
The Long-Run Educational Benefits of High-Achieving
Classrooms∗

Serena Canaan†

Simon Fraser University

Pierre Mouganie‡

Simon Fraser University

Peng Zhang§

The Chinese University of Hong Kong, Shenzhen

February 6, 2022

Abstract

Despite the prevalence of school tracking, evidence on whether it improves student
success is mixed. This paper studies how tracking within high school impacts high-
achieving students’ short- and longer-term academic outcomes. Our setting is a large
and selective Chinese high school, where first-year students are separated into high-
achieving and regular classrooms based on their performance on a standardized exam.
Classrooms differ in terms of peer ability, teacher quality, class size, as well as level
and pace of instruction. Using newly collected administrative data and a regression
discontinuity design, we show that high-achieving classrooms improve math test scores
by 23 percent of a standard deviation, with effects persisting throughout the three
years of high school. Effects on performance in Chinese and English language subjects
are more muted. Importantly, we find that high-achieving classrooms raise enrollment
in elite universities by 17 percentage points, as they substantially increase scores on the
national college entrance exam—the sole determinant of university admission in China.

JEL Classification: I21, I24, I26, J24
Keywords: Classroom Tracking, Peer Quality, Teacher Quality, Regression Disconti-
nuity, China

∗We thank seminar participants at Shenzhen University and Jinan University. We are also grateful to
Joshua Goodman and Mark Hoekstra for helpful comments and suggestions. All errors are our own.
†Department of Economics, Simon Fraser University, and IZA, e-mail: scanaan@sfu.ca
‡Department of Economics, Simon Fraser University, and IZA, e-mail: pierre mouganie@sfu.ca
§School of Management and Economics, The Chinese University of Hong Kong, Shenzhen, e-mail: zhang-

peng@cuhk.edu.cn



1 Introduction

Tracking, the practice of grouping students into classes based on prior achievement, is

common in many countries such as the United States, Canada and China. While within-

school tracking is widespread, it remains exceedingly controversial.1 Tracking allows teachers

and schools to tailor their instruction and resources to students’ abilities and needs, which

may boost their educational attainment. On the other hand, it may widen educational gaps

between high- and low-achieving students, by putting the latter at a learning disadvantage

(Betts, 2011). In the public policy arena, this issue is hotly debated as an increasing number

of policymakers are questioning the benefits of placing high-achieving students in separate

classes. As a result, many school districts are now moving towards eliminating tracking. For

example, in October 2021, Mayor de Blasio announced a highly controversial plan to phase

out New York City’s Gifted and Talented program by 2022 (The New York Times, 2021).2

Despite considerable policy relevance, evidence on whether tracking improves high-

achieving students’ academic performance is mixed, and less is known about how it affects

their long-term outcomes. Additionally, very few studies look at the impact of separating

students in achievement-based classrooms at the high school level. Understanding the im-

plications of tracking at the high school level is important for two reasons. First, tracking

within high schools is widespread. For example, in 2013, 75% of U.S. high school districts

tracked students into different classes through offering honors classes, advanced placement

(AP) courses and other gifted programs (National Research Center on the Gifted and Tal-

ented, 2013). In China, virtually all high schools separate students into classrooms based on

their prior academic performance. Second, while previous studies have focused on tracking

at the primary or middle school level, it is unclear whether their results can be extended

to older students. Indeed, cross-country evidence suggests that the age at which students

are tracked is a strong determinant of their future outcomes, and that tracking at a later

age may be more beneficial for students’ educational trajectories (Hanushek and Wößmann,

2006; Brunello and Checchi, 2007; Schütz, Ursprung and Wößmann, 2008).

This study is the first to examine whether tracking in high school benefits high-achieving

students in terms of academic achievement, as well as college attendance and college selectiv-

ity. Our context is China where virtually all high schools have adopted classroom tracking.

Indeed, results from a survey we conducted among Chinese university students indicates

1The definition of tracking can vary substantially across educational systems. Based on their prior
achievement, students may be tracked into (i) different schools, (ii) different classrooms within the same
schools or, (iii) vocational and general education. We use the terms tracking or within-school tracking to
refer to the practice of separating students into achievement-based classrooms within the same school.

2NYC’s Gifted and Talented program places students identified as “gifted”, based on their performance
on a standardized test, in separate classrooms from their peers.
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that 93.3% of them attended a high school that divides students into achievement-based

classrooms. We investigate the effects of this in one setting: Qingyang First High School, a

large and selective high school located in the low-income province of Gansu, which is ideally

suited for answering our question. At the beginning of their first year at Qingyang First

High School, students have to take a classroom placement exam (CPE). The top performers

on this exam are assigned to high-achieving classrooms, while other students are randomly

allocated to regular classrooms. The majority of students stay in the same classrooms for

all three years of high school. The classroom allocation mechanism used by the high school

creates a CPE score cutoff, whereby students scoring above the cutoff are assigned to high-

achieving classrooms and those scoring below are placed in regular classrooms. We can

therefore estimate the causal effect of being assigned to a high-achieving classroom, by using

a regression discontinuity design which compares students who score barely above to those

who score barely below the CPE cutoff. We collected rich administrative data on all students

who enroll in their first year at this large and selective Chinese high school from the years

2015 to 2017. An advantage of our data is that we can track students’ educational outcomes

both in the short- and longer-run, as we have information on their performance on common

exams taken throughout the three years of high school, scores on the high-stakes national

college entrance exam, and the name of the university they enroll in. Our data also allow

us to test for differences in classroom educational inputs and hence, provide evidence on the

mechanisms driving our effects.

Our results indicate that students substantially benefit from being assigned to high-

achieving classrooms in their first year of high school. Eligibility to enroll in a high-achieving

classroom leads to a 23 percent of a standard deviation increase in performance on mathe-

matics exams taken during the first year of high school. These benefits persist in the second

and third years of high school, as we document significant and comparable improvements in

math performance. On the other hand, the impacts of high-achieving classroom assignment

on students’ performance in Chinese and English language subjects are more muted. To

investigate longer-term effects, we look at students’ performance on the high-stakes college

entrance exam and the type of universities that they enroll in. Indeed, at the end of their

last year of high school, students in China take a common national exam which is the sole

determinant of admissions into 4-year universities. We show that high-achieving classroom

eligibility increases students’ performance on the college entrance exam by around 0.28 stan-

dard deviations. Importantly, we find that students are 17 percentage points more likely to

enroll in highly-selective elite colleges. Since these elite colleges have been previously shown

to yield large earnings gains (Jia and Li, 2021), our findings suggest that the benefits of

high-achieving classrooms likely persist in the labor market.
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An advantage of our data is that it allows us to quantify the mechanisms underlying our

effects. We show that students assigned to high-achieving classrooms are naturally exposed to

higher-achieving peers compared to those placed in regular classrooms. We further find that

students in high-achieving classrooms benefit from having higher quality teachers—measured

by teachers’ official rank, pay scale and work experience—and smaller class sizes. Finally,

our discussions with school administrators indicate that while high-achieving and regular

classrooms follow a similar curriculum, instructors in high-achieving classrooms teach at a

faster pace and delve deeper into the material.

Our results contribute to a large body of work which examines whether tracking im-

proves student achievement. Early U.S. studies compare schools which track students into

achievement-based classrooms to schools that do not track, and find limited evidence that

tracking improves academic outcomes (Betts and Shkolnik, 2000; Figlio and Page, 2002;

Zimmer, 2003; Lefgren, 2004). Our paper is more directly related to studies which use a

regression discontinuity design to look at whether students benefit from being placed in

high-achieving versus regular classrooms. Evidence from this literature is quite mixed. Du-

flo, Dupas and Kremer (2011) find no significant differences in test scores from being placed

into high- versus low-achievement grade 1 classrooms in Kenya. Bui, Craig and Imberman

(2014) also show that admission to a Gifted and Talented program in U.S. middle schools

does not impact student achievement. Tangvatcharapong (2020) finds similar effects in mid-

dle schools in Thailand. On the other hand, Card and Giuliano (2016) document that 4th

grade gifted classrooms in the U.S. substantially improve high-achieving minority students’

math and reading test scores.

Our paper adds to this literature in two ways. First, we present the first causal evidence

on the effects of assigning high school students to high-achieving classrooms. Prior work

focuses instead on tracking at the elementary and middle school level. The scarcity of

evidence on within-high school tracking is striking given that it is a common practice in

many countries. For example, in the U.S., high schools routinely track students based

on their achievements through offering advanced placement (AP) courses, honors classes

and other types of gifted programs (Callahan et al., 2017). Nonetheless, evidence on these

specific programs is scant. Some studies show that providing students and teachers with cash

incentives to pass high school AP exams (Jackson 2010a; 2014) increase college enrollment

and graduation, but they do not look at whether taking AP courses affects performance or

college outcomes.3

3Two additional studies look at high school tracking programs in substantially different settings. Welsch
and Zimmer (2018) use a sibling fixed effects model to show that participation in U.S. high schfool gifted
programs has no significant effect on later-life outcomes. An advantage of our setting is that we can use a
regression discontinuity design which rests on a minimal set of assumptions and allows us to better account
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A second advantage of our setting is that we can document the longer-term educational

impacts of high-achieving classrooms. Most previous studies look at academic performance

for up to at most two years after students are tracked (Duflo, Dupas and Kremer, 2011;

Bui, Craig and Imberman, 2014; Card and Giuliano, 2016). An exception is the study

by Cohodes (2020) who evaluates Boston Public Schools’ Advanced Work Class (AWC).

The program groups high-achieving 4th to 6th grade students in the same classroom and

offers advanced literacy curricula as well as accelerated math in later grades. While AWC

had positive but insignificant impacts on short-term test scores, it increased high school

graduation and college enrollment. Our paper complements this study as we show that

assigning high school—instead of elementary and middle school—students to high-achieving

classrooms substantially improves their short- and longer-term test scores, as well enrollment

in elite colleges.

Additionally, our results are the first to show that within-school tracking is an important

determinant of high-achieving students’ access to elite universities. Our paper thus relates to

recent studies which highlight that many high-achieving low-income students do not enroll

in the best colleges available to them (Hoxby and Avery, 2012; Dillon and Smith, 2017),

and hence miss out on substantial earnings returns to high-quality colleges (Hoekstra, 2009;

Canaan and Mouganie, 2018; Black, Denning and Rothstein, 2020). However, little is known

about what determines these students’ access to selective colleges. Informational interven-

tions, counseling, financial aid and family networks have all been shown to impact college

quality (Hoxby and Turner, 2013; Cohodes and Goodman, 2014; Pallais, 2015; Castleman

and Goodman, 2018; Altmejd et al., 2021; Dynarski et al., 2021). Our findings complement

these studies, as they indicate that providing top-performing students residing in lower in-

come areas with opportunities to enroll in high-achieving classrooms may be an effective way

to boost their enrollment in selective colleges.

Finally, our results are consistent with recent studies showing that students realize sub-

stantial achievement gains from accessing selective high schools (Berkowitz and Hoekstra,

2011; Clark and Del Bono, 2016; Jackson, 2010b; 2013; Pop-Eleches and Urquiola, 2013;

Dee and Lan, 2015; Beuermann and Jackson, 2018; Hoekstra, Mouganie and Wang, 2018)

and U.S. charter schools (Angrist et al., 2010; Abdulkadiroğlu et al., 2011; Angrist, Pathak

and Walters, 2013; Dobbie and Fryer, 2015; Cohodes, Setren and Walters, 2021). Similar

to high-achieving classrooms, these schools typically provide students with a bundle of im-

for endogeneity of placement into achievement-based classrooms. Vardardottir (2013) estimates the impact
of being placed in high-ability classrooms in Icelandic high schools on short-term test scores. The author
emphasizes that the only difference between high and low-ability classrooms in Iceland is peer ability. In
contrast, as in most tracking systems, classrooms in our setting differ in terms of peer ability, teachers,
pedagogy, and class size.
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proved educational inputs such as higher peer ability, better teacher quality and tailored

pedagogy. Our findings highlight that variation in inputs within and not just across schools

can drive differences in long-term academic success.

The rest of this paper is organized as follows. Section 2 describes the educational system

and within-school tracking in China. Section 3 details the data we use. Section 4 out-

lines the identification strategy. Section 5 presents the main results and robustness checks.

In section 6, we discuss the possible mechanisms behind our findings and we conclude in

section 7.

2 Institutional Setting

2.1 Overview of the Education System in China

Students in China enroll in elementary school at the age of six or seven. They spend six

years in elementary school, followed by another three years in middle school. Elementary

and middle schools provide compulsory general education that is common to all students.

At the end of middle school, students can pursue either vocational or general secondary

education. The general education path allows students to eventually enroll in academically-

focused universities, while the vocational path prepares them for specific occupations and

restricts access to traditional higher education.

After middle school, students in the general education path pursue three years of high

school (grades 10 to 12). High school admission is typically based on students’ performance

on a city-level high school entrance exam or Zhongkao, taken at the end of middle school.

Admission to selective high schools in China is highly-competitive. Students submit a form

indicating their ordered preference of high schools. They are then assigned to different high

schools using an algorithm that takes into account students’ preferences and high school

entrance exam scores. In their first year of high school, all students pursue a common

curriculum. At the end of their first year, they choose between two academic concentrations:

Arts or Sciences. This choice is consequential for their postsecondary studies, as some majors

only admit students from one of the concentrations. Students decide on their concentration

based on their personal preferences and abilities. However, high-achieving students typically

enroll in the Sciences concentration, as it allows them to access a wider set of college majors.

Students in China are granted admission into different 4-year colleges through a central-

ized admissions process. At the end of the three years of high school, all students wishing

to attend 4-year colleges, are required to take a common college entrance exam or Gaokao.4

4The college entrance exam is graded out of a possible 750 points and is common for all students in
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Similar to high schools, college admissions are almost entirely based on students’ perfor-

mance on this exam. The Chinese central government officially divides universities into tiers

based on their quality and selectivity, with Tier I universities being the most selective. After

the college entrance exam is graded, provinces set and announce minimum admission score

cutoffs for each university tier.5 Students submit a list of preferred colleges and majors after

receiving their college entrance exam scores and seeing the minimum admissions cutoffs.

Tier I universities then start admitting students based on their listed preferences and college

entrance exam scores, followed by Tier 2 universities. Students whose college entrance exam

scores exceed the provincial admission cutoffs are not guaranteed a spot at their preferred

college. This is because each university can set its own admissions cutoff as long as it exceeds

the minimum cutoff set by the province for its corresponding tier.

Among Tier I universities, there is also a great deal of variability in their degree of

selectivity. The most selective and prestigious universities are part of two national projects

which aim to transform them into world-leading institutions. Specifically, Project 211 (or

“Top 100 in the 21st century” Project) and Project 985 (or “World First Class University”

Project), which were launched by the Chinese Ministry of Education in 1995 and 1999

respectively, allocate extra funds to top universities in an effort to improve their research

standards.6 Around 112 Tier I institutions are listed as part of Project 211, and 39 of

these also constitute Project 985 universities.7 Project 211 and Project 985 institutions are

considered to be the top 100 and top 40 universities in China, respectively. Only around 5%

of college students are enrolled in Project 211 universities every year. These universities are

not just highly-selective but they also lead to substantial gains in the labor market. Indeed,

Jia and Li (2021) show that enrolling in Project 211 universities increases students’ average

monthly wages from their first job by 28 to 45%. In section 5.3, we estimate the impact

of high-achieving classrooms on students’ performance on the high-stakes college entrance

the same province, year and academic concentration. Specifically, students with an Arts concentration take
tests in English language, Chinese language, Mathematics for Arts concentration and a comprehensive test
consisting of Politics, History, and Geology. Science concentration students take tests in English language,
Chinese language, Mathematics for Science concentration and a comprehensive test that includes Physics,
Chemistry, and Biology.

5The cutoffs are set after taking into account the distribution of college entrance exam scores and the
Ministry of Education’s quotas for the province.

6Between 1996 and 2000, the government allocated around $2 billion dollars to universities on the Project
211 list.

7These projects have been successful in achieving their goals. For example, Project 211 universities
take on the responsibility of training four-fifths of doctoral students, two-thirds of graduate students, half
of students from abroad and one-third of undergraduates in China. They hold 96% of key laboratories in
China, and consume 70% of scientific research funding. Additionally, most of these universities are ranked
among the top 1000 worldwide universities according to the Academic Ranking of World Universities and
the Times Higher Education World University Rankings.
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exam, as well as their likelihood of enrolling in (i) a Tier I university, (ii) a Project 211

university (henceforth, top 100 university) and, (iii) a Project 985 university (henceforth,

top 40 university). Focusing on these consequential outcomes allows us to gauge the longer-

term educational benefits of high-achieving classrooms.

2.2 Within-High School Tracking

The practice of separating high school students into achievement-based classrooms is

prevalent in China. While there is no official data on the proportion of high schools that

track students into high-achieving classrooms in China, virtually all high schools separate

students into classrooms based on their prior academic performance in practice. To cor-

roborate this, we conducted a large-scale online survey targeted at students attending 79

different universities throughout China. We received responses from 701 students spanning

30 provinces (all provinces except Tibet) who attended 520 different high schools. 654 re-

spondents (93.3%) indicated that their high schools placed top-performing students into

separate classrooms.

Our student level administrative data are collected directly from Qingyang First High

School, the most selective high school in the city of Qingyang. Qingyang is a prefecture-level

city located in the province of Gansu, with an estimated geographical area of 27,117 km2

and a population of 2.23 million individuals. In 2019, its GDP per capita was around $5,130,

well below the national GDP per capita of $10,216.8

In Qingyang, all high schools track first-year students into achievement-based classrooms.

The high school we focus on, Qingyang First High School, started this practice in 2015. In

each academic year, high school administrators aim to place around 80 to 120 students

in two high-achieving (HA) classrooms, while all other students are randomly allocated to

regular classrooms. To determine classroom placement, students have to take a common

exam at the beginning of their first year in high school. The exam comprises 5 subjects:

Mathematics, Chinese Language, English Language, Physics and Chemistry. Students’ total

score, graded out of a possible 650 points, is calculated by taking the sum of their scores on

these subjects.9 The classroom placement exam (CPE) is administered by Qingyang First

High School. Its content and grading scale are different than the high school entrance exam,

which is administered at the city level.10 However, they both cover similar topics so students

8Source: https://research.hktdc.com/en/data-and-profiles/mcpc/provinces/gansu/qingyang
9Students can earn a maximum of 150 points each on Mathematics, Chinese Language and English

Language, and a maximum of 100 points each on Physics and Chemistry.
10The high school entrance exam includes 10 subjects and is graded out of 1,000 points. The subjects

are: Mathematics (150 points), Chinese Language (150 points), English Language (150 points), Physics (100
points), Chemistry (100 points), History (80 points), Geology (80 points), Biology (70 points), Politics (70
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do not have to study different material to prepare for each exam.

The top performers on the classroom placement exam are assigned to high-achieving

classrooms. The combination of spots available in high-achieving classrooms each year and

students’ performance on the CPE creates a distinct CPE score cutoff for each cohort in our

sample, whereby students scoring above their cohort’s cutoff are assigned to high-achieving

classrooms and those scoring below are placed in regular classrooms. Students’ performance

on the CPE is generally the only criterion taken into consideration when determining class-

room placement.

Students take all subjects in the classroom they were assigned to, and generally stay

in the same classroom until their last year of high school.11 Students in high-achieving

and regular classrooms follow the same national curriculum, and are evaluated using similar

exams on all subjects. However, high-achieving classrooms are taught the same material at

a faster pace, which gives teachers more time to delve deeper into each topic. For example,

students in high-achieving classrooms may be responsible for knowing how to prove a certain

mathematical theorem, while those in regular classrooms go over the theorem without the

proof. Students in high-achieving classrooms are further given additional and more advanced

in-class and at-home exercises. This type of differentiated instruction is a common feature of

within-school tracking programs. For example, the gifted classes studied in Bui, Craig and

Imberman (2014) and Card and Giuliano (2016) also cover the same curriculum as regular

classes, but delve deeper into the material and provide a faster pace of instruction.

Our discussions with high school administrators indicate that there are several additional

differences between classrooms. Teachers in high-achieving classrooms are on average higher-

ranked than those in regular classrooms. A unique feature of the Chinese educational system

is that teachers are assigned one of three official ranks, which influence their salaries. Teachers

typically start at the lowest rank when they are first employed, and become eligible to

apply for higher ranks after accumulating a few years of experience. However, promotion

to higher ranks is not automatic and the evaluation process is quite rigorous. A committee

selected by city officials evaluates each eligible teacher’s file and takes into consideration

his/her teaching performance, education level, publications, awards, and performance on

an oral exam. Higher-ranked teachers are perceived to be of higher-quality in China, and

previous studies suggest that they improve student outcomes. Indeed, Hoekstra, Mouganie

points), Physical Education (50 points).
11The type of classroom that students are assigned to in their second and third years of high school

depends on the academic concentration chosen at the end of the first year. In general, most high-achieving
students choose a Science concentration. Therefore, students who are placed in a high-achieving classroom
in their first year and choose a science concentration, stay together in the same high-achieving classroom
until their last year of high school. Those who pick an Arts concentration are instead reassigned to a regular
Arts classroom in their second and third years of high school.
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and Wang (2018) find that attending the most selective Chinese high schools substantially

improves students’ performance on the college entrance exam, and that this effect is driven by

increased exposure to high-ranked teachers. Teachers do not receive additional training and

do not need to acquire extra credentials to teach high-achieving classrooms.12 In section 6,

we use teacher rank as a proxy for teacher quality to provide evidence on the mechanisms

driving our effects. We also look at teacher salaries and years of experience as alternative

measures of quality.

Another difference between classrooms is that high-achieving classrooms are smaller in

size than regular classrooms. Finally, by design, students in high-achieving classrooms are

exposed to higher-ability peers compared to those in regular classrooms.

3 Data and Descriptive Statistics

We collected student-level administrative data directly from school administrators at

Qingyang First High School, a large and selective high school in China. Our data comprise

three student cohorts who first enrolled at the high school in the academic years 2015 to

2017.13 Our data contain information on students’ high school entrance exam (Zhongkao)

scores in addition to scores on the separate classroom placement exam (CPE) administered

by the high school to enrolled students. Importantly, starting with the 2015 entering cohort,

Qingyang First High School began using results from the latter exam to track the highest

scoring students into two high-achieving classrooms while randomly assigning all remaining

students to other sections. We also have information on students’ classroom section, gender,

test scores in all subjects taken throughout their three years of high school, scores on the

Chinese college entrance exam (Gaokao) and the name of the university students eventually

attend. Finally, to quantify the differences between high-achieving and regular classrooms,

we collected detailed information on teachers directly from the high school—namely their

salary scale, years of experience and official rank.

Column (1) of Table 1 reports descriptive statistics for our full sample, i.e. for the

2,273 students who first enrolled in Qingyang First High School from 2015 to 2017. In

Column (2), we also provide summary statistics for students in our marginal sample, i.e. the

1,788 students who scored within 75 points on either sides of the classroom placement exam

12Additionally, when within-school tracking was first introduced in Qingyang First High School in 2015,
high-achieving classroom teachers were drawn from their regular teaching staff and no new teachers were
hired for this purpose.

13We do not have data from previous years as tracking in Qingyang First High School was first imple-
mented in 2015. Additionally, we do not collect data for cohorts who enrolled at the high school after 2017,
as they are still too young for us to observe their postsecondary outcomes.
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cutoff. Panel A shows means and standard deviations for students’ baseline characteristics

and outcomes. The proportion of male students in the overall and marginal samples are fairly

similar at roughly 53 percent. The average high school entrance exam score for students in

the overall sample is 790.5 out of a possible 1,000 points for the years 2015 to 2017 with a

standard deviation of 88 points. The average is slightly higher for our marginal sample at

796.9 points. For the classroom placement exam, the average score for the overall sample

is 413.4 out of a possible 650 points, and is also slightly higher for the marginal sample

(429.9 points). The scores on this exam determine whether students are eligible to enroll in

a high-achieving classroom, and hence will be used as our running variable (see section 4.1).

Only 13.7 percent of students in the overall sample and 17.3 percent of those in the marginal

sample are enrolled in high-achieving classrooms.

To examine the impact of high-achieving classrooms on short-term academic performance,

we use students’ scores on all exams taken in each of their three years in high school as

outcomes. Students assigned to high-achieving and regular classrooms take the same exams

in each grade. Accordingly, we take the average of all test scores in these exams for each of

the three grades of high school. We then standardize average yearly performance for each

grade by year of entry (i.e. by cohort). Average performance during the first three years of

high school is higher for students in the marginal sample compared to the overall sample.

This is expected given that students from the marginal sample are taken from a higher initial

test score distribution. In particular, students in the marginal sample outscore those from

the overall sample by 0.4, 0.35 and 0.329 standard deviations in grades 1 through 3 of high

school, respectively. Additionally, around 87 percent of students in the selective high school

we focus on choose a science academic concentration in the second year of high school. This

proportion stands at roughly 90 percent for students in the marginal sample.

At the end of high school, students with a science academic concentration score an average

of 510.77 points on the Gaokao college entrance exam with a standard deviation of 64.64.

The minority of students in the arts concentration score an average of 527.46 points on their

version of the college entrance exam. Students in the marginal sample perform even better

attaining an average of 522 and 541 points in the science and arts Gaokao exam respectively,

which is in line with their better performance during the first three years of high school.

Overall, students enrolled in Qingyang first high school perform much better than most

students in their province on the national college entrance exam. Indeed, the average science

student in our high school scores in the top 11 to 12 percent of all Gaokao test takers in

the province of Gansu, depending on the year. Additionally, the average student in the arts

concentration scores in the top 5 to 7 percent of the province. Approximately the same

proportion of students in both samples end up opting out of the college entrance exam (4.8
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and 4.5 percent). The national college entrance exams are extremely high-stakes as they are

the sole determinant of university access and quality in China. Unsurprisingly, the majority

of students in our overall (90%) and marginal (92.5%) samples end up enrolling in university.

This indicates that college access is not the margin of concern for this student population.

Indeed, the main reason that students compete to get into top-ranked high schools is

because they increase access to selective universities by better preparing students for the

college entrance exam. Officially, universities in China are broken down into tiers, with tier

I universities being the most selective. As a result of their higher than national average

performance on the college entrance exam, around 65 percent of students in Qingyang First

High School attend a tier-I university. This number is even higher for the marginal sample

(72 percent). However, top-performing students covet access to a narrower and more selective

set of universities within the tier-I designation, the top 100 and top 40 national universities

in China. The proportion of students in our high school that attend the coveted top 100

universities stands at about 25 percent for our overall sample and 30 percent for the marginal

sample. Additionally, the proportion attending the most prestigious and coveted top 40

universities is 11.6 and 14.4 percent for our overall and marginal samples, respectively.

Students in our three cohorts are distributed across 43 distinct classrooms. We observe

two high-achieving classrooms per entering cohort for a total of six high-achieving classrooms

across all three cohorts. Panel B of Table 1 presents summary statistics for classroom-level

characteristics. The average class size for students in the overall and marginal samples stands

at around 58 students per classroom. Teachers’ salaries are officially broken down into steps

ranging from 7 to 40, with a higher number corresponding to a higher salary scale. The

average salary scale for teachers in Qinyang First High School is 22.16 for the overall sample

and 22.31 for the marginal sample. Additionally, teachers have an average of 16.8 years of

experience. Finally, teachers are assigned one of three official ranks, with three being the

highest and one the lowest. The proportion of top teachers, i.e. those in the highest rank

category, stands at 25.8 and 26.4 percent for the overall and marginal samples, respectively.

4 Identification Strategy

4.1 Regression Discontinuity Design

The practice of tracking high school students into high-achieving classrooms is prevalent

in China. In particular, all high schools in the Gansu province and most elite high schools in

China have this form of tracking. The high school we focus on tracks top-performing first-

year students into two high-achieving classrooms per year. Assignment to high-achieving

11



classrooms is based solely on students’ scores on the classroom placement exam. Accordingly,

we use a regression discontinuity design (RD) to estimate the causal impact of high-achieving

classroom attendance on academic performance and college outcomes (Imbens and Lemieux,

2008; Lee and Lemieux, 2010). The key identifying assumption underlying an RD design is

that all determinants of future outcomes vary smoothly across the high-achieving classroom

admissions threshold. This is likely to hold, as precisely manipulating scores on the classroom

placement exam would be extremely difficult, if not impossible. This is because the cutoff

scores are only determined after the exams are administered and graded. These cutoffs are

determined based on percentile ranks, which are only calculated after the tests are graded.

As a result, students and graders do not know the admission threshold for each academic

year. Additionally, graders do not observe any identifying information on students.

All students in our data attend Qingyang First High School. Within this high school, two

classrooms, per academic year, are consistently reserved for the highest-achieving students;

which is roughly composed of the top-scoring students in the classroom placement examina-

tion, beyond a key threshold. In order to summarize the effects of attending high-achieving

classrooms, we pool data across three different entering cohorts. Formally, we estimate the

following reduced-form equation:

Yit = α + f(Sit) + τDit + δXi + εit, (1)

Where Yit is the outcome of interest for student i in cohort t. Dit is a dummy variable

indicating whether student i crosses the year-specific score threshold for attending a high-

achieving classroom.14 S represents students’ classroom placement exam scores in the years

2015, 2016 and 2017 measured in points relative to the cutoff score for each respective

academic year. Formally, Sit = gradeit − gradey for all individuals within a year facing

a common threshold y. The function f(.) captures the underlying relationship between

the running variable Sit and the dependent variable Yit. We also allow the slopes of the

fitted lines to differ on either side of the admissions threshold by interacting f(.) with the

treatment dummy D. Xi is a vector of students’ predetermined controls that should improve

precision by reducing residual variation in the outcome variable, but should not significantly

change the treatment estimate if our identifying assumption holds. εit represents the error

term. Finally, the parameter τ gives us the causal effect of being eligible to enroll in a

high-achieving classroom—i.e., the reduced form estimate.

In our analysis, we specify f(.) to be a linear function of S and estimate the equation over

a narrow range of data, using local linear regressions with triangular and uniform kernels.

14We have three thresholds in total, each corresponding to a different academic year.
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This approach generates estimates that are more local to the threshold without imposing

any strong functional assumptions on the data. The preferred specifications in this paper are

drawn from local linear regressions with optimal bandwidths chosen by the CCT robust data

driven procedure as outlined in Calonico, Cattaneo and Titiunik (2014). Specifically, we use

two separate MSE-optimal CCT bandwidth selectors—one for observations below the cutoff

and one for those above. We do so because we have significantly more observations to the

left of the cutoff as compared to the right given how selective the threshold is. Additionally,

because the CCT bandwidth selector predicts different bandwidths depending on outcome,

the number of observations in each regression may vary from one outcome to another. How-

ever, we also present results from a variety of different common bandwidths for all outcomes

as a robustness check. Finally, given the discrete nature of our running variable, we report

robust standard errors throughout (Kolesár and Rothe, 2018).

While we generally focus on reduced form estimates from specifications like (1), we also

present coefficients from an instrumental variables type specification. This allows us to infer

the average effect of attending a high-achieving classroom as opposed to the intent-to-treat

(ITT) effect only. Formally, we estimate:

Yit = θ + h(Sit) + βE(Cit|Sit) + γXi + µit, (2)

E(Cit|Sit) = ν + g(Sit) + λDit + θXi + ζit, (3)

where (3) is the “first stage” or the compliance ratio Cit. It denotes the share of students

who actually enroll in a high-achieving classroom. µit and ζit are error terms. β from

equation (2) gives us the local average treatment estimate (LATE) of attending a high-

achieving classroom in a 2SLS framework. This is equivalent to the Wald estimate and can

be informally computed by dividing the ITT estimate τ̂ in equation (1) by the first stage

estimate λ̂ from equation (3).

4.2 Tests of Identification

Given the nature of how students are assigned to high-achieving classrooms, we believe

it is very unlikely that students are able to precisely manipulate their scores relative to

the cutoff. Nonetheless, we provide two formal empirical tests to alleviate concerns over

manipulation of the running variable.

We first assess whether there is evidence of bunching around the high-achieving classroom

admission threshold. Indeed, if students or graders could manipulate exam scores relative

to the cutoff, we would expect to see too few students just short of the cutoff coupled with

too many students just exceeding the cutoff. Results from this exercise are summarized
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in Figure 1, which shows the density function representing the share of students scoring

50 points below and above the classroom placement exam cutoff. Specifically, we find no

evidence of a discontinuity (bunching) in the density function using the local polynomial

density estimation testing procedure proposed in Catteneo, Janson and Ma (2020). Formally,

we estimate a p-value of 0.495 and reject the hypothesis that the density function varies

discontinuously at the cutoff.

We also test whether observed determinants of achievement are smooth across the thresh-

old. Indeed, if our identifying assumption holds, we would expect predetermined character-

istics of student achievement to vary smoothly across the admissions threshold. Conversely,

if students or graders are manipulating scores around the threshold, then we would expect

to see students with different characteristics on either sides of the cutoff. Predetermined

student characteristics in our data are limited and include gender and test scores on the high

school entrance exam—taken just prior to the classroom placement exam. We test whether

there is evidence that these two covariates vary discontinuously at the cutoff. Figures 2a

and 2b plot the relationship between each of these covariates and the running variable. The

figures take the same form as those after them in that circles represent local averages of the

outcome over a 5 points score range. The running variable is defined as distance of students’

scores from the classroom placement exam cutoff. The cutoff is represented by a 0 on the

x-axis. We show results using a bandwidth of 75 points on either sides of the cutoff using a

linear fit. Visual evidence suggests that high school entrance exam scores (Figure 2a) and

the likelihood that a student is male (Figure 2b) vary smoothly at the cutoff, in line with

our identifying assumption.

We present corresponding regression discontinuity estimates taken from equation (1)

in Table 2. We report coefficients from local linear regressions using as an outcome: the

likelihood a student is male in Columns (1) and (2) and high school entrance exam scores

in Columns (3) and (4). All regressions use a bandwidth predicted by the CCT optimal

bandwidth selector, as detailed in section 4.1. Columns (1) and (3) show estimates using

a triangular kernel function that gives more weight to points close to the cutoff. We also

show estimates using a uniform kernel, that give equal weight to all points, in columns

(2) and (4). Consistent with the visual evidence, we are unable to detect any significant

discontinuities at the cutoff in terms of student gender or high school entrance exam scores.

These results hold regardless of kernel choice. We also show that estimates are robust to

varying bandwidth choices in Appendix Table A1. Specifically, we are unable to detect any

significant discontinuity in gender or high school entrance exam scores using bandwidths

of 50, 75 and 100 score points on either side of the high-achieving classroom admissions

threshold.
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5 Results

5.1 First Stage—Likelihood of Enrolling in High-Achieving Class-

rooms

We begin by presenting evidence that the classroom placement assignment rule was bind-

ing in practice. To do so, we show visual evidence that students are discontinuously admitted

to high-achieving classrooms based on their scores in the classroom placement exam. Fig-

ure 3 summarizes results from this exercise where bins represent local averages over a 5 point

score range. We use a linear fit on either side of the cutoff to approximate the discontinuity.

The figure reveals a large and positive discontinuity in the likelihood that students enroll in

a high-achieving classroom at the admissions cutoff. Corresponding regression discontinuity

estimates presented in Table 3 indicate a high compliance rate with discontinuity coefficients

ranging from 77.5 to 81.8 percentage points depending on kernel choice and controls. In Ta-

ble A2 of the Appendix, we show that these results are robust to various bandwidth choices.

We conclude that scoring just above the classroom placement exam threshold increases stu-

dents’ likelihood of being in a high-achieving classroom by approximately 80 percentage

points.

5.2 Performance in High School

We next examine the short-run effects of attending high-achieving classrooms. In par-

ticular, we focus on students’ academic performance during their three years of high school.

Students sit for numerous common exams in various subjects throughout the year, which

are meant to measure their progress in a given grade. Importantly, these exams are common

across all classrooms in a given grade and year. This enables us examine whether high-

achieving classrooms give students an advantage in terms of high school performance, over

students in regular classrooms. We look at performance on three subjects, which students

are consistently tested on throughout the three years of high school: Mathematics, English

and Chinese.15 Specifically, we focus on average test scores in these three subjects for each

year of high school. To ease cross-cohort comparisons, we standardize scores by cohort and

grade.16 We then look at whether these standardized test scores, measured in each year of

high school, discontinuously change at the high-achieving classroom admissions cutoff.

15On average, students take 6 sets of exams in various subjects in a given grade and year. We use scores
on Mathematics, English and Chinese, as these are the only subjects that are included in all sets of exams.

16Since students are divided into science and arts tracks in the 2nd and 3rd year of high school, we also
standardize scores within tracks for those years.
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For all three subjects, Figures 4 to 6 graphically show results in the first through third

years of high school, respectively. Figures 4a, 5a and 6a respectively show clear and positive

increases in Math performance at the threshold in years 1, 2 and 3 of high school. Fig-

ures 4b, 5b and 6b suggest that there are also some improvements in Chinese test scores at

the cutoff, but the discontinuities are visually less compelling than those for Math. On the

other hand, we find no evidence of a jump at the threshold when looking at performance in

English, regardless of high school year (Figures 4c, 5c and 6c).

Formal regression discontinuity estimates from equations as in (1) are presented in Ta-

ble 4. Panel A shows reduced form local linear regression estimates on first year high school

performance. Consistent with the visual evidence, we find that scoring just above the class-

room placement exam threshold increases Mathematics test scores by 23 to 27 percent of a

standard deviation using a triangular or uniform kernel (Columns (1) and (2)). However,

we find no evidence that threshold crossing significantly impacts first-year performance in

Chinese or English subjects in Columns (3) through (6).

We present reduced form effects on similar outcomes during the second year of high

school in Table 4. We find strong evidence that threshold crossing increases performance in

Mathematics by 27 to 31 percent of a standard deviation. We also find some evidence that

performance in Chinese is also increased, though this result is not robust to kernel choice.

Additionally, we find no evidence that test scores in English are improved in the second year

of high school. Estimates in Panel C of Table 4 summarize effects during the final year of

high school. Similar to the first two years, we find that high-achieving classroom eligibility

increases performance by 24 to 26 percent of a standard deviation in Mathematics. However,

we find less compelling evidence of a significant change in performance on Chinese or English

test scores.

Finally, we check whether these results are robust to bandwidth choice in Appendix Ta-

bles A3 through A5. We find consistent and robust evidence that threshold crossing impacts

Mathematics test scores in all three years, but had no impact on English test scores. In terms

of performance in Chinese, our findings are less clear as we detect significant increases with

larger bandwidths. Taken together, our results indicate that placement in a high-achieving

classroom in the first year of high school substantially improves students’ contemporaneous

performance in math, and these benefits do not fade out as they persist until the last year

of high school. On the other hand, high-achieving classrooms’ effects on performance in

Chinese or English are more muted.
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5.3 Performance on College Entrance Exam and College Out-

comes

We now turn to longer-term outcomes that directly impact students’ university choices.

We begin by looking at student performance on the high-stakes national college entrance

exams. These exams are conducted at the end of high school and are the sole determinant

of college eligibility in China. Figure 7a plots students’ standardized college entrance exam

scores as a function of the running variable.17 We see a sizable increase in college entrance

exam scores at the classroom placement exam threshold. We present formal regression results

in Columns (1) and (2) of Table 5. Specifically, reduced form local linear estimates indicate

that threshold-crossing increases scores on the college entrance exam by around 27 to 28

percent of a standard deviation. We also report local average treatment effects of attending

high-achieving classrooms by re-scaling the intent-to-treat estimates in the second row by the

previously estimated discontinuity in the likelihood of attending a high-achieving classroom.

Results are shown in the third row of Table 5 and indicate that enrolling in a high-achieving

classroom increases college entrance exam test scores by 35 percent of a standard deviation.

We also present effects on college entrance exam performance by subject in Appendix

Figure A1 and Table A6. In particular, we focus on scores in the four main components

of the exam: Mathematics, English, Chinese and a “Main Subject”. The Main Subject is

Sciences (i.e., an exam covering Physics, Chemistry and Biology) for students in the science

concentration and Arts (i.e., an exam covering History, Politics and Geography) for those in

the arts concentration. Visual evidence presented in Figure A1 indicates that high-achieving

classrooms significantly improve students’ scores in the Mathematics and Main Subjects

components of the college entrance exam. We find weaker evidence of improvements in

Chinese scores and no evidence of changes in performance on the English portion of the

exam at the threshold. Regression estimates presented in Table A6 are in line with the

visual evidence. We find large, robust and significant gains in the Mathematics and “Main

Subjects” portion of the exam on the order of 30 to 35 percent of a standard deviation.

Conversely, we find no significant impacts on Chinese and English performance.

Next, we look at crucial university choices that are directly affected by students’ exam

scores on the college entrance exam. In particular, we focus on four outcomes: enrolling in

any Chinese university, a first-tier university, a top-100 university and a top-40 university.

We present graphical RD results for these four outcomes in Panels (b) through (e) of Figure 7.

17We standardize college entrance exam scores by year and high school concentration. In Section 5.4, we
show that the likelihood of choosing a science or arts concentration is smooth at the cutoff, mostly because
virtually all students around the cutoff select a science concentration. As a result, the choice of standardizing
college entrance exam scores within concentrations has no substantial effect on results.
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Unsurprisingly, we find no visual evidence of a discontinuity in the likelihood that students

attend any Chinese university (Figure 7b). This is because the high school we analyze is

highly selective and the margin of interest for enrolled students is most likely college quality

as opposed to just access. Indeed, almost all students around the cutoff end up enrolled in a

university as shown in Figure 7b.18 As a result, we next look at effects on college quality, the

more likely affected margin for students in our sample. We find no compelling visual evidence

of a change in the likelihood that students attend a first-tier university (Figure 7c). This is

most likely because a significant portion of students around the cutoff end up attending a

first-tier university. We therefore use a narrower definition of college quality as our outcome:

enrollment in the more selective and prestigious top-100 national universities. Indeed, we find

a compelling increase in the likelihood of attending top-100 national universities (Figure 7d)

at the threshold. Additionally, while a linear fit suggests a potential discontinuity in the

chances of attending top-40 universities (Figure 7e), this seems to be largely driven by noise,

most likely because this is a rare outcome.

We turn to formal regression estimates to get a sense of the magnitude of these results.

Local linear estimates presented in Columns (3) through (6) of Table 5 indicate no statis-

tical link between being in a high-achieving classroom and the likelihood of attending any

university or a first-tier university. On the other hand, we find a substantial increase in the

likelihood of attending a top-100 university, with intent-to-treat estimates ranging from a

16.5 to 18.9 percentage points in columns (7) and (8) of Table 5. This translates into LATE

estimates of 22.5 to 24.1 percentage points indicating that attending a high-achieving class-

room increases students’ chances of enrolling in a top-100 university by roughly 50 percent.

In line with the visual evidence, estimates in Columns (9) and (10) are positive but fairly im-

precise, precluding us from making any strong conclusions regarding the causal link between

high-achieving classroom attendance and top-40 university enrollment.19 Finally, while we

do not have data on students’ labor market outcomes, findings from this section suggest that

attending a high-achieving classroom in high school may have significant impacts on later

lifetime outcomes. Indeed, Jia and Li (2021) show that the wage premium to attending a

top-100 university in China ranges from 28 to 45 percent.

18We are unable to observe if students not attending university in China are instead enrolled in a university
abroad. However, anecdotal evidence from our conversations with high school officials reveal that students
rarely end up attending a university outside of China. This is expected given that the city and province we
look at are both relatively poor.

19Estimates reported in Appendix Table A7 indicate that results for college exam performance and uni-
versity choice are mostly robust to various bandwidths. The major exception is that local linear estimates
on top-40 university enrollment are statistically significant for larger bandwidths.
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5.4 Threats to Identification

A potential threat to identification is the possibility that students endogenously select into

taking the college entrance exam.20 Indeed, if students just above the threshold are more

likely to sit for the college entrance exam, then this would complicate the interpretation

of our longer-term effects. Appendix Figure A2a shows that the likelihood of opting out

of the college entrance exam does not vary discontinuously at the cutoff. Formal regression

estimates in Columns (1) and (2) of Table 6 also show no statistically significant link between

high-achieving classroom enrollment and selection out of the college entrance exam.

An equally worrying threat to identification is if enrolling in a high-achieving classroom

influences students’ academic concentration choice in the second year of high school, i.e.

whether they enroll in a science or arts concentration. For instance, if being in a high-

achieving classroom causes students to enroll in the science concentration at higher rates,

then that difference, rather than a broader sense of improved classroom quality, could drive

our results on longer term outcomes. To alleviate such concerns, Figure A2b plots the

likelihood of choosing a science versus arts concentration as a function of the running variable.

We see no evidence of a discontinuity at the cutoff. Additionally, corresponding local linear

estimates presented in Columns (3) and (4) indicate that high-achieving classroom enrollment

does not influence academic concentration choice the following year. This is not surprising

given the very high rates of science concentration enrollment for students on either side of

the cutoff.21

6 Mechanisms

We now turn to the question of why there are sizable returns to being in a high-achieving

classroom. As detailed in section 2.2, our discussions with high school administrators suggest

that high-achieving and regular classrooms differ in terms of several important inputs into

education: peer quality, class size, and teacher quality. One advantage of our data is that we

can document whether classrooms actually differ along these dimensions and the magnitudes

of those differences, allowing us to better understand the mechanisms behind our effects. We

20A student may opt out of taking the college entrance exam either because they have dropped out of
the education sector altogether or because they want to independently sit for it the following year. Taking
the college entrance exam is unrelated to grade repetition. Grade repetition is extremely rare in our context
because students are generally not allowed to repeat any year of high school without special permission from
school officials.

21In Appendix Table A8, we show that findings from this section are robust to bandwidth choice. Specif-
ically, we are unable to detect any significant effects on college entrance exam take-up or academic con-
centration choice from local linear regressions using bandwidths of 50, 75 or 100 points either side of the
cutoff.
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look at these three inputs in the first year of high school, i.e. during the year students are

initially tracked into different classrooms.

First, since students are assigned to high-achieving classrooms based on their academic

performance, classrooms naturally differ in terms of peer quality. For each student, we

construct a leave-one-out classroom-level peer quality measure (i.e., excluding the student

themself) using peers’ standardized scores on the high school entrance exam. Students take

this exam prior to enrolling in high school and interacting with their high school peers.

Figure 8a plots average peer exam scores, as a function of distance of students’ scores from

the classroom placement exam cutoff. The figure shows a large increase in classroom peer

quality at the threshold. In Table 7, the first two rows of Columns (1) and (2) reveal that

the reduced form effect on peer exam scores ranges from 1.031 to 1.078 standard deviations.

The corresponding LATE estimates (third row) indicate that attending a high-achieving

classroom is linked with having classroom peers who are, on average, 1.35 standard deviations

higher ability than those found in regular classrooms.

These estimates show that students in our setting have a large increase in peer quality

when they are placed in high-achieving classrooms. Nonetheless, it is unclear to what extent

peer quality is driving our main effects. On one hand, a large body of work documents that

an increase in mean peer ability improves students’ academic success (Sacerdote, 2011). On

the other hand, several recent studies—which also use a regression discontinuity design—find

that tracking does not necessarily improve high-achieving students’ outcomes despite expos-

ing them to higher-quality peers. Indeed, Duflo, Dupas and Kremer (2011) and Bui, Craig

and Imberman (2014) show that students marginally placed in high-achieving and gifted

classes are exposed to higher-ability peers, but do not have higher test scores than those

who are marginally assigned to regular classes. These findings are consistent with studies by

Abdulkadiroğlu, Angrist and Pathak (2014) and Dobbie and Fryer (2014), who show that

marginally gaining admission to elite high schools in Boston and New York, which enroll

high-achieving peers, does not result in improved test scores.

Second, we show that students just above the classroom placement admissions cutoff are,

on average, in smaller classes. Visual evidence in Figure 8b reveals a substantial drop in class

size at the cutoff. Reduced form RD estimates in columns (3) and (4) of Table 7 show that

scoring just above the cutoff reduces average class size by 2.94 to 3.92 students during the

first year of high school. The corresponding LATE estimate indicates that students in high-

achieving classrooms have an average of 4.5 less students in their classroom. Looking at the

previous literature on the returns to class size, it is also ambiguous whether smaller classes

can explain our main results. Seminal studies show that small classes increase test scores,

years of education, college attendance and graduation of kindergarten and primary school
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students (Angrist and Lavy, 1999; Chetty et al., 2011; Fredriksson, Öckert, and Oosterbeek,

2013). However, other studies indicate that older students, in middle school and high school,

may not see improvements in test scores or completed schooling due to small classes (Leuven,

Oosterbeek and Rønning, 2008; Leuven and Løkken, 2020).

To get a sense of the importance of class size in our context, we perform back-of-the-

envelope calculations. Fredriksson, Öckert, and Oosterbeek (2013) estimate that placement

in a classroom with one less student during grades 4 to 6 (from ages 10 to 13) improves

test scores at age 13 by 0.03 standard deviations.22 In our setting, we assume that students

placed in high-achieving classrooms stay in these classrooms until the end of high school

(i.e., for 3 years), and hence benefit from having 4.5 less students in their classroom for all

3 years. This implies that we should see an increase in test scores due to smaller classes of

at most 0.135 standard deviations (=0.03×4.5). However, this upper bound is substantially

less than the documented LATE estimate of 0.349 standard deviations we find in Table 5

from attending high-achieving classrooms. This indicates that while reduced class size may

explain part of our main effects, there are other important channels that drive our results.

The final input we examine is teacher quality, which has been shown to be an important

predictor of student performance in many other settings (Chetty, Friedman and Rockoff,

2014; Jackson, 2018). We do so by exploiting a unique feature of the Chinese education

system which designates official ranks to teachers. Indeed, in our context, teachers are

awarded a rank of 1 through 3 with the higher number indicating a better ranked teacher.

As detailed in Section 2.2, promotion to a higher rank is difficult to attain and teachers

wishing to do so have to go through a rigorous evaluation process. Higher teacher rank

has been previously shown to improve students’ test scores in China (Hoekstra, Mouganie

and Wang, 2018). Graphical evidence in Figure 8c indicates that students just above the

cutoff are exposed to teachers with a higher rank during the first year of high school. We

provide formal evidence from regressions as in equation (1) using standardized teacher rank

as an outcome. Estimates from the final two columns of Table 7 show that these effects

are statistically significant and that students who are eligible to enroll in high-achieving

classrooms are matched with teachers who are 0.36 to 0.40 standard deviations higher-

ranked, on average.23

We further decompose teacher rank by subject in Figure 9 and Appendix Table A10. We

find that our overall teacher effects are driven by significantly better teachers in Mathematics,

followed by English. We find a much smaller, but statistically significant, increase in Chinese

22The magnitudes of class size effects in Fredriksson, Öckert, and Oosterbeek (2013) are comparable to
those found in Angrist and Lavy (1999) and Chetty et al. (2011).

23In Appendix Table A9, we further show that estimates of the impact of high-achieving classrooms on
teacher rank, peer quality and class size are all robust to bandwidth choice.
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teacher rank at the cutoff. Specifically, high-achieving classroom placement increases math

teachers’ rank by 1.9 standard deviations, English teachers’ rank by 0.886 standard devia-

tions, and Chinese teachers’ rank by a marginally significant 0.2 standard deviations. At

first glance, the fact that we observe an increase in English teacher rank but no improvement

in English test scores at the cutoff, suggests that teacher rank may not explain our main

effects. However, previous studies find that while teacher quality is a strong predictor of

math achievement, it has a much weaker effect on performance in English. This is because

mathematics is believed to be mainly learned in the classroom, while English skills are often

acquired outside of school (Jackson, Rockoff and Staiger, 2014).

We show that our findings on teachers are robust to various definitions of teacher quality.

We first provide estimates using a binary definition of teacher quality. Specifically, we use

as an outcome a dummy variable that equals 1 if a teacher has the highest rank (or is a

“top teacher”), and 0 if he/she is of lower rank. Using this definition, Appendix Figure A3a

shows that threshold-crossing leads to approximately a 10 percentage point increase in the

likelihood that students match with top teachers. We further use teacher salaries and years of

experience as alternative measures of teacher quality. Teachers in China are paid according

to a salary scale ranging from 7 to 40, with a higher number indicating a higher pay scale.

Appendix Figure A3b reveals a large and significant increase in teachers’ salary scale at the

cutoff. Finally, Appendix Figure A3c indicates that students who are eligible to attend high-

achieving classrooms are matched to teachers who have 2 additional years of experience, on

average. These findings are in line with those using our initial definition of teacher quality

and indicate that students who score above the classroom placement exam threshold are

matched with significantly higher quality teachers.

Taken together, these results indicate that improved teacher quality is likely to explain at

least part of our high-achieving classroom effects. This is corroborated by previous evidence

from China on the importance of high-ranked teachers in student learning. Using a regres-

sion discontinuity design, Hoekstra, Mouganie and Wang (2018) show that being marginally

admitted to the most selective Chinese high schools substantially improves students’ per-

formance on the college entrance exam. Selective high schools enroll higher-achieving peers

and employ higher-ranked teachers than other schools. The authors however find that the

academic benefits of selective high schools in China are driven by teacher quality and not

peer ability.

One final potential channel, which we cannot quantify, is that students in high-achieving

classrooms are taught at a faster pace and delve deeper into topics, despite following the same

curriculum as regular classrooms. Duflo, Dupas and Kremer (2011) further highlight that

tracking benefits students if it provides them to have a level of instruction that matches their
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abilities. In our setting, this implies that students benefit from high-achieving classrooms if

their level of instruction is better suited for their abilities than regular classrooms.

In summary, findings from this section reveal that students who are marginally placed in

high-achieving classrooms are exposed to higher-quality peers and teachers, as well as smaller

class sizes. We cannot rule out that the short and longer-term benefits of high-achieving

classrooms are due to peer quality and class size. However, the large effects we document on

teacher quality coupled with an extensive literature documenting the importance of teacher

quality as an input into education suggests that teachers may be the largest driver of our

documented findings.

7 Conclusion

This paper provides new evidence on the impacts of within-high school tracking on high-

achieving students’ long-term academic success. We collect rich and unique data from a

large and selective high school in China, where first-year students are allocated into high-

achieving and regular classrooms solely based on their performance on a common exam.

Using a regression discontinuity design, we show that placement in a high-achieving class-

room largely improves performance in math in all three years of high school. The benefits

of high-achieving classrooms persist even after students graduate from high school. Indeed,

being in a high-achieving classroom increases students’ scores on the high-stakes national

college entrance exam by 0.28 standard deviations. Additionally, we find that while high-

achieving classrooms do not impact access to college, they do increase students’ enrollment

in the most prestigious and selective Chinese universities (i.e., in the top 100 or Project 211

universities) by 50 percent. Since attending these universities has been previously shown to

substantially increase future wages (Jia and Li, 2021), our results suggest that enrolling in

high-achieving classrooms can have large labor market returns.

Our data allow us to explore the mechanisms driving the benefits of high-achieving

classrooms. We show that students assigned to high-achieving classrooms are exposed to

higher-ability peers and smaller class sizes, compared to those placed in regular classrooms.

Additionally, students in high-achieving classrooms are exposed to teachers who are higher-

ranked, earn higher salaries and have more years of teaching experience. Finally, students

may benefit from receiving an instruction that is tailored to their abilities, as instructors in

high-achieving classrooms delve deeper into topics and teach at a faster pace.

Our finding that students substantially benefit from high-achieving classrooms has im-

portant implications for current policy debates on the costs and benefits of school track-

ing. Indeed, separating students into achievement-based classrooms is highly controver-
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sial as opponents argue that it may exacerbate socioeconomic inequalities and question

its potential benefits. These arguments have pushed several school districts in the United

States and Canada to consider eliminating this type of tracking. While our results can-

not speak to whether tracking exacerbates socioeconomic inequalities, they do indicate that

high-achieving students may miss out on substantial benefits if they lose the opportunity to

attend high-achieving classrooms.
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A Figures

Figure 1: Test of running variable density smoothness around cutoff

Notes: Sample includes students who entered high school from 2015 to 2017. Bars represent frequency
distribution over a 5 point score range. The above figure implements manipulation testing procedures
using the local polynomial density estimators proposed in Cattaneo, Jansson and Ma (2020). We
estimate a p-value of 0.495 and are able to formally reject the existence of a discontinuity in the
density function at the cutoff.
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(a) High school entrance exam scores

(b) Gender

Figure 2: Test of Smoothness of Baseline Covariates

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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Figure 3: First Stage—Likelihood of Enrolling in a High-Achieving Classroom

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) 1st year Math grades

(b) 1st year Chinese grades

(c) 1st year English grades

Figure 4: First Year High School Grades

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) 2nd year Math grades

(b) 2nd year Chinese grades

(c) 2nd year English grades

Figure 5: Second Year High School Grades

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) 3rd year Math grades

(b) 3rd year Chinese grades

(c) 3rd year English grades

Figure 6: Third Year High School Grades

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) Standardized college entrance exam scores (b) Enroll in any Chinese university

(c) Enroll in a first-tier university (d) Enroll in a top 100 university (Project 211)

(e) Enroll in a top 40 university (Project 985)

Figure 7: Long-Run Educational Outcomes

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) Classroom peer quality

(b) Classroom size

(c) Classroom teacher quality

Figure 8: Mechanisms

Notes: Sample includes students who entered high school from 2015 to 2017. All figures represent
first-year tracking averages. Bins represent local averages over a 5 point score range. All figures are
drawn using a linear fit on either side of the cutoff. Classroom teacher quality is based on a teacher’s
rank which is classified as 3=senior rank, 2=first rank and 1= second rank. Teacher ranks are not
automatic and are generally based on teaching performance and publications.
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(a) Math Teacher Quality

(b) Chinese Teacher Quality

(c) English Teacher Quality

Figure 9: Average Classroom Teacher Quality By Main Subjects

Notes: Sample includes students who entered high school from 2015 to 2017. All figures represent
first-year tracking averages. Bins represent local averages over a 5 point score range. All figures are
drawn using a linear fit on either side of the cutoff. Classroom teacher quality is based on a teacher’s
rank which is classified as 3=senior rank, 2=first rank and 1= second rank. Teacher ranks are not
automatic and are generally based on teaching performance and publications.
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B Tables

Table 1: Summary statistics

Overall Sample Marginal Sample

(1) (2)

A) Student Characteristics

Proportion Male 0.532 0.529

High School Entrance Exam Score 790.5 796.9
(88.96) (88.65)

Classroom Placement Exam Score (Running Variable) 413.4 429.9
(56.49) (39.25)

Proportion of students in high-achieving classroom 0.137 0.173

Year 1 High School Scores (Standardized) 0.016 0.404

Year 2 High School Scores (Standardized) 0.005 0.353

Year 3 High School Scores (Standardized) -0.016 0.329

Proportion Selecting Science Track 0.871 0.898

College Entrance Exam Scores (Science Track) 510.77 522.10
(64.64) (61.63)

College Entrance Exam Scores (Arts Track) 527.46 541.48
(54.84) (54.94)

Proportion Not Sitting for College Entrance Exam 0.048 0.045

Proportion Enrolled in any Chinese University 0.900 0.925

Proportion Enrolled in Tier-1 University 0.644 0.720

Proportion Enrolled in Top-100 University 0.246 0.294

Proportion Enrolled in Top-40 University 0.116 0.144

Number of Students 2,273 1,788

B) Classroom-level Characteristics

Class Size 58.66 58.67
(7.07) (6.97)

Teacher Salary Scale 22.16 22.31
(7.90) ( 7.98)

Teacher Experience (Years) 16.84 16.92
(10.10) (10.21)

Proportion of Top-Teachers 0.258 0.264

Number of Classrooms 43 43
Number of Top-Classrooms 6 6

Notes: Sample in Column (1) includes all students who first enrolled in high school in the academic years 2015
to 2017. The marginal sample in Column (2) contains all students scoring within 75 points on either sides of
the classroom placement exam cutoff. High school test scores are standardized by year of entry (i.e. by cohort)
for each grade. Classroom-level characteristics represent averages across all three years of high school.
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Table 2: Baseline covariates balance tests

Outcome Student is High School Entrance
Male Exam Scores

(1) (2) (3) (4)

Estimated Discontinuity -0.031 -0.019 -0.063 -0.037
(0.085) (0.080) (0.083) (0.084)

Observations 1,207 1,207 837 837

Bandwidth CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform
Notes: Sample includes students who entered high school from 2015 to 2017. All estimates
are from local linear regressions using various bandwidths and kernel distributions. The
number of observations vary by outcome since the CCT bandwidth selector predicts dif-
ferent bandwidths depending on outcome. All regressions include year fixed effects. High
school entrance exam scores are standardized by year. Robust standard errors reported in
parentheses. *** p <0.01 ** p <0.05 * p <0.1

Table 3: First stage—Enrollment in a high-achieving classroom

Outcome Likelihood of Enrolling in
High-achieving Classroom

(1) (2)

Estimated Discontinuity 0.811*** 0.794***
(0.055) (0.051)

With Controls 0.787*** 0.775***
(0.051) (0.047)

Observations 1,174 1,174

Bandwidth CCT CCT
Kernel Triangular Uniform
Notes: Sample includes students who entered high school
from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distribu-
tions. The number of observations vary by outcome since
the CCT bandwidth selector predicts different bandwidths
depending on outcome. Controls include: gender, high
school entrance exam scores and year fixed effects. Ro-
bust standard errors reported in parentheses. *** p <0.01
** p <0.05 * p <0.1
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Table 4: Average test scores during three years of high school

Outcome Math Grades Chinese Grades English Grades
(1) (2) (3) (4) (5) (6)

A) First Year

Estimated Discontinuity 0.240** 0.274*** -0.018 0.072 -0.071 -0.018
(0.103) (0.090) (0.128) (0.114) (0.125) (0.113)

With Controls 0.231** 0.270*** -0.031 0.055 -0.095 -0.069
(0.096) (0.084) (0.0116) (0.104) (0.111) (0.101)

Observations 1,111 1,111 969 969 1,165 1,165

B) Second Year

Estimated Discontinuity 0.270* 0.316** 0.209 0.278** 0.041 0.153
(0.145) (0.127) (0.150) (0.140) (0.113) (0.109)

With Controls 0.267* 0.312** 0.200 0.261** 0.010 0.120
(0.140) (0.124) (0.136) (0.129) (0.107) (0.102)

Observations 814 814 726 726 1,084 1,084

C) Third Year

Estimated Discontinuity 0.246* 0.253* 0.131 0.173 0.060 0.090
(0.143) (0.130) (0.140) (0.135) (0.114) (0.103)

With Controls 0.242* 0.256** 0.120 0.160 0.043 0.065
(0.143) (0.125) (0.136) (0.132) (0.108) (0.098)

Observations 769 769 742 742 1,162 1,162

Bandwidth CCT CCT CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. The number of observations vary by outcome since
the CCT bandwidth selector predicts different bandwidths depending on outcome. Controls include: gender, high
school entrance exam scores and year fixed effects. Test scores are standardized by subject-year in year 1 and
subject-year-track in years 2 and 3. Robust standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p
<0.1
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Table 5: Long run educational outcomes

Outcome College Entrance Enroll in Enroll in Enroll in Enroll in
Exam Scores Any University First-Tier University Top-100 University Top-40 University
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Estimated Discontinuity 0.278** 0.284** -0.005 0.013 0.018 0.051 0.165* 0.186** 0.062 0.093
(0.139) (0.135) (0.030) (0.033) (0.058) (0.055) (0.085) (0.076) (0.087) (0.078)

With Controls 0.268** 0.278** -0.010 -0.001 0.017 0.044 0.172** 0.189** 0.066 0.095
(0.134) (0.132) (0.030) (0.031) (0.058) (0.055) (0.083) (0.075) (0.084) (0.076)

IV Estimate (With Controls) 0.349* 0.354** -0.014 -0.001 0.023 0.057 0.225** 0.241** 0.087 0.125
(0.180) (0.171) (0.040) (0.041) (0.078) (0.071) (0.110) (0.097) (0.109) (0.100)

Observations 1,231 1,231 926 926 815 815 1,146 1,146 973 973

Bandwidth CCT CCT CCT CCT CCT CCT CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear regressions using various bandwidths
and kernel distributions. The number of observations vary by outcome since the CCT bandwidth selector predicts different bandwidths depending on
outcome. Controls include: gender, high school entrance exam scores and year fixed effects. College Entrance Exam scores are standardized by year and
track. Robust standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table 6: Robustness check—Selection issues

Outcome Selection Out of Selection Into
College Entrance Exam Science Track

(1) (2) (3) (4)

Estimated Discontinuity 0.043 0.037 0.007 0.014
(0.039) (0.035) (0.043) (0.038)

Observations 873 873 997 997

Bandwidth CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform
Notes: Sample includes students who entered high school from 2015 to 2017. All estimates
are from local linear regressions using various bandwidths and kernel distributions. The
number of observations vary by outcome since the CCT bandwidth selector predicts different
bandwidths depending on outcome. All regressions include controls for gender, high school
entrance exam scores and year fixed effects. Robust standard errors reported in parentheses.
*** p <0.01 ** p <0.05 * p <0.1

Table 7: Mechanisms

Outcome Classroom Classroom Classroom
Peer Quality Size Teacher Quality

(1) (2) (3) (4) (5) (6)

Estimated Discontinuity 1.078*** 1.078*** -3.37** -2.94** 0.360*** 0.368***
(0.086) (0.080) (1.50) (1.35) (0.045) (0.040)

With Controls 1.031*** 1.048*** -3.92*** -3.28** 0.404*** 0.409***
(0.073) (0.069) (0.971) (0.890) (0.035) (0.032)

IV Estimate (With Controls) 1.345*** 1.372*** -5.19*** -4.31*** 0.510*** 0.512***
(0.040) (0.036) (1.311) (1.20) (0.028) (0.026)

Observations 835 835 737 737 1,325 1,325

Bandwidth CCT CCT CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. The number of observations vary by outcome since the
CCT bandwidth selector predicts different bandwidths depending on outcome. Controls include: gender, high school
entrance exam scores and year fixed effects. All class-level mechanisms are estimated in the first year of tracking.
Peer quality is standardized and based on students’ performance in high school entrance exam. Teacher quality is
standardized and based on based on teachers’ rank which is classified as 3=senior rank, 2=first rank and 1= second
rank. Teacher ranks are not automatic and are generally based on teaching performance and publications. Robust
standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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C Appendix Figures

(a) Math college entrance exam score (b) Main subjects college entrance exam score

(c) Chinese college entrance exam score (d) English college entrance exam score

Figure A1: College Entrance Exam Scores by Subject

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
Main subject scores are physics, chemistry, and biology for the science track and history, politics, and
geography for the arts track.
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(a) Likelihood of opting out of College Entrance Exam

(b) Selection into science concentration in second year of high school

Figure A2: Robustness Check—Selection issues

Notes: Sample includes students who entered high school from 2015 to 2017. Bins represent local
averages over a 5 point score range. All figures are drawn using a linear fit on either side of the cutoff.
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(a) Binary definition of teacher quality

(b) Teacher quality based on salary scale

(c) Teacher quality based on years of experience

Figure A3: Alternative Definitions of Teacher Quality

Notes: Sample includes students who entered high school from 2015 to 2017. All figures represent
mechanisms from first year tracking. Bins represent local averages over a 5 point score range. All
figures are drawn using a linear fit on either side of the cutoff. A teacher’s rank is generally classified
as 3=senior rank, 2=first rank and 1= second rank.Our binary definition of teacher quality defines
senior rank teachers as top and first and second rank teachers as non-top. The teacher salary scale
ranges from 9 to 40 with 40 being the highest.
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D Appendix Tables

Table A1: Baseline covariates balance tests using different bandwidths

(1) (2) (3) (4) (5) (6)

Student is male -0.048 -0.026 -0.048 -0.057 -0.053 -0.048
(0.066) (0.061) (0.056) (0.053) (0.053) (0.051)

High School Entrance
Exam Scores 0.002 0.026 0.007 -0.001 0.008 0.039

(0.069) (0.076) (0.065) (0.073) (0.066) (0.074)

Observations 1,245 1,245 1,788 1,788 2,092 2,092

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform
Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. All regressions include year fixed effects. High school
entrance exam scores are standardized by year. Robust standard errors reported in parentheses. *** p <0.01 ** p
<0.05 * p <0.1

Table A2: First stage—Likelihood of enrolling in a high-achieving classroom using different
bandwidths

(1) (2) (3) (4) (5) (6)

First Stage

Estimated Discontinuity 0.775*** 0.786*** 0.788*** 0.798*** 0.794*** 0.800***
(0.041) (0.036) (0.035) (0.031) (0.033) (0.031)

With Controls 0.766*** 0.781*** 0.782*** 0.794*** 0.790*** 0.796***
(0.040) (0.035) (0.034) (0.031) (0.032) (0.030)

Observations 1,245 1,245 1,774 1,774 2,083 2,083

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform
Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear regressions
using various bandwidths and kernel distributions. Controls include: gender, high school entrance exam scores and year
fixed effects. Robust standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A3: Average test scores during 1st year of high school using different bandwidths

(1) (2) (3) (4) (5) (6)

A) Math Grades

Estimated Discontinuity 0.204*** 0.258*** 0.251*** 0.284*** 0.275*** 0.322***
(0.078) (0.070) (0.066) (0.060) (0.061) (0.058)

With Controls 0.209*** 0.258*** 0.254*** 0.286*** 0.278*** 0.319***
(0.074) (0.067) (0.062) (0.058) (0.059) (0.056)

B) Chinese Grades

Estimated Discontinuity 0.051 0.138 0.131 0.191** 0.161** 0.204***
(0.101) (0.092) (0.085) (0.078) (0.080) (0.076)

With Controls 0.036 0.127 0.108 0.161** 0.135* 0.177**
(0.093) (0.086) (0.079) (0.074) (0.074) (0.072)

C) English Grades

Estimated Discontinuity -0.005 0.001 0.031 0.067 0.065 0.102
(0.089) (0.080) (0.075) (0.069) (0.070) (0.066)

With Controls -0.041 -0.020 -0.003 0.027 0.027 0.073
(0.083) (0.075) (0.069) (0.065) (0.064) (0.062)

Observations 1,225 1,225 1,758 1,758 2,052 2,052

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. Controls include: gender, high school entrance exam
scores and year fixed effects. Test scores are standardized by subject-year. Robust standard errors reported in
parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A4: Average test scores during 2nd year of high school using different bandwidths

(1) (2) (3) (4) (5) (6)

A) Math Grades

Estimated Discontinuity 0.209** 0.274*** 0.282*** 0.340*** 0.320*** 0.349***
(0.098) (0.087) (0.082) (0.075) (0.076) (0.072)

With Controls 0.210** 0.270*** 0.277*** 0.333*** 0.314*** 0.341***
(0.095) (0.085) (0.080) (0.074) (0.075) (0.071)

B) Chinese Grades

Estimated Discontinuity 0.197* 0.228** 0.303*** 0.402*** 0.363*** 0.432***
(0.107) (0.100) (0.091) (0.086) (0.086) (0.083)

With Controls 0.177* 0.216** 0.279*** 0.373*** 0.336*** 0.405***
(0.100) (0.094) (0.085) (0.081) (0.080) (0.078)

C) English Grades

Estimated Discontinuity 0.016 0.011 0.046 0.084 0.085 0.138*
(0.094) (0.086) (0.079) (0.075) (0.074) (0.071)

With Controls -0.020 -0.010 0.011 0.048 0.050 0.104
(0.089) (0.081) (0.075) (0.072) (0.071) (0.069)

Observations 1,218 1,218 1,745 1,745 2,042 2,042

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. Controls include: gender, high school entrance
exam scores and year fixed effects. Test scores are standardized by subject-year and track. Robust standard errors
reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A5: Average test scores during 3rd year of high school using different bandwidths

(1) (2) (3) (4) (5) (6)

A) Math Grades

Estimated Discontinuity 0.206** 0.283*** 0.283*** 0.363*** 0.330*** 0.378***
(0.099) (0.088) (0.083) (0.077) (0.078) (0.074)

With Controls 0.217** 0.280*** 0.286*** 0.363*** 0.333*** 0.377***
(0.095) (0.085) (0.080) (0.075) (0.075) (0.073)

B) Chinese Grades

Estimated Discontinuity 0.088 0.142 0.172** 0.248*** 0.228*** 0.299***
(0.101) (0.094) (0.088) (0.084) (0.083) (0.081)

With Controls 0.069 0.127 0.149* 0.220*** 0.202** 0.273***
(0.098) (0.092) (0.085) (0.082) (0.081) (0.079)

C) English Grades

Estimated Discontinuity 0.029 0.024 0.057 0.087 0.090 0.144**
(0.094) (0.084) (0.079) (0.073) (0.073) (0.069)

With Controls 0.003 0.007 0.028 0.051 0.057 0.107
(0.091) (0.080) (0.076) (0.070) (0.070) (0.067)

Observations 1,197 1,197 1,711 1,711 2,005 2,005

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. Controls include: gender, high school entrance
exam scores and year fixed effects. Test scores are standardized by subject-year and track. Robust standard errors
reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A6: College entrance exam scores by subject

Outcome Math Score Main Subject Scores Chinese Score English Score
(1) (2) (3) (4) (5) (6) (7) (8)

Estimated Discontinuity 0.300** 0.350*** 0.306** 0.345** 0.056 0.073 0.074 0.135
(0.128) (0.135) (0.152) (0.145) (0.148) (0.161) (0.136) (0.131)

With Controls 0.307** 0.358*** 0.305** 0.341** 0.041 0.057 0.033 0.098
(0.120) (0.130) (0.146) (0.141) (0.147) (0.160) (0.130) (0.126)

IV Estimate
(With Controls) 0.399** 0.460*** 0.396** 0.437** 0.054 0.072 0.044 0.126

(0.161) (0.169) (0.195) (0.185) (0.191) (0.204) (0.169) (0.163)

Observations 1,225 1,225 1,248 1,248 1,253 1,253 1,191 1,191

Bandwidth CCT CCT CCT CCT CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear regressions using various band-
widths and kernel distributions. The number of observations vary by outcome since the CCT bandwidth selector predicts different bandwidths
depending on outcome. Controls include: gender, high school entrance exam scores and year fixed effects. All scores are standardized by year
and track. Main subject scores are physics, chemistry, and biology for the science track and history, politics, and geography for the arts track.
Robust standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A7: Long run educational outcomes using different bandwidths

(1) (2) (3) (4) (5) (6)
A) College
Entry Exam Scores

Estimated Discontinuity 0.170 0.168* 0.186** 0.235*** 0.216** 0.259***
(0.109) (0.096) (0.091) (0.085) (0.085) (0.082)

With Controls 0.162 0.164* 0.178** 0.228*** 0.210** 0.252***
(0.106) (0.094) (0.089) (0.084) (0.083) (0.081)

IV Estimate (With Controls) 0.215 0.212* 0.231** 0.290*** 0.269** 0.319***
(0.144) (0.123) (0.117) (0.108) (0.108) (0.103)

B) Enroll in
any Chinese University

Estimated Discontinuity -0.007 -0.007 -0.014 -0.013 -0.014 -0.022
(0.024) (0.023) (0.021) (0.020) (0.020) (0.020)

With Controls -0.004 -0.000 -0.009 -0.008 -0.009 -0.015
(0.024) (0.022) (0.020) (0.020) (0.019) (0.020)

IV Estimate (With Controls) -0.006 -0.000 -0.012 -0.010 -0.012 -0.020
(0.031) (0.029) (0.026) (0.025) (0.025) (0.025)

C) Enroll in
First-Tier University

Estimated Discontinuity 0.035 0.021 0.006 -0.006 -0.004 -0.019
(0.044) (0.041) (0.037) (0.035) (0.035) (0.033)

With Controls 0.040 0.031 0.014 0.002 0.003 -0.010
(0.044) (0.041) (0.037) (0.035) (0.035) (0.033)

IV Estimate (With Controls) 0.053 0.040 0.018 0.003 0.004 -0.013
(0.059) (0.053) (0.048) (0.044) (0.044) (0.042)

D) Enroll in
Top 100 University

Estimated Discontinuity 0.282** 0.325** 0.150*** 0.182*** 0.176*** 0.221***
(0.067) (0.059) (0.056) (0.050) (0.052) (0.049)

With Controls 0.125* 0.132** 0.157*** 0.186*** 0.182*** 0.224***
(0.066) (0.058) (0.055) (0.050) (0.052) (0.048)

IV Estimate (With Controls) 0.166* 0.171** 0.203*** 0.237*** 0.233*** 0.284***
(0.088) (0.076) (0.073) (0.064) (0.067) (0.062)

E) Enroll in
Top 40 University

Estimated Discontinuity 0.047 0.092* 0.108** 0.152*** 0.134*** 0.172***
(0.062) (0.056) (0.053) (0.048) (0.049) (0.046)

With Controls 0.048 0.092* 0.108** 0.153*** 0.135*** 0.173***
(0.061) (0.055) (0.052) (0.047) (0.049) (0.046)

IV Estimate (With Controls) 0.064 0.119* 0.140** 0.194*** 0.172*** 0.219***
(0.081) (0.071) (0.067) (0.060) (0.063) (0.059)

Observations 1,224 1,224 1,189 1,189 1,216 1,216

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All esti-
mates are from local linear regressions using various bandwidths and kernel distributions.
Controls include: gender, high school entrance exam scores and year fixed effects. College
Entrance Exam scores are standardized by year and track. Robust standard errors reported
in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A8: Robustness check—Selection issues using different bandwidths

(1) (2) (3) (4) (5) (6)

Selection Out Of
College Entrance Exam 0.026 0.020 0.018 0.010 0.011 0.003

(0.027) (0.023) (0.023) (0.022) (0.021) (0.021)

Selection Into
Science Concentration 0.027 0.024 0.018 0.002 0.008 0.005

(0.030) (0.027) (0.025) (0.023) (0.022) (0.021)

Observations 1,224 1,224 1,756 1,756 2,051 2,051

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. All regressions include controls for gender, high
school entrance exam scores and year fixed effects. Robust standard errors reported in parentheses. *** p <0.01
** p <0.05 * p <0.1
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Table A9: Mechanisms using different bandwidths

(1) (2) (3) (4) (5) (6)

A) Class Peer
Quality

Estimated Discontinuity 1.063*** 1.091*** 1.107*** 1.146*** 1.134*** 1.161***
(0.063) (0.056) (0.054) (0.048) (0.050) (0.047)

With Controls 1.045*** 1.083*** 1.094*** 1.138*** 1.123*** 1.155***
(0.057) (0.051) (0.049) (0.046) (0.047) (0.045)

IV Estimate
(With Controls) 1.365*** 1.386*** 1.399*** 1.432*** 1.423*** 1.450***

(0.032) (0.028) (0.026) (0.023) (0.023) (0.021)

B) Class Size

Estimated Discontinuity -2.409** -1.676* -1.976** -1.668** -1.751** -1.526*
(1.016) (0.926) (0.885) (0.814) (0.849) (0.811)

With Controls -2.790*** -2.035*** -2.220*** -1.796*** -1.914*** -1.583***
(0.716) (0.660) (0.624) (0.585) (0.600) (0.585)

IV Estimate
(With Controls) -3.643*** -2.605*** -2.839*** -2.261*** -2.425*** -1.988***

(0.946) (0.851) (0.805) (0.741) (0.765) (0.738)

C) Class Teacher
Quality

Estimated Discontinuity 0.385*** 0.396*** 0.384*** 0.377*** 0.380*** 0.372***
(0.041) (0.036) (0.033) (0.030) (0.030) (0.029)

With Controls 0.402*** 0.405*** 0.403*** 0.399*** 0.402*** 0.401***
(0.030) (0.027) (0.025) (0.023) (0.023) (0.021)

IV Estimate
(With Controls) 0.519*** 0.515*** 0.513*** 0.501*** 0.506*** 0.502***

(0.028) (0.025) (0.022) (0.020) (0.020) (0.019)

Observations 1,245 1,245 1,788 1,788 2,092 2,092

Bandwidth 50 75 100
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local
linear regressions using various bandwidths and kernel distributions. Controls include: gender, high school
entrance exam scores and year fixed effects. All class-level mechanisms are estimated in the first year of
tracking. Peer quality is standardized and based on students’ performance in high school entrance exam.
Teacher quality is standardized and based on based on teachers’ rank which is classified as 3=senior rank,
2=first rank and 1= second rank. Teacher ranks are not automatic and are generally based on teaching
performance and publications. Robust standard errors reported in parentheses. Robust standard errors
reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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Table A10: Teacher quality by subject

Outcome Mathematics Chinese English
Teacher Quality Teacher Quality Teacher Quality
(1) (2) (3) (4) (5) (6)

Estimated Discontinuity 1.937*** 1.809*** 0.203* 0.240** 0.886*** 0.879***
(0.139) (0.123) (0.116) (0.111) (0.125) (0.114)

With Controls 1.943*** 1.814*** 0.229** 0.259** 0.974*** 0.986***
(0.138) (0.124) (0.113) (0.109) (0.103) (0.101)

IV Estimate (With Controls) 2.467*** 2.344*** 0.278** 0.310** 1.255*** 1.263***
(0.172) (0.154) (0.132) (0.124) (0.114) (0.112)

Observations 801 801 1,100 1,100 1,147 1,147

Bandwidth CCT CCT CCT CCT CCT CCT
Kernel Triangular Uniform Triangular Uniform Triangular Uniform

Notes: Sample includes students who entered high school from 2015 to 2017. All estimates are from local linear
regressions using various bandwidths and kernel distributions. The number of observations vary by outcome
since the CCT bandwidth selector predicts different bandwidths depending on outcome. Controls include:
gender and year fixed effects. Teacher quality is estimated in the first year of tracking. Teacher quality is
standardized and based on based on teachers’ rank which is classified as 3=senior rank, 2=first rank and 1=
second rank. Teacher ranks are not automatic and are generally based on teaching performance and publications.
Robust standard errors reported in parentheses. *** p <0.01 ** p <0.05 * p <0.1
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