudarbat and Montmarquette (2009) also found that parents have a strong bias
against or in favor of some fields of study that affects Canadian graduates when in
their choice of major.

What is the parents’ role in forming subjective expectations about choice-specific
outcomes? In choice models, forward-looking individuals derive their current utility
from each major and choose one among many alternatives that maximizes their util-
ity, which is a function of two vectors of outcomes, a and c, realized in college and
after graduation, respectively. Successfully completing a major (graduating), enjoy-
ing the coursework, and parental approval are the outcomes among those realized in
college. Among several other outcomes, the ones that are realized after graduating
are related to income, employability, and the social status of available jobs (Zafar
2011). Individual i with a set of characteristics, Zit, chooses major k (for all k ∈
Ci) based on his subjective beliefs (expectations), Prikt(a, c), on outcomes that are
uncertain at time t. If he chooses major m, the standard revealed preferences
argument implies that:

m ≡ arg max k∈Ci
∫ Uit (a, c, Zit)dPrikt (a, c) . (1)

Given his preferences, the ex-ante treatment effect, Primt(a, c) – Prikt(a, c), will be
reflected in his choice of m, which means that two individuals with identical utility
functions and characteristics can choose two different majors if they hold different
beliefs about the choice-specific outcomes. But, it also means that the person’s
choice of major, m, could be suboptimal due to a lack of information on major k
and he would update his choice as he obtains new information. His persistency on his
current choice of major m depends not only on the cost of switching to a different
major, but also the initial state of his beliefs. Zafar (2011) finds that students
update their beliefs for various outcomes for pursued as well as non-pursued majors.
Yet, he also finds that students who switch majors are mainly responding to new
information about their major. This is an important point because if the student
chooses major m based on more and reliable information associated with his parents’
own fields of study, his response to new information on major k would not make
a difference on his choice of major m, even if it is optimal for him to switch to k.
Consistently, the evidence also shows that students who are more uncertain about
the major-specific outcomes when choosing their majors make greater revisions in
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their beliefs. In other words, if the student is equally uncertain about major k and
m (i.e. more symmetric information on k and m), updating his beliefs and switching
from m to k would be more likely.7

Although theoretical work incorporates the uncertainty in schooling decisions,
most empirical studies assume that individuals are rational and use realized (ob-
served) outcomes to infer decision rules. The recent literature shows that this is not
a valid assumption and the difference between beliefs on choice-specific outcomes and
their true population values is not trivial. A few recent studies (Wiswall and Zafar
2015, Zafar 2012, 2013, Hastings et al. 2015, Arcidiacono et al. 2012, Stinebrick-
ner and Stinebrickner 2014) address this identification problem by directly eliciting
subjective beliefs from a sample of university students. Although the evidence in
these studies reveals that subjective expectations on major-specific outcomes greatly
varies across individuals, there is a lack of evidence as to why beliefs are so dispersed
around the true population values. This is exactly what we try to answer in this
study.8 Once the expectations are assumed to be subjective, they could vary based
on parental background in education, which in turn lead to differential choice sets. In
other words, a set of alternative majors for those whose parents are engineers would
be different than for those whose parents are biochemists due to the information
asymmetry.

In this study, we want to understand the role of parents’ educational background
in the process of expectations formation by looking at assortative preferences that
result from asymmetric information. The main driver of child i ’s attraction to major
m revealed in his choice is the expected lifetime utility from the vector of future
outcomes (X) of a specific human capital endowment if major m is chosen as defined
below:

EiVi,m =
T

∑
t=1

β
t−1 ∫ U (X)dGi (X ∣ m, t) . (2)

This implies that the appeal of major m would be different than that of major k
for individual i due to differences in beliefs reflected in the subjective joint prob-
ability distribution, G(X|m, t), even if the majors have identical distributions in
terms of their observed outcomes, that is F (X|m, t) = F (X|k, t). What makes the
uncertainty on the same major different for each individual? Or what makes the
uncertainty different for each major for the same individual?

The concept of information entropy in computer science first introduced by Shan-
non (1948) defines the basic model of a data communication system with three

7
This could be the case, for example, when both parents are less well-educated without a field

of study.
8
To test for information asymmetry, one could also elicit beliefs about future outcomes of majors

and then see if the students who have parents with the majors in question are more knowledgable
about the (average) future outcomes.
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elements: a source of data, a communication channel, and a receiver. The “funda-
mental problem of communication” is for the receiver to be able to identify what
data was generated by the source, based on the signal it receives through the (po-
tentially noisy) channel. Differences in the “channel capacity” make the same data
communicated differently, thus introduce an additional uncertainty (“noise” or en-
tropy) to its value. In the information theory, a channel is defined as “the medium
over which the signal is sent” and its capacity can be defined as the “mutual in-
formation” between the message sent and the message received. Shannon describes
channel capacity (to reliably carry the information) by using probability distribu-
tions of the channel’s input and the output. More specifically, if I andO are the
random variables representing the input and output of the channel, respectively, the
conditional probability of O given I , Pr(O |I ), which is an inherent fixed property
of the channel, differentiates its capacity from others as expressed below:

C = ∑
I,O

log [ Pr (I) [Pr (O ∣ I) − Pr (O)]]. (3)

The key element in this expression is the distance between Pr(O |I ) and Pr(O),
which measures the “mutual information”, the output driven by the input rather
than the “noise” in the channel. When Pr(O |I ) = Pr(O), the whole output repre-
sents a white noise (Gaussian noise) suggesting that the channel has a zero-capacity,
C , for the input, I .9

This idea provides a convenient framework in our context: the difference be-
tween observed distributions of population values of choice-specific outcomes (the
information on X of major m at the source, F i(X∣m, t)) and the subjective beliefs on
them (the information on X at the receiver (G i(X∣m, t)) can be considered as infor-
mation entropy due to the channel capacity. More specifically, the information on
X of m can be defined as a set of random events, xi, (hourly wage earnings 5 years
after graduation, unemployment durations, and so on) with their joint probability
distribution. Hence, the information on X sent with joint probability distribution
Fi and received with joint probability distribution Gi will be different if Gi diverges
from Fi. This difference, also called “relative entropy” or Kullback-Leibler (DKL)
divergence, reflects an amount of information lost when Gi is used to approximate
Fi and can be expressed as follows.10

Gi (X ∣ m, t) − Fi (X ∣ m, t) = Θi,m. (4)

9
The channel capacity, the maximum mutual information between I and O , is the upper limit

of C over all possible choices of Pr(I ).
10

The complete formula of DKL for discrete probability distributions would be:

DKL = −∑ F (x) log [ G (x) − F (x)].
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In our context, parents serve as communication channels, not as the source
of data, in transmitting publicly available information on observed choice-specific
outcomes to their child, the “receiver”.11 Their capacity will be determined and
bounded by their own majors. To understand the differences in this capacity and
related entropy, one can imagine a biochemist father obtaining, carrying, and sus-
taining the information on possible outcomes of nuclear physics or accounting. When
we accept that the channel capacity on major m can be represented by Ei,m(O∣I, t),
and is bounded by the parents’ educational background, we can approximate it with
the level of entropy, Θi,m, given by (4), as a function of parents’ fields of study (FOS
for Father and Mother) and whether they practice their majors (FOR):

Ei,m(O∣I, t) = Θi,m = gi(FOS
F
, FOS

M
, FOR

F
, FOR

M
, z). (5)

All other factors including public domains that are accessible by the parents of
individual i and may affect their capacity on major m are included in vector z.12

Although modeling information flows is a complex task, one simple way to ap-
proximate the behavior of Θ in our context expressed by (5) is to define it as condi-
tional on one of the parent’s major. Thus, assuming linearity in g(.), the channeling
capacity of the parents can be represented as follows:

Ei,m(O∣I, FOS
F = m, t) = γ+ ∝ FSH

M + δFOR
F + βFOR

M
FSH

M + ρz, (6)

which implies that, when FOSF = m, the expected level of information received by
the child on major m is equal to an index number (γ, how less “noisy” a channel the
father is for the information on his own major) plus how compatible the mother’s
major is to the father’s major (FSHM ) and the degree of relatedness between the
parent’s fields of study and their occupations (FOR). The key element in this expres-
sion is FSHM . As explained later, it reflects the degree of relatedness (normalized
between 0 and 1) between each parent’s field of study. Suppose that the mother’s
major is the least-related major to her husband’s major (FSHM = 0). It implies that
she is not a “high capacity” channel for the information on major m but becomes
one on her own major. Hence, a higher degree of field-of-study resemblance between
parents makes them more efficient channels (less noisy) for more reliable informa-
tion on major m by decreasing information entropy. However, a greater homogamy

11
The information on choice-specific outcomes (X) is not generated by the parents. These out-

comes are population values and the information on them is publicly available.
12

For example, even if both parents are teachers (major k), the parents’ friends (or close rela-
tives) who are dentists (major m) would reinforce the parents’ capacity and reduce the entropy in
transmitting the information on major m.
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also means that parents become less efficient channels for other majors with a rising
relative entropy. Therefore, the level of field-of-study homogamy defines the level of
information asymmetry in a family.13

This example becomes less intuitive when we compare two cases where the father
is an accountant in both cases but the mother is a biochemist in the first case and a
historian in the second. How different would the parents be in terms of channeling
reliable information on accounting? Although values of FSHM would be different, it
appears that, these two cases should be the same in terms of available information
on accounting, especially relative to the case where both parents are accountants.
However, one has to think that the information entropy on a major in a family will
not only be determined by the fact that it is the major of one of the parents, but also
how much the major (accounting) is appreciated, shared, understood, and discussed
within the family, which collectively reflected in FSHM .14

In what follows, we first define and calculate assortative preferences by measuring
the attraction of children to their parents’ majors (FSA). To reflect the differences
in available information on each major across families, we also define two indices,
the degree of field-of-study homogamy (FSH) and the degree of relatedness between
each parent’s field of study and occupation (FOR). Our empirical approach to test
whether a higher level of available information in terms of its reliability, cost, and
volume could be the main driver of children’s assortative preferences towards their
parents’ fields of study is explained in Section 3.

2 Data, assortative preferences, homogamy, and occu-
pation match

2.1 Data

This study uses the confidential major file of the 2011 National Household Survey
(NHS) only available in Canadian Research Data Centers. We restricted the data
to include only non-Aboriginal native-born individuals living in 10 provinces. We
also dropped nondegree-holder parents (that is, those with no education or an edu-
cation degree that does not grant a major) and those whose field of study contains
fewer than 10 workers. After these restrictions, we obtained about 2.3 million ob-
servations. The 2011 NHS enables the classification of individuals’ major field of
study in which the highest postsecondary certificate, diploma or degree was granted.

13
It could be argued that parents are not the only channels in accessing the information on majors

m. We assume that the information obtained from all other channels (child’s peers, councilors in
his school, his close relatives, and the parents of his best friends) that a child would receive would
be filtered through parents. This assumption is in line with the evidence that the parental approval
is the most important factor in choice of major. However, this assumption is not required in our
empirical setting, as it will be evident later.

14
It is true that more and better information on a major would not necessarily make it more

attractive.
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Statistics Canada classifies the major fields of study by using the Classification of
Instructional Programs (CIP), which includes 1,688 instructional program classes
with finer breakdowns provided with up to six-digit codes. Unlike earlier censuses,
NHS also includes variables that group CIP codes into 4 different levels. The most
aggregated level classifies CIP codes in 12 major groups. This aggregation is re-
duced to 41 and 372 groups, and down to the most detailed level where all majors
are presented with 1,688 CIP codes.15

One major challenge in identifying children’s choice of field of study in relation
to their parents’ educational background is the availability of data. There is no
survey in Canada in which respondents are directly asked about their parents’ field
of study. Although parents’ schooling years are more accessible, many studies on
educational transmission face the same challenge. In a recent study, for example,
Chevalier et al. (2013) use a subsample from a pool of Labour Force Surveys in
the U.K. that include children aged 16 to 18 and living at home, so the parental
information can be matched to the child’s record. In order to identify field-of-study
resemblance between parents and children, we use the same approach and create a
subsample that is composed of children living at home. Although this restriction
reduces the total sample size, it becomes less severe for the comparable age groups
between 16 and 25 years of age. For example, while there are 122 thousand females
with an identified field of study between the ages of 19 and 21 in the whole sample,
our subsample includes 26 thousand who live with their parents. Moreover, we use
this subsample only for FSA calculations, while indices for parental homogamy and
occupational relatedness use the full sample. We are aware that using a subsample
of observations raises a question of selectivity. To ensure that the final sample
was representative of the population, we first compared the distribution of parents
(fathers and mothers, separately) living with their children to that of the whole
sample across CIP codes classified at 12 and 41 groups based on 5-year age classes.
We applied the same comparison for children based on gender and age. The results
seem to confirm that the distribution of children and parents across fields of study
by age and gender in our restricted subsample mirrors the same distributions in the
full sample.16 More descriptive information about the data and our samples will be
provided in the following sections that explain FSH, FSA, and FOR.

15
For more information on CIP classification see www.statcan.gc.ca/concepts /classification-

eng.htm.
16

Hilger (2015) develops a new method to adjust the data to recover the outcomes of “missing”
independent children. However, their educational outcome is measured in years of schooling. We
have also applied the inverse probability weights method to our subsample to address the possible
selectivity problem. The results on FSA calculations did not change significantly.
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2.2 Quantifying assortative preferences: field-of-study attraction -
FSA

The FSA index compares the field of study of each parent to that of each child in
a family and calculates the degree of attraction between two based on the probabil-
ity distributions. We create four contingency tables using the restricted subsample
explained earlier. Each table reports the number of field-of-study matches between
sons and fathers, daughters and fathers, sons and mothers, and daughters and moth-
ers.

Economists have investigated the identification and estimation of preferences in
large matching markets where the matching is positive assortative along a single
dimensional index (Diamond and Agarwal 2016, Chiappori et al. 2012, Choo and
Siow 2006). Among the measures used to identify observed matching patterns, we
choose the following identity that reflects the differences between observed and ex-
pected frequencies under independence:

FSA = P (P ) [P (K ∣ P ) − P (K)] ,

where P and K are indicators of fields of study for parents and children in matching,
respectively. Weighted by the marginal probability of the parent’s choice of major
i, P(P = i), the term in brackets shows how much the children’s choice of major
j is pulled (P(K=j |P=i) > P(K=j )) by or pushed (P(K=j |P=i) < P(K=j ))
from the parent’s field of study. The index is calculated for each cell of the P-
K table, which is a square matrix of the same number of fields of study, i and
j, both for parents and children, respectively.17 When it is normalized for each
parental field of study between 0 and 1, the resulting measures imply the attraction
of children to their parents’ majors evaluated by the observed distribution of all
possible matches between parents and children. The number of different matching
possibilities between the parent and the child comes from the fact that it is the child
who faces many different alternatives before making a decision on a major.

The assortativity exposed by FSA reflects only the child’s preferences as they
are defined over children not over parents in matches.18 While we use 12, 41, and
137 major groups of CIP, in the four match tables, we report only the sons’ match
calculated with 12 major CIP codes in Table 1. The higher values of FSA on the
diagonal show that the most likely matches happen between the same fields of study.
In each row, for any given major that the parent holds, the normalized FSA indicates
the son’s attraction to all other majors relative to the most likely match.The premise
of this measure is that the child’s attraction to each parent’s major could be different

17
With the number of matches, mij , in each cell of the match table, FSA can be calculated by

mij/T - mimj/T
2
, where T is the total number of pairs.

18
Obviously, children cannot choose their parents as partners to match as in the marriage market

but they choose a major that matches them to their parents. This type of two-sided matches is
well-recognized in the literature (Roth and Sotomayor 1992).
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even if the parents have the same field of study. Intuitively, the same major could
be more (or less) attractive for the son, for example, if it is held by his father, which
may reflect not only the differences between maternal and paternal influence but also
gender differences in occupational distributions. While dissimilarities in each cell
between the upper and lower parts of the table may expose this fact, the presence of
a strong assortativity indicates that parents’ field of study is a fundamental factor
in children’s choice of field of study.

Although we refrain from using more space to interpret the results here, a cou-
ple of interesting observations are worth mentioning. It seems that engineering is
the most avoided major by all sons, unless their parents hold it. Moreover, the
assortativity is very distinct when the parents’ field of study is engineering, arts, or
agriculture. However, when the parent is a teacher, the sons’ attraction to their par-
ent’s major is not so distinctand considerably dispersed among others. Finally, to
compare the extent of field-of-study attraction between parents and children across
four match tables, we use an index, H -index, suggested by Bicakova and Jurajda
(2016). The index computes the ratio of two diagonal shares of a match matrix as
follows:

H = 100 ∗
⎛
⎜
⎝

∑
mij

T

∑ (
mimj

T 2 )
− 1

⎞
⎟
⎠
,

where both the nominator and the denominator are calculated for j = i, which is
the sum of the joint probabilities on the diagonal relative to the sum of the products
of their marginal probabilities. Hence it provides the ratio of the actual share of
matches with the same field of study (on the diagonal) to the share of matches that
one would expect under the random matching assumption. When the children’s
choice of major is not affected by their parents’ field of study, each joint probability
on the diagonal (nominator) approaches to the product of its marginal probabilities,
then the whole index becomes zero. Hence any departure from zero indicates the
tendency towards the same field-of-study matches. H -indices calculated for 41
major CIP codes are: 119.56 for Father-Son, 31.28 for Mother-Son, 60.02 for Father-
Daughter, and 48.88 for Mother-Daughter. These sharp differences tested by 95%
bootstrapped confidence intervals indicate that a randomly picked father-son pair
with the same field of study is about twice as likely than would be predicted under
random matching. Moreover, a very low index for mother-son pairs suggests that
the overall attraction of sons to their mother’s major is slightly higher than what
would be predicted if sons randomly pick their majors. Although these observations
are very informative, they would not provide answers that explain the underlying
reasons. In Section 3 we will attempt to confront this challenge.
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2.3 Field-of-study homogamy - FSH

Assortative mating has long been documented by demographers using non-parametric
log-linear models based on contingency tables of ethnicity, education, religion, and
other attributes (Schwartz 2013). Following Becker’s (1973, 1974) theory on mar-
riage markets, economists have also investigated assortative mating in relation to
match gains and returns to marriage. Chiappori et al. (2016), for example, show
that educational homogamy of posterity is likely to be reinforced by increases in
parents’ human capital who are matched homogamously themselves. Bicakova and
Jurajda (2016) are the first to analyze mating by field of study for European coun-
tries. Using the European Labor Force Survey, they show that there is a great extent
of FSH among couples formed by college graduates in the twenty-four EU countries.

Unlike joint or conditional probabilities that define the likelihood of a match, we
use the same approach applied in FSA that recognizes the randomness inherent in
the matching process and specifies to what extent the match is driven by assortative
mating on the field of study and to what extent it reflects the marginal distributions
of each major:

FSH = P (M ) [P (F ∣ M ) − P (F )] = P (F ) [P (M ∣ F ) − P (M )] ,

where F and M are indicators of fields of study for female and male mates in
matching couples. There are three possible outcomes suggested by this measure
calculated for each cell of the F-M table, which is a square matrix of the same
number of fields of study, i and j, both for females and males, respectively. First, if
the conditional probability of one partner’s field of study, P(F = i |M = j ) or P(M
= j |F = i), gets closer to its marginal probability, P(F = i) or P(M = j ), the whole
term approaches to zero, which indicates a complete neutrality in attraction between
two fields of study, i and j. When P(F|M) is higher than P(F), the value reflects
the magnitude of a positive pull between i and j in mating. A negative value, on the
other hand, suggests a rising aversion between them. With the number of matching
couples, mij , in each cell of the match table, FSH can be calculated as follows:

FSM =
mij

T
−

mimj

T 2
, (7)

where T is the total number of couples and mi and mj indicate the total number of
female and male partners in fields of study of i and j, respectively. This approach was
criticized by Choo and Siow (2006) on the grounds that it negates the equilibrium
effects of policy interventions or changes in market structure. More specifically,
equation (7) ignores the individuals who choose not to marry and it assumes that
the number of marriages between two types of individuals is unaffected by changes
in the number of other types of individuals. Instead, they offer a new measure, CS,
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Table 2: Field-of-study homogamy (FSH) by prime CIP codes (weighted)

Wife’s major

1 2 3 4 5 6 7 8 9 10 11
Husband’s major Overall normalization

Education 1 1.000 0.377 0.394 0.323 0.169 0.391 0.384 0.373 0.387 0.322 0.331
Arts 2 0.374 0.556 0.427 0.428 0.334 0.399 0.402 0.398 0.401 0.337 0.396

Humanities 3 0.425 0.426 0.636 0.422 0.269 0.408 0.402 0.387 0.396 0.320 0.361
Law 4 0.424 0.421 0.475 0.749 0.235 0.412 0.398 0.381 0.396 0.242 0.321

Business 5 0.366 0.384 0.409 0.429 0.853 0.393 0.388 0.358 0.366 0.217 0.289
Science 6 0.410 0.404 0.435 0.402 0.308 0.527 0.494 0.401 0.411 0.383 0.365

Math/Comp. 7 0.367 0.416 0.416 0.435 0.395 0.415 0.510 0.402 0.400 0.320 0.377
Engineering 8 0.000 0.305 0.148 0.146 0.877 0.311 0.399 0.575 0.390 0.618 0.694
Agriculture 9 0.408 0.392 0.376 0.387 0.363 0.409 0.392 0.397 0.515 0.418 0.395

Health 10 0.378 0.384 0.385 0.362 0.207 0.411 0.383 0.384 0.391 0.809 0.359
Services 11 0.303 0.387 0.351 0.369 0.444 0.376 0.397 0.395 0.401 0.466 0.563

Normalized by husband’s major
Education 1 1.000 0.250 0.271 0.185 0.000 0.267 0.259 0.245 0.262 0.184 0.195

Arts 2 0.180 1.000 0.419 0.423 0.000 0.293 0.306 0.288 0.302 0.014 0.279
Humanities 3 0.425 0.428 1.000 0.417 0.000 0.379 0.362 0.322 0.346 0.139 0.251

Law 4 0.368 0.362 0.467 1.000 0.000 0.344 0.317 0.284 0.313 0.014 0.167
Business 5 0.234 0.263 0.302 0.333 1.000 0.277 0.269 0.222 0.234 0.000 0.113
Science 6 0.466 0.438 0.580 0.429 0.000 1.000 0.849 0.425 0.470 0.342 0.260

Math/Comp. 7 0.247 0.505 0.505 0.605 0.395 0.500 1.000 0.432 0.421 0.000 0.300
Engineering 8 0.000 0.348 0.169 0.166 1.000 0.355 0.455 0.656 0.445 0.705 0.791
Agriculture 9 0.296 0.191 0.086 0.158 0.000 0.303 0.191 0.224 1.000 0.362 0.211

Health 10 0.284 0.294 0.296 0.257 0.000 0.339 0.292 0.294 0.306 1.000 0.252
Services 11 0.000 0.323 0.185 0.254 0.542 0.281 0.362 0.354 0.377 0.627 1.000

Normalized by wife’s major
Education 1 1.000 0.287 0.504 0.294 0.000 0.370 0.008 0.069 0.141 0.177 0.104

Arts 2 0.374 1.000 0.572 0.468 0.233 0.407 0.150 0.184 0.235 0.203 0.264
Humanities 3 0.425 0.482 1.000 0.458 0.141 0.449 0.150 0.134 0.201 0.174 0.178

Law 4 0.424 0.462 0.670 1.000 0.093 0.468 0.118 0.106 0.201 0.042 0.079
Business 5 0.366 0.315 0.535 0.469 0.966 0.380 0.039 0.000 0.000 0.000 0.000
Science 6 0.410 0.394 0.588 0.425 0.196 1.000 0.874 0.198 0.302 0.280 0.188

Math/Comp. 7 0.367 0.442 0.549 0.479 0.319 0.481 1.000 0.203 0.228 0.174 0.217
Engineering 8 0.000 0.000 0.000 0.000 1.000 0.000 0.126 1.000 0.161 0.677 1.000
Agriculture 9 0.408 0.347 0.467 0.400 0.274 0.454 0.071 0.180 1.000 0.340 0.262

Health 10 0.378 0.315 0.486 0.358 0.054 0.463 0.000 0.120 0.168 1.000 0.173
Services 11 0.303 0.327 0.416 0.370 0.388 0.301 0.110 0.171 0.235 0.421 0.677

Notes: (1) See the notes to Table 1 for the full description of majors. (2) The last major, 12 Other, is ignored in the table as
it includes very few observations. (3) The sample used in this table contains all working spouses regardless of whether they have
children with or without an identified CIP code.
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a scale-free “marriage matching function” based on a transferable utility model, as
follows:

CS = ln [
mij

√
mi0m0j

] ,

where mi0 and m0j indicate the total number of female and male unmarried indi-
viduals in fields of study of i and j, respectively. Their approach offers a behavioral
interpretation of CS as a marriage gain, a log odds-ratio of matched vs. unmatched,
which can represent a couple’s systematic gains to marriage relative to remaining
single. While we applied both methods by using 12 and 41 major groups of CIP,
to avoid reporting multiple large tables in our limited space, we only provide the
results based on FSH calculated with 12 major CIP codes. The top section of Table
2 shows normalized FSH measures calculated by equation (7).

As suggested by Choo and Siow (2006), one expects the systematic gains to
marriage to be large for i, j pairs if one observes many i, j marriages. Hence
each cell of the matrix reflects the level of this gain revealed by the assortativity
embedded in the match relative to the most homogamous match. Except for three
majors (business, engineering and services), the measures on the diagonal are the
highest in their respective columns and rows indicating the presence of a strong
field-of-study homogamy. Further, the comparison of measures on the diagonal
reveals the differences in the degree of homogamy across all homogamous matches
in which teachers (education) have the strongest field-of-study homogamy. Although
the overall normalization in the top section of Table 2 exposes the ranking of each
match in terms of its assortativity among all matches, a more interesting comparison
would be the ranking of individual specific systematic gains in each match among
the matches that are only possible with the male or female partner’s major in each
match.

As recognized in the literature, observed matches in a marriage market are jointly
determined by the preferences of both partners. The match between a male accoun-
tant (business) and a female historian (humanities), for example, is ranked at 0.409
relative to the most homogamous match between teachers. While this comparison
reveals the assortativeness between a male accountant and a female historian in
mating, it would be quite possible that a male accountant’s attraction to a female
historian would be different than her attraction to a male accountant. For example,
Choo and Siow argue that the observed marriage patterns positively depend on the
gross gains to marriage in which the individual returns could be different for each
spouse and identify the systematic gains to marriage for a type i male and a type j
female in an ij marriage, respectively, as follows:

nij = ln [
mij
√
mi0

] ,
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Nij = ln [
mij
√
m0j

] .

These measures reveal the differences in individual gains in an ij marriage reflecting
a spousal “appreciation” or “attraction” of each of field of study in mating. One
can compare not only the gain of each spouse in a given marriage (nij ≷ Nij) but
also rank fields of study in terms of each spouse’s gain with possible alternatives
(nij ≶ nik or Nij ≷ Nik). A simple horizontal or vertical normalization of the FSH
matrix for each row or column between 0 and 1 delivers a ranking similar to nij

or Nij measures. For example, the match between a male accountant and a female
historian is ranked at 0.302 in terms of its assortativity among all possible matches
available for a male accountant with other different major holders. The middle
part of Table 2 shows this ranking based on the horizontal normalization of FSH
measures reported in the top part. This process now allows us approximate the
attractiveness of each field of study for men in mating. The same match is ranked
at 0.535 among those available for a female historian reported in the bottom section
of the table. Similarly, the vertical normalization reveals the relative attractiveness
of other majors in women’s eyes when they are compared to the most preferred one
in mating. These indices simply order each partner’s appeal by his/her field of study
and do not impose cardinal restrictions.

The only limit in the data is the requirement of holding a degree in education
that grants a major for both partners. It is obvious from the diagonal of both the
middle and bottom sections of the table that the evidence supports a strong field-
of-study homogamy. Although not reported here, FSH becomes even stronger when
we use 41 CIP codes.19 We use normalized FSH (NFSH) measures in our analysis
to understand the differences in maternal and paternal effects on children’s choice
of major.20

2.4 Field-of-study occupation relatedness - FOR

The evidence shows that when people do not work in their trained jobs, the value
of their field of study diminishes (Aydede and Dar 2016, Robst 2007). A recent
study by Lemieux (2014) reports that this wage penalty varies by each field of
study in the range of 16 percent for engineers and 5.7 percent for degree holders in
the Humanities. This fact underlines why the occupational relatedness of parents’
major could play an important role in children’s choice of major. When parents do
not practice their profession, even if they earn a higher income, the attraction of
their trained profession might become diluted in the eyes of their children. Children

19
We apply the H-index (explained in the next section) to compare the magnitude of FSH in

each match matrix calculated based on 12 and 41 major CIP codes. The results indicate a slightly
increasing FSH as we use more detailed CIP codes.

20
It would be very informative to expand this descriptive analysis of FSH further, as it is the

first in Canada; however, it is beyond the scope of this paper.
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would be deterred from their parents’ major even more if a wage penalty is associated
with their parents’ educational mismatch, which is an important topic and has been
extensively investigated in the literature (Aydede and Dar 2017). The quality of
parents’ occupational match would also contribute to the formation of subjective
expectations about the major-specific outcomes. An accountant working as a chef,
for example, would be a less-reliable channel of information on the prospects of an
accounting major than one who works as a certified public accountant.

To measure FOR beyond a binary proposition, related or not, we use the follow-
ing continuous index suggested by Aydede and Dar (2016):

FORof =
Lof/Lf

Lo/LT
,

where L is the number of workers, o is the occupation, f is the field of study and T
denotes the whole workforce. This index measures the relatedness of occupation o in
major f by calculating the percentage of workers in major f working in occupation
o adjusted by the size of occupation o in the entire workforce. The 2011 NHS
occupation data are classified according to the National Occupational Classification
(NOC–2011), which is composed of four levels of aggregation. At the first 3 levels,
there are 10 broad occupational categories containing 40 major groups that are
further subdivided into 140 minor groups. At the most detailed level there are 500
occupation unit groups. Statistics Canada defines this classification as occupation
unit groups that are formed on the basis of the education, training, or skill level
required to enter the job, as well as the kind of work performed, as determined by
the tasks, duties and responsibilities of the occupation.

Given the large sample at our disposal, we use the frequency distribution of 41
fields of study across 40 occupations, which gives us 1640 cells to calculate FOR.
For each of the 41 fields of study, when we normalize FOR between 1 and 0 by using
the highest FOR as numeraire, the resulting index, NFOR, reveals the ranking
of each occupation for each major based on the native-born workers’ distribution.
To provide a descriptive summary for FOR, we classify normalized FOR in two
class intervals (1-0.8 and 0.8-0) and report the distribution of spouses across these
classes and 11 major fields of study in Table 3. If, for any given field of study, we
consider the occupations with NFOR between 1 and 0.8 as relatively better matching
occupations, we see that 32 percent of husbands work in related occupations, with
the same ratio slightly lower for wives. As expected, the ratio varies across majors
from 10 percent for wives in humanities to 57 percent for husbands in education.

Finally, to see the relationship between parents’ education-job relatedness and
children’s attraction to their parents’ field of study, we summarize FSA for each
child-parent pair by the parents’ occupational relatedness. In the first row, both
father (F) and mother (M) work in occupations that are related to their majors.
This relatedness is reflected with a binary variable, NFORC, which is 1 if NFOR
is between 1 and 0.2 and 0 otherwise. Although this classification is arbitrary, it
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Table 3: Distribution of fathers and mothers by NFOR and 12 prime CIP codes -
(% and weighted)

Father Mother

NFOR Major’s NFOR Major’s
Majors 1.0 - 0.8 0.8 - 0.0 Share 1.0 - 0.8 0.8 - 0.0 Share

Education 1 57.32 42.68 7.41 56.80 43.20 8.74
Arts 2 28.50 71.50 3.44 28.33 71.67 3.55

Humanities 3 11.03 88.97 4.86 10.05 89.95 5.16
Law 4 23.89 76.11 9.62 23.51 76.49 11.15

Business 5 16.34 83.66 20.02 14.98 85.02 22.94
Science 6 26.53 73.47 3.33 26.28 73.72 3.21

Math/Comp. 7 32.11 67.89 3.61 29.01 70.99 3.27
Engineering 8 42.99 57.01 26.26 42.10 57.90 16.79
Agriculture 9 25.39 74.61 2.93 23.51 76.49 2.55

Health 10 36.15 63.85 11.91 33.22 66.78 16.08
Services 11 36.91 63.09 6.61 34.58 65.42 6.58

Total 32.15 67.85 29.62 70.38

Notes: (1) See the notes to Table 1 for the full description of majors. (2) the last major, 12 Other,
is ignored in the table as it includes very few observations. (3) The sample used in this table contains
all working spouses regardless of whether they have children with or without an identified CIP code.

seems that, in all parent-child pairs, a higher FSA is associated with a greater NFOR.
More interestingly, the highest average FSA in each column is observed when the
matching parent works in a related job irrespective of the other parent’s occupational
relatedness. For example, in the first column, the average FSA is much higher (0.466
and 0.469) when the father’s NFOR is 1 and not affected by mother’s field-of-study
relatedness. This observation recurring in each column implies that FSA calculated
for each child-parent pair is strongly related to the matching parent’s occupational
relatedness but not to that of the other parent. If this positive relationship is
statistically meaningful, which we investigate in the following sections, it also implies
that FSA indices properly retrieve parental differences in assortativity.

3 Empirical framework

The key challenge in understanding the potential contribution of information asym-
metry to the observed assortative patterns is to control for other characteristics that
are not observed by the researcher but aggregated in FSA. To address this issue,
we use a conventional intergenerational transmission framework where we define
quasi-likelihood functions with the response variables that take on fractional values
of FSA between each child (son/daughter) and parent (father/mother) as a function
of the spousal “appreciation” of each partner’s major and field-of-study relatedness.

Intergenerational transmission refers to a process that outlines the transfer of
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Table 4: Average FSA by NFOR based on 41 major CIP codes - (weighted)

NFORC Father-Son Mother-Son Father-Daughter Mother-Daughter

F = 1, M = 1 0.466 0.534 0.525 0.445
F = 1, M = 2 0.469 0.515 0.527 0.425
F = 2, M = 1 0.418 0.535 0.502 0.443
F = 2, M = 2 0.417 0.517 0.492 0.428

Notes: (1) See the notes to Table 1 for the full description of majors. (2) the last major, 12 Other,
is ignored in the table as it includes very few observations. (3) The sample used in this table
contains all working spouses regardless of whether they have children with or without an identified
CIP code.

individual characteristics including abilities, preferences, and outcomes from parents
to their children, which we choose as our empirical framework. For example, an
intergenerational model of schooling estimated in the literature (Becker and Tomes
1979, Solon 2013, Black and Devereux 2010, Becker et al. 2015) can be expressed
as follows:

S
c = α0 + α1S

p + α2h
p + α3f

p + e
c
. (8)

This reduced-form equation explains the child’s schooling (Sc) as a function of the
parent’s schooling (Sp), heritable attributes that parents may genetically pass on to
children (hp), parenting skills and preferences (fp), and child specific characteristics
(ec) independent from Sp, hp, and fp. Coefficient α1 reflects the causal effect of the
parent’s schooling on the child’s schooling joined with, among others, the income
effect that more education would be associated with better parental education. It
can be shown that, if equation (8) reflects the true model, the bias in α1 estimated
by least-squares (OLS) can be expressed as follows:

plim α̂1ols = α1 + α2
cov(Sp

, h
p)

var(Sp)
+ α3

cov(Sp
, f

p)

var(Sp)
.

With educational outcomes, such as schooling years, observed from samples of par-
ents and their own birth children, a direct estimation of (8) cannot identify α1,
unless one assumes that unobserved endowments, hp and fp, are unrelated to Sp.21

Hence, an estimation of (8) without controlling ability sorting and better parent-
ing reveals the intergenerational elasticity between parent-child years of schooling,

21
Homlund et al. (2011) investigate the findings of a large number of studies to answer the

following question: do more educated parents have more educated children because of their edu-
cation? They show that the evidence is inconsistent across the other strategies (twins, adoptions,
and IV models) and they could also encounter problems in obtaining bias free estimates of causal
intergenerational coefficients.
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a summary measure of correlational associations between children’s outcome and
parental educational background. Although it cannot answer whether more edu-
cated parents have more educated children because of their education, the inter-
generational elasticity of schooling is a fundamental metric that has been used to
measure the mobility across generations.22

Inspired from this literature, we propose a different identification strategy and
start with four reduced-form non-parametric matching functions that use the child’s
assortative preferences aggregated in FSA as an outcome of transmission, a process
that is built on available information based on the parents’ educational background.

FSAF,S = α0 + α1NFSH
M + α2NFOR

F + α3h
M + α4f

M + α5h
F + α6f

F + e
S
, (9)

FSAM,S = β0 + β1NFSH
F + β2NFOR

M + β3h
M + β4f

M + β5h
F + β6f

F + μ
S
, (10)

FSAF,D = δ0 + δ1NFSH
M + δ2NFOR

F + δ3h
M + δ4f

M + δ5h
F + δ6f

p + ε
D

, (11)

FSAM,D = θ0 + θ1NFSH
F + θ2NFOR

M + θ3h
M + θ4f

M + θ5h
F + θ6f

F + η
D

, (12)

where scripts M, F, S, and D denote mother, father, son, and daughter, respectively.
With the normalized FSH (NFSH) and FOR (NFOR), these equations reflect the
idea that child’s assortative tendencies observed in his choice of major is related to
the field-of-study homogamy and the degree of relatedness between each parent’s
field of study and occupation within a family.23 As long as a higher homogamy
(and occupational match) suggests a greater limitation in available information on
alternative majors, the coefficients of NFSH (NFOR) capture the underlying field-
of-study transmission that relates the children’s assortative preferences to the level
of information asymmetry. The variable NFSHM in (9), for example, is bounded
between 0 and 1. It reflects a perfect homogamy as it approaches to 1. Intuitively,
the α1 coefficient reveals how much the son’s preference for his father’s major will
be affected by the extent to which his mother’s field of study becomes comparable.
This reminds us of the earlier example: how much the son’s aspiration for his fa-
ther’s major, accounting, will be affected if his mother was a biochemist instead of
an accountant. Similarly, a positive and significant coefficient of NFOR validates
the transmission as the parents would be a more reliable transmitter of information
when they work in their trained jobs. Hence, the presence of intergenerational trans-
mission requires that the coefficients of NFSH and NFOR in those four equations

22
There are several studies examining intergenerational education and income mobility (elasticity)

in Canada: Turcotte (2011), Aydemir et al. (2013), McIntosh (2010), Corak (2001, 2017).
23

Given the parent’s major, FSA reflects the child’s decision on a major that maximizes his/her
expected utility. The theoretical foundation of this decision-making process is well-defined in the
literature (Altonji et al. 2015). For now, we omit other child, parent, and family-specific attributes
in equations from (9) to (12).
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should be positive with dissimilarities reflecting the difference between maternal and
paternal influences.

Yet, the identification of transmission due to information asymmetry across alter-
native majors requires controlling for ability sorting and unobserved heterogeneity.
Defining each child’s FSA separately for each parent provides an opportunity to cre-
ate a setting similar to panel models. Since we observe two matches for each child,
when we take the difference between them, the dependent variables in these match-
ing functions better reflect assortative tendency because the omitted heterogeneity
across children are differenced out from the equations as shown below.

FSAM,S −FSAF,S = ω0 +ω1NFSH
F −ω2NFSH

M +ω3NFOR
M −ω4NFOR

F + τ
c
, (13)

FSAM,D −FSAF,D = σ0 +σ1NFSH
F −σ2NFSH

M +σ3NFOR
M −σ4NFOR

F +ϑ
c
. (14)

A similar non-parametric identification method is also recognized and applied by
Diamond and Agarwal (2016) by using the repeated measurements made available
when each agent on one side of the market is matched to at least at two agents on the
other side. The intuition is that the same value of the unobservable characteristic
of an agent determines multiple matches of that agent and can be differenced out in
a measurement error model (Hu and Schennach 2008).24 Unlike in other matching
markets, this is particularly effective in our case because the assortativity revealed
by FSA reflects only the child’s preferences defined over children not over parents
in matches.

These equations with within-parents differencing suggest that the difference be-
tween FSAM,S and FSAF,S , for example, should be smaller when NFSHM decreases,
holding other covariates constant. Intuitively, if the mother married to an accoun-
tant holds a degree in biochemistry, NFSHM approaches to its lower limit.25 As the
mother becomes another channel of information on an alternative major, biochem-
istry, the family information boundaries expand. Unlike the case when the mother
was an accountant, this increase in the level of available information in turn reduces
the son’s bias towards his father’s major, accounting. That is why FSAF,S (the son’s

attraction to his father’s major) should be smaller when NFSHM (resemblance of
the mother’s major to her husband’s, measured by spousal differences in the appeal
of their majors) gets lower. Hence, the differences in ω1 and ω2 as well as σ1 and σ2

will provide information about the difference in transmission between fathers and
mothers. However, the value (and the volume) of the available information provided

24
Models based on many-to-one matches are not new and well-discussed in the literature (Roth

and Sotomayor 1992). The consequence of possible measurement errors in the dependent variable in
our case may not result in an attenuation bias but may inflate the standard errors of the estimates.

25
This statement is justified based on a strong field-of-study homogamy reported in Section 3.1.
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by the homogamy measures in the family depends on whether the parents work in
related occupations. This could be better understood if we change the accountant-
biochemist example to one where the father is as a chartered accountant while the
biochemist mother works as a branch manager in a bank, which diminishes the value
of information on biochemistry from his mother. Since the parents would be a better
channel of information conditional on the quality of their occupational match, an
increasing NFORM in (13) should have both a negative impact on FSAF ,S and a

positive effect on FSAM ,S . Hence, a positive and significant coefficient of NFORM

indicates the existence of a transmission of field of study reinforced by expanding
the reliable information within the family.

As outlined before, in addition to the level of information asymmetry built on the
parents’ fields of study, children’s assortative preferences could also reflect ability
sorting. The suggested within-family specification, equation (13) for example, can
address this identification problem conditional on the assumption that (β3-α3), (β4-
α4), (β5-α5), and (β6-α6) are not statistically significant. Without this assumption
and excluding NFOR for now, equation (13) can be expressed as follows:

ΔFSA
M,F

S = ω0 + ω1NFSH
F − ω2NFSH

M + ω3h
M + ω4f

M + ω5h
F + ω6f

F + τ
c
, (15)

where ω3= (β3-α3), ω4= (β4-α4), ω5= (β5-α5), and ω6= (β6-α6). When estimated
by OLS, identification of ω2 (ω1) requires either that NFSHM (NFSHF ) is indepen-
dent of unobserved parental traits or that ω3, ω4, ω5, and ω6 are zero, as shown
below.

plim ω̂2ols = ω2 + ω3

cov (NFSH
M

, h
M )

var (NFSHM )
+ ω4

cov (NFSH
M

, f
M )

var (NFSHM )

+ω5

cov(NFSH
M

, h
F )

var(NFSHM )
+ ω6

cov(NFSH
M

, f
F )

var(NFSHM )
.

First, we think that parents’ child rearing skills, fM and fF should not be signifi-
cantly correlated with homogamy measures, NFSHM and NFSHF . It would be hard
to find a systemic reason why individuals who choose their spouses in the same field
of study would also be the future parents with more skills in rearing their children.
Thus, a possible bias in the estimate of ω2 should mostly originate from heritable
traits, hM and hF , and their correlation with homogamy measures. To the extent
that a field of study reveals the person’s overall ability endowments, it would be
reasonable to question the role of ability sorting in field-of-study matches. But,
it is ambiguous how this possibility translates into nonzero cov(NFSHM , hF ) and
cov(NFSHM , hM ).
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If we assume that h represents heritable mathematical skills, for example, a
higher NFSHM could be related to a higher and a lower hF (or hM ) at the same
time.26 To test this ambiguity, we can use matches where both spouses have at least
a university degree with one of the STEM majors (science, technology, engineering,
and math). Hence, what we observe by a higher or lower NFSH among STEM majors
should be the differences in assortative preferences isolated from ability sorting. In
other words, if NFSH is relatively higher for electrical/computer engineers, it means
that they mostly choose their partners in similar fields instead of in theoretical
statistics or chemical engineering which are otherwise comparable in terms of ability
requirements. The size of the data enables us to reduce the effect of cov(NFSHM ,
hF ) and cov(NFSHM , hM ) on the bias by estimating specifications (13) and (14)
only for families that have similar ability endowments. Hence, as shown below,
introducing a binary variable — STEM, which is 1 if both parents hold at least a
university degree with one of the STEM majors, 0 otherwise — into (13), would
help us address a possible bias in the transmission coefficients.

FSAM,S − FSAF,S = ω0 + ω1NFSH
F − ω2NFSH

M + ω3STEM

+ω4STEM x NFSH
F − ω5STEM x NFSH

M + ω6NFOR
M

−ω7NFOR
F + ω8h

M + ω9f
M + ω10h

F + ω11f
F + τ

c
.

(16)

The coefficients of interaction terms will reveal the differences in the sons’ assortative
preferences in STEM families.

With the within-family specification, two factors will shrink the bias on these
coefficients: first, the differential effects of unobservables, ω8= (β3-α3) and ω10=
(β5-α5), in (16), as opposed to their levels in specifications (8) - (11), will diminish
in their size; and second, cov(STEM x NFSHM , hF ) and cov(STEM x NFSHM ,
hM ) will be close to zero for a subsample as specified by (16). The definition of the
bias in the OLS estimate of ω5 in specification (16), for example, can be expressed
as follows:

plim ω̂5ols = ω5 + (β3 − α3)
cov (STEM x NFSH

M
, h

M )

var (STEM x NFSHM )

+ (β5 − α5)
cov (STEM x NFSH

M
, h

F )

var (STEM x NFSHM )
.

Hence the size and the significance of the coefficients ω5 and ω6 will reveal whether
cov(NFSHM , hF ) and cov(NFSHM , hM ) can reasonably be assumed to be zero. The
next section will provide the results.

26
While we could observe a high NFSH for engineers and historians, they would have different

mathematical skill endowments.
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4 Estimation results

We start with the four equations from (8) to (12). To reduce the unobserved het-
erogeneity across families, we expand the equations by controlling for household
income, provincial fixed effects, first spoken official language,household size, and
whether the family resides in an urban or rural area. We also control for homogamy
in terms of parents’ highest educational degree.27 After these additions, Table 5
reports two sets of estimation results for selected variables.28 The first four columns
report the estimation results that include NFSH for each parent without accounting
for parents’ occupational relatedness. We control for FSH in the last four columns
as a binary variable — 1 if both parents have the same field of study, 0 otherwise
— and add FOR for both father and mother as a categorical variable, FORC, that
is one if the normalized FOR is less than 0.2 and 0 otherwise. The first four speci-
fications use larger subsamples because they exclude FOR, which can be identified
only if the person’s occupation is known.

The results reported in Table 5 are informative as they reflect the maternal and
paternal differences in children’s assortative preferences in choosing majors. The
robust and positive NFSH coefficients provide evidence for the existence of what
we call intergenerational transmission of field of study. As outlined before, the
results reflect the combination of ability sorting, differences in parenting skills, and
unobserved heterogeneity in individual and family characteristics in addition to the
limited information accessibility constrained by the parents’ fields of study. The first
two columns show that the son’s attraction to his parents’ majors is strongly related
to FSH measured by spousal “appreciation” of each parent’s major. A comparison of
the coefficients (0.10 and 0.05) indicates that the paternal influence is more dominant
in educational transmission for sons. A similar gap is not observed for daughters
reported in the third and fourth columns. The robust NFSH coefficients still suggest
that daughters will also be attracted to their parents’ field of study, yet mothers
have more influence on daughters.

In the last four specifications, we distinguish the parents who have the same field
of study and control for their occupational match. The results are consistent with
those of the first four specifications. The effect of having homogamous parents on the
son’s attraction to his father’s major (0.055) is much higher than his attraction to
his mother’s field of study (0.002). Again, the same significant but smaller difference

27
EDH is calculated similar to FSH by using equation (1). A total of 11 major granting educa-

tional degrees are identified in the 2011 NHS: Trades, registered apprenticeship, college—less than
1 year, college—1 to 2 years, college—more than 2 years, university—below bachelor’s, bachelor’s,
above bachelor’s—less than master’s, medicine-dentistry-veterinary, master’s, PhD.

28
Since our specifications have fractional response variables that have values ranging between 0

and 1, their linearity in this range becomes a question. To address this issue, we have also estimated
all specifications in this section with quasi-likelihood methods where the response variables are
transformed to log odds with the use of the binomial distribution (Papke and Wooldridge 1993).
Since the results are almost the same, we report here only the linear specifications estimated by
OLS.
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can be observed for daughters. The second channel to identify the transmission is
the relatedness of parents’ field of study to their occupation, which is controlled
by FORC in the last four estimations. The results confirm a strong and positive
relationship between the parents’ occupational match and the children’s attraction
to their parents’ majors. The parental difference in this effect is also noticeable
and in line with the earlier findings with FSH: the paternal effect is greater than the
maternal influence for sons, while the same difference is less magnified for daughters.

When it comes to other factors, a higher homogamy in terms of educational de-
gree (EDH) is positively and significantly associated with FSA. Similarly, a higher
household income has a positive effect on FSA. Among the other variables not
reported in Table 5, only the urban-rural distinction in households’ location is sig-
nificant. Children from families in larger cities experience a higher FSA. To test the
robustness of the results in Table 5, we also used an alternative measure, CS (see
Section 3.1), and recalculated the variables related to FSH. The estimations of the
same specifications in Table 5 indicate that using the CS method would not make
a substantial difference in the results. Furthermore, we also used different levels of
the CIP and occupation classifications available in the 2011 NHS. Again, the results
are not sensitive to using larger or smaller dimensions of match tables.

We address the identification problem stated in the previous section in Table 6.
The first two columns show the estimation results of equation (13) with the same
dependent variable, the difference in the son’s attraction to his parents’ majors.
The first column reports the estimation results of the restricted version of (13).
The estimation results for daughters based on equation (14) are reported in the last
columns. The restricted specifications in the first and the third columns use a new
binary variable, NFORC, that reflects the difference in NFOR in three categories;
the base category refers to the case that both parents have the same field-of-study
relatedness. Either both work in related jobs (e.g. NFOR is between 1 and 0.2
for both parents) or in unrelated jobs (e.g. NFOR is between 0.2 and 0 for both
parents). The second category indicates that while the father works in a matching
occupation, the mother does not. The third category specifies the opposite situation.
Hence, the effect of parental differences in field-of-study relatedness can be captured
by the last two categories.29

The results are interesting and in line with the findings in our earlier estimations:
the coefficient of NFSHF in the first column, 0.1531, confirms that the distance
between FSAM,S and FSAF,S is greater when the gap between the appeal of each

spouse’s major (NFSHF – NFSHM ) increases. Although this signifies the presence
of intergenerational transmission it does not offer an insight about the parental
difference. This is because the gap could rise when NFSHF goes up, NFSHM goes

29
We define the base category with two opposite cases, either both parents work in related jobs or

unrelated jobs, because we want to estimate the effect of field-of-study relatedness for each parent.
Given that the dependent variable is the difference in child’s attraction to each parent, this effect
can only be captured when parents’ FOR is different.
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Table 6: Transmission of field of study by within-family specifications with 41 major
CIP codes

(FSAMS) - (FSAFS) (FSAMD) - (FSAFD)

1 2 1 2
(NFSH

F ) - (NFSH
M) 0.1531 -0.0143

0.0000 0.3050
DFORC

1 Base Base
2 -0.0333 -0.0271

0.0000 0.0000
3 0.0350 0.1630

0.0000 0.0340
NFSH

M -0.1008 -0.0049
0.0000 0.7390

NFSH
F 0.1624 -0.0210

0.0000 0.1430
FORC

M = 1 -0.0164 -0.0162
0.0000 0.0100

FORC
F = 1 0.0505 0.0276

0.0000 0.0000
Constant 0.0686 0.0259 -0.0756 -0.0695

0.0000 0.0000 0.0000 0.0000
Number of Obs. 21,018 21,018 19,942 19,942

Notes: (1)Dependent variables are indicated in each column’s heading. (2) Standard
errors are adjusted by using the 2-way clustering method (Cameron et al. 2011) at
individual and household levels. (3) The numbers under the coefficients report P>|t|.

29



down, or both occur simultaneously. The second column based on equation (13)
helps us understand the difference. The sign of the coefficients on NFSHF and
NFSHM are as expected. Since an increase in NFSHM has a positive impact on
FSAF,S it reduces the distance between FSAM,S and FSAF,S . Similarly, because

a rising in NFSHF increases FSAM,S , the distance between FSAM,S and FSAF,S

becomes larger. More importantly, though, the difference between these effects
(0.1008 and 0.1624) again suggests evidence that paternal influence is noticeably
greater than maternal influence for sons. The same comparison for daughters in
both specifications of (14) would not offer the same evidence, which is also consistent
with the relatively weaker effects for daughters reported in Table 5.

The existence of intergenerational transmission is also verified by the effect of the
parents’ field-of-study relatedness. In the first column, when evaluated against the
base, the first category (fathers work in their trained job but mothers do not) has
a negative effect on the distance between FSAM,S and FSAF,S by reducing FSAM,S

and increasing FSAF,S . Similarly, a significant positive effect is observed for the
second category where the mother works in her trained job but the father does
not. These results are also confirmed with the unrestricted specification reported in
the second column. Now using FORC, if the mother’s major is not a good fit for
her occupation, the negative coefficient (-0.0164) indicates that FSAM,S falls. Yet,
when the father faces an educational mismatch in his job, the effect on the distance
between FSAM,S and FSAF,S captured by a positive coefficient (0.0505) becomes
much greater. Interestingly, despite the insignificant effects of NFSH in the third and
fourth columns, the significant effects of FORC are observed for daughters, which
also indicates the importance of parents’ occupational matching in transmission.

With within-family differencing as specified by (13) and (14), the other factors,
such as the effects of siblings, neighborhoods, and peers, observed or unobserved,
are differenced out in estimations. Hence the results deliver better evidence about
the role of information constraint in children’s assortative preferences. When the
mother’s major gets similar to the father’s, NFSHM rises. As a higher homogamy
implies more constraint in the family in terms of available information on other
majors, the son’s bias towards his father’s field of study rises. This is confirmed
by the negative sign of the NFSHM coefficient: NFSHM has a negative effect on
the difference between FSAM,S and FSAF,S by increasing FSAF,S . Equally, when

NFSHF rises, the similarity between parents’ major gets higher. Confined with less
available information on other majors, the son’s attraction to his mother’s field of
study rises. This is verified by the positive sign of the NFSHF coefficient: NFSHF

has a positive effect on the difference between FSAM,S and FSAF,S by increasing
FSAM,S .

As outlined before, conditional on the extent to which the field-of-study ho-
mogamy is driven by the ability sorting in parents’ marriage, within-family differ-
encing as specified by (13) and (14) may still have a possible bias in transmission
coefficients. One way to address this problem is to use a subsample that includes
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Table 7: Within-family specifications for STEM parents with 41 major CIP codes

(FSAMS) - (FSAFS) (FSAMD) - (FSAFD)

Coef P>|t| Coef P>|t|

NFSH
M -0.0787 0.0000 0.0009 0.9510

NFSH
F 0.1609 0.0000 -0.0200 0.1650

STEM -0.1506 0.0000 0.0191 0.6440
STEM x NFSH

M -0.0419 0.6140 0.0368 0.7340
STEM x NFSH

F -0.0372 0.6950 -0.1025 0.4110
FORC

M = 1 -0.0172 0.0020 -0.0162 0.0100
FORC

F = 1 0.0418 0.0000 0.0268 0.0000
Constant 0.0268 0.0000 -0.0733 0.0000
Number of Obs. 21,018 19,942

Notes: (1)Dependent variables are indicated in each column’s heading.
(2) Standard errors are adjusted by using the 2-way clustering method
(Cameron et al. 2011) at individual and household levels.

only those families in which both parents hold at least a university degree in one of
the STEM majors so that the difference in terms of their ability endowments would
not be significant. Table 7 reports the estimations of the same specifications shown
in the second and the last columns of Table 6 with STEM variables as expressed
by (16). When one of the parents holds a degree in one of the non-STEM majors
(or less than a bachelor’s degree), the coefficients of NFSHM and NFSHF (-0.0787
and 0.1609) are almost identical to those reported in Table 6 for sons. This could
be plausible given that the share of families where both parents have a STEM ma-
jor with at least a university degree is less than 20 percent in the whole sample.
The insignificant interaction terms indicate that the ability sorting may not play a
strong role in sons’ assortative preferences. Hence, when the comparison is made
only among STEM parents, the difference between paternal and maternal effects ob-
served in field-of-study transmissions tends to remain similar to those found in our
earlier results. The significant effect of STEM implies that the difference between
FSAM,S and FSAF,S is lower for STEM families than non-STEM families. None
of the results are significant for daughters, except for FORC, which is in line with
our earlier findings. There is a large literature on gender differences in occupational
preferences and major choices. However, we do not have a satisfactory explanation
why daughters’ assortative preferences show no evidence about the link between
parents’ homogamy and their assortative preferences in their choice of major.

The total elasticity of sons’ assortative preferences in terms of parental ho-
mogamy can be expressed for sons by the sum of coefficients of NFSHM and NFSHF ,
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which is 0.2396 (0.0787 + 0.1609). This measure suggests an important role of infor-
mation asymmetry in children’s choice of major to the extent that the field-of-study
homogamy reflects the level of constraint on the available information when children
choose a major. It should be noted that the results reported here are conditional on
a couple of assumptions. Although our sample, children living with their parents, is
representative of the whole sample, there would still be a selection problem whereby
children living with their parents may have different behavioral predispositions that
affect their assortative preferences. Second, our underlying model is static and uses
data that includes children mostly with completed majors. The evidence in the
literature is very clear that students update their beliefs in their first years of study
and switch majors, if the cost is endurable. We believe that using data on completed
majors leads to a downward bias in our estimations. Third, the constraint on avail-
able information in a family measured by the field-of-study homogamy would not
necessarily suggest a positive bias in children’s choice towards their parent’s majors.
Although it is less likely, two accountant parents would not necessarily be in favor
of their majors and may deter their children from their own majors. This possi-
bility would also create a downward bias in our estimations. Finally, as it is very
common in most empirical studies in the field of education economics, our attempt
to remove a possible ability bias from our estimations has its own limits. We think
that specifications that use within-family differencing and a proxy that groups fam-
ilies with similar ability endowments substantially shrink the bias. However, even
with the bias, the transmission coefficients provide very valuable information on the
intergenerational field-of-study elasticity, which is the first in the literature, to the
best of our knowledge.

5 Concluding remarks

The potential spillover effect of education is a fundamental public policy matter
because it may lead to progressive skill stratifications and dispersed income distri-
butions in every generation if ability sorting in mating and across generations is
substantial. Most studies use years of schooling as the educational outcome for chil-
dren, treating education as unidimensional. Yet, educational decisions are no longer
just about the quantity, but about the specialization to pursue as well. This study
quantifies assortative mating by estimating field-of-study homogamy and intergener-
ational transmission of skills by measuring assortative preferences in choice of major.
As uncertainty increases with the complexity of educational choices, misinformed
decisions made by students in choosing their field of study or by administrators
in allocating their limited resources across disciplines would curtail the social and
economic progress. This study’s primary objective is to investigate the children’s
attraction to their parents’ field of study reflected by assortative tendencies in child-
parent matches as an outcome of information asymmetry.

To identify the role of information asymmetry in assortative patterns in each
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field-of-study match between parents and children, we define quasi-likelihood trans-
mission functions where the response variables take on fractional values of FSA
between each child (son/daughter) and parent (father/mother) as a function of the
spousal “appreciation” of each partner’s field of study. We use the confidential ma-
jor file of the 2011 National Household Survey so that the size of the data and the
availability of different levels of aggregation in the Classification of Instructional Pro-
grams (CIP) allow us to develop three indicators: the degree of children’s attraction
to their parents’ field of study (FSA), the degree of field-of-study homogamy (FSH),
and the degree of relatedness between each parent’s field of study and occupation
(FOR).

Comparable to panel models, we define within-family transmission functions
with one-to-two matches (one for each parent). The results show that children’s
choice of field of study exhibits significant assortative preferences isolated from abil-
ity sorting and unobserved differences across majors and other family characteris-
tics. We also find that the assortative tendency is the highest between fathers and
sons relative to all other pairs, namely father-daughter, mother-son, and mother-
daughter. This evidence becomes even stronger when we use more disaggregated
CIP codes and control for the educational degrees. With some caution, we attribute
this persisting assortative tendency to the information asymmetry across alternative
majors built on by parents’ educational backgrounds within families.
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