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Abstract

Understanding peer effects is critical to evaluating the effect of persistent public

school segregation on the achievement of white and nonwhite students. Using a unique

panel data set of North Carolina public elementary school students, I estimate a model

of achievement production that incorporates heterogeneous responses by students at

different points of the achievement distribution, allows peer spillovers to vary across

races and allows students to form different race-based reference groups within the

classroom. I find evidence of stronger peer influences within reference groups than

across reference groups and the magnitude of these peer influences varies substantially

across percentiles of the achievement distribution. I apply my results to evaluate the

distributional effects of alternative classroom assignment policies. Desegregating peer

groups leads to small improvements in the achievement gap across the achievement

distribution.
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1 Introduction

Despite decades of reform that helped to equalize educational opportunities across races,

a sizable racial achievement gap persists. For instance, the 2000 National Assessment of

Educational Progress reports that by the end of grade 4, black and Hispanic students are

already two years behind their white peers. Though the determinants of this striking gap

remain a puzzle, the persistent segregation of public schools is frequently considered to be

a contributing factor. Despite the mixed evidence in the literature,1 policy makers often

advocate desegregation as a means of narrowing the gap.2 This could occur through several

channels, such as the redistribution of resources or the creation of “better” peer groups. De-

spite notable differences in predominantly white and predominantly nonwhite public schools,

the evidence suggests that resource disparities explain little, if any, of the achievement gap.3

Thus, I focus on the latter channel, isolating the effect of racially diverse classroom peer

groups on the achievement of white and nonwhite students.

Creating racially diverse peer groups could help narrow the gap if lower-achieving non-

white students benefit from being grouped with higher-achieving white peers. However,

benefits could be muted if students form different race-based reference groups within the

classroom.4 Therefore, analyzing the effects of racial diversity requires a deeper understand-

ing of peer effects in the classroom and, in particular, how these peer effects may vary by race

and across the percentiles of the achievement distribution. The first challenge, which Manski

(1993) describes as the reflection problem, lies in separating the effect of peer characteristics

from the effect of peer actions and the overall effect of peers from unobserved group effects.

The second challenge lies in developing an identification and estimation strategy that is suf-

ficiently flexible to capture heterogeneity in peer spillovers by race and across percentiles of

the achievement distribution. I address these challenges in the context of a unique panel

data set of standardized achievement scores for North Carolina public elementary school

1For instance, see Card and Rothstein (2005), Cook and Evans (2000), Guryan (2004), Hanushek et al.
(2004), Hoxby and Weingarth (2005) and Rivkin (2000).

2For example, in North Carolina, a state praised for its successful reform efforts, two of the ten “critical
reforms” aimed explicitly at narrowing the gap involve a restructuring of school/classroom assignment poli-
cies. They strongly encourage districts (1) to eliminate ability grouping (tracking) in elementary schools, a
policy that would effectively decrease within-school segregation, and (2) to desegregate schools. (Report of
the North Carolina Division of School Improvement.)

3For instance, see Jencks and Phillips (1998) for an overview.
4For instance, see Simmons (1999) and Fryer and Torelli (2005) for existing anecdotal and empirical

evidence.
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students in which peer groups are identified at the classroom level.

I begin by writing down a model of student achievement. The first order conditions

from this model show that a student’s own achievement is a function of the achievement of

his peers and exogenous characteristics of the student, his peers and the classroom. This

effectively generates what has traditionally been referred to as an “achievement production

function” with peer spillovers and reinterprets it as being an achievement best response

function.5 Placed in the context of optimizing behavior, identification then relies on finding

an exogenous shifter that affects peer achievement through students’ choices of “effort” that

are independent of a student’s own achievement.

I argue that the introduction of student accountability policies, which require that stu-

dents perform above a certain level in order to be automatically promoted to the next grade,

provide such an exogenous shift. Student accountability acts as a utility shifter by imposing

an additional cost on low performance, thus shifting the effort of those who perceive them-

selves to be in danger of failing under the new policy. Intuitively, peer spillovers are then

identified by contrasting classrooms with varying compositions of low-performers in grades

with and without student accountability policies. Put differently, I compare classrooms with

different portions of students that are held accountable to classrooms of similar composition

where students are not held accountable. After controlling for arguably the most impor-

tant source of unobserved group effects, teacher quality, through teacher fixed effects, the

central identifying assumption is then that the percentage of students held accountable is

independent of the remaining unobserved group effect. I take considerable care to describe

the conditions under which this assumption holds.

Extending the identification strategy to allow peer effects to vary by race is relatively

straightforward since the percentage of peers of a given race that are held accountable varies

across classrooms. However, a remaining concern is heterogeneity in responses to peers based

on individual characteristics that are unobserved to the econometrician, such as ability.

To illustrate, suppose low-achieving students respond relatively more to increases in peer

achievement than high-achieving students. Abstracting from race-specific peer effects for

the moment, this would suggest that a linear-in-means model would understate the effect

of desegregating peer groups since nonwhite students are more heavily concentrated in the

lower tails of the achievement distribution. In fact, by assuming a common treatment effect,

5See Hanushek et al. (2003) for a detailed discussion of educational achievement production functions
with peer effects.
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the linear-in-means model predicts that no matter how students are assigned to peer groups

average achievement remains the same. Thus, capturing heterogeneity in responses to peers

across the percentiles of the achievement distribution provides a much richer picture of the

equity and efficiency tradeoffs associated with alternative grouping strategy. 6

The complication introduced by allowing peer spillovers to vary by the percentiles of the

achievement distribution is nontrivial since I need to allow the best response function to

be nonseparable in the residual. Nonseparability presents challenges at each stage, partic-

ularly in specifying an informational structure for the model that is both reasonable and

yields a tractable estimator.7 I make use of the techniques developed in the recent litera-

ture on endogenous quantile instrumental variable models.8 In particular, to capture the

distributional effect of peers I make assumptions so that Imbens and Newey (2003)’s control

function approach to estimating quantile treatment effects can be applied to a simultaneous-

move game of incomplete information. The quantile approach also provides new insight on

academic tracking, isolating the distributional effect of peers from resource effects that are

often confounded in tracking studies.9

A central finding of this paper is that peer spillovers are stronger within race than across

races and vary considerably across the percentiles of the achievement distribution. I find

diminishing marginal returns to white peer achievement for whites and weakly increasing

marginal returns to nonwhite peer achievement for nonwhites. Endogenous effects appear

to be much larger than exogenous effects. This is not surprising given that endogenous

effects include a social multiplier, whereby increasing the achievement for a given student

has positive spillovers for the achievement of his peers, which in turn feeds back to his own

achievement.

I apply the estimates of peer spillovers to assess the effect of desegregating peer group

on the achievement of different student types, particularly developing implications for the

6The importance of functional form assumptions for determining optimal classroom assignment in the
presence of peer effects is also highlighted in a theoretical study by Arnott and Rowse (1987).

7On the other side, it is worth pointing out that only a very narrow set of assumptions yield a linear-in-
means best response function that is additively separable in the residual.

8See Abadie et al. (2002), Chernozhukov and Hansen (2005), Chesher (2003), Honoré and Hu (2004),
Imbens and Newey (2003), and Ma and Koenker (2004).

9In a synthesis of the vast literature on ability tracking, Slavin (1990) concludes that tracking is generally
ineffective for raising the achievement of both high- and low-ability students. Figlio and Page (2002) find
that after correcting for selection into schools, there is no evidence that low-ability students are harmed by
being grouped together.
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achievement gap. First, I consider implications of merging a predominantly white high-

achieving school district (Chapel Hill) with a neighboring lower-achieving racially diverse

district (Durham). Desegregating peer groups across the two districts leads to small im-

provements in the achievement gap across the percentiles of the achievement distribution,

with slightly larger gains at the middle percentiles. Then, I quantify the achievement pre-

mium associated with “better” peer groups in a context where general equilibrium sorting

effects are unlikely to be important, i.e., for the case of moving a student from Durham to

Chapel Hill.

2 Data

I use administrative data for North Carolina public school students from the academic years

1994-95 to 2002-03.10 Beginning in Spring 1995, students in grades 3 to 8 were administered

standardized exams in reading and math. I focus on reading test scores.11 The range of test

scores varies considerably across grades and years, as does the cutoff for Achievement Level

III, the level designated as passing the exam. To make scores in a given grade comparable

across years, I take the deviation of the raw scores from the cutoff value for passing and

normalize them to have mean 0 and standard deviation 1 for each grade over the whole

period. Suppose yigt denotes the raw test score for student i in grade g at time t, and y
(3)
gt

denotes the cutoff for Achievement Level III. The standardized score, Yigt, is constructed as

follows:

Yigt =
(yigt − y

(3)
gt )− 1

N
1
T

∑
i

∑
t(yigt − y

(3)
gt )

SDg(yigt − y
(3)
gt )

,

where SDg(yigt − y
(3)
gt ) denotes the standard deviation for a given grade over all years.

I define nonwhite students to be black or Hispanic; all other students are white. A unique

feature of these data is that each student record is linked to a teacher identification number.

This permits the identification of classroom peer groups for grades where student instruction

10I would like to thank the North Carolina Education Research Data Center
(http://www.pubpol.duke.edu/centers/child/nceddatacenter.html) for providing the data. The individual
level student test data are confidential, but some of the aggregate data and enrollment data are publicly
available at the North Carolina Public Schools web site, http://www.ncpublicschools.org/reportstats.html.

11As discussed in Section 4.3, I have data on free reading time, which offers a means of controlling for
heterogeneity in reading ability that is unobserved to the econometrician. Since no equivalent measure exists
in the data to proxy for math ability, reading test scores are a natural focus.
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takes place primarily within self-contained classrooms. Beginning in middle school, it is

frequently the case that students have different teachers (and potentially different peers) for

each subject. I focus on elementary students in grades 3 through 5, where the teacher ID

can reliably identify the classroom peer group.12 Peer variables are then constructed at the

classroom level, where the peer average for an individual student i is for all the students in

i’s classroom other than i.

Another useful feature of this data set is that it tracks students over time as long as they

remain within the North Carolina public school system. Each student record is further linked

to a grade within an identifiable school in an identifiable district. Included in the data are

background characteristics, such as race, sex, parent’s education,13 and whether the student

receives a free or reduced-price lunch,14 along with some information about student leisure

time allocation, such as time spent reading for fun and hours spent watching television.15

However, since leisure time allocation is not collected prior to the 1998-99 school year,

earlier years are dropped from the sample. Even after these restrictions, the sample remains

very large with just under 1 million student-year observations. Table 1 provides summary

statistics on the achievement, background characteristics and peer groups for students in the

restricted sample.

Table 2 reveals that there are notable disparities in the background characteristics and

achievement of white and nonwhite students in the sample. On average, whites have higher

achievement than nonwhites, .36 compared to -.30. They also have better-educated parents

12I drop the bottom and top percentile of class sizes. Because classes are not to exceed 25 students, the top
percentile of class sizes (30 or more) are likely to have additional teachers. The bottom percentile (smaller
than 9) may be small groups of students taking makeup exams or special education classes. However, the
results are robust to including the top and bottom percentile.

13Data on parental education are collected differently across schools. In some cases, particularly in ele-
mentary school, the teacher provides a best guess of the parental education of the students. I assume that
parental education is fixed over the period a student is in grades 3 to 8. To correct for potential measurement
errors in reporting, I use data from grades 6 to 8, when available, under the assumption that middle schoolers
are better able to report parental education. Otherwise, I take the most frequently reported value to be the
parental education for a given student. I divide parental education into three categories: (1) those who did
not obtain a high school degree, (2) those with at least a high school degree, but not a four-year degree (this
includes those who received two-year degrees or obtained some post-secondary vocational training) and (3)
those with at least a four-year degree (this includes those with graduate and professional degrees).

14This is a very noisy measure of income and highly correlated with parental education and race. For
these reasons, I do not use it in the regression analysis.

15Students are asked how many hours of television they watch in a given day and how much time they
spend reading for fun, which can serve as rough indicators of leisure choices. I take the midpoint of the range
of hours indicated as the response to multiple choice questions, and use this to approximate the hours spent
doing each of these activities.
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and are less likely to receive free/reduced-price lunches than nonwhites. Furthermore, whites

allocate more time to reading for fun and less time to watching television than nonwhites.

While disparities in background characteristics may explain some of the gap in achievement

between whites and nonwhites, another potentially important factor is their classroom peers.

As an indication of the extent of classroom segregation, only 24% of the peers of whites are

nonwhite, compared to 52% for nonwhites. Furthermore, by all traditional measures, whites

are in much “better” peer groups than nonwhites. On average, the classroom peers of whites

have better-educated parents, are less likely to receive a free/reduced-price lunch and have

higher achievement.

3 Model

The literature on peer spillovers in education production posits many different sources of peer

influence but ultimately focuses on a reduced-form setting in which a student’s achievement

is assumed to be a function of peer achievement and peer characteristics along with the

typical individual, teacher and resource inputs. In what follows, I describe a particular

model of peer spillovers that encompasses many of these channels and use it to motivate

a new approach to identification. I recast students as optimizing agents whose decisions

are influenced by their peers and these decisions, in turn, determine achievement in a given

peer group. I describe informational assumptions such that the first order conditions from

this model yield a reduced-form achievement best response function that is a more general

form of the familiar achievement production with peer spillovers that has traditionally been

estimated in the literature.

Section 3.1 describes the education technology and the preferences of students. Students

are assumed to play a simultaneous-move game of symmetric information. Section 3.2 de-

fines and describes the equilibrium to the game and the resulting equilibrium achievement

production function, i.e., the achievement realized under utility-maximizing effort.
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3.1 Primitives

Define a peer group to be a classroom of students in a particular time period.16 Let i =

1, ..., N index students in a given peer group. Achievement Yi ∈ R is the standardized

reading test score. The achievement production function is

Yi = g(ei, e−i; Si, θi). (3.1)

The choice variable of a student i is effort, which is chosen on the compact set ei ∈ [e, e].

It encompasses a variety of classroom behavior choices, such as how hard to work on class-

room assignments, cooperativeness and attention during lectures. The achievement of i is

determined both by his effort and the effort of his peers, e−i = (e1, ..., ei−1, ei+1, ...eN). Fur-

thermore, i’s achievement depends on state variables Si, which may include individual and

peer characteristics as well as classroom inputs such as teacher quality.

This production function allows two types of direct peer spillovers. First, as mentioned

above, peers may affect directly an individual’s achievement through their innate charac-

teristics (or exogenous effects), which enter through Si. Exogenous effects are the focus of

the literature on peer effects in education, which has found evidence of spillovers to peers’

race, sex, socioeconomic status or prior achievement, often thought to proxy for ability or

other unobservables. Second, peers may affect achievement through their actions or effort (or

endogenous effects). For instance, any one student’s choice to disrupt class takes productive

learning time away from all students in the classroom, resulting in lower achievement for

all.17

Finally, a student cannot perfectly predict his achievement on an exam, even after choos-

ing his own effort and observing the effort of his peers. For instance, the student may not

fully know his own ability. This is particularly likely for elementary schools students, given

their limited experience taking standardized exams. Furthermore, ability is relative, and

while a fourth grader may have some knowledge of his standing in the classroom, it would

be difficult for him to know how his ability compares to that of students in other schools.

Also, unpredictable random factors, such as how well he slept the night before, may affect a

16Because the focus is on interactions within a particular peer group, I suppress time and classroom
subscripts for the moment.

17Lazear (2001) presents such a model where the classroom learning environment is treated as a congestible
public good.
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student’s performance on a given test day. These types of unobservables are captured by θi,

which can be thought of as an ex post random shock to achievement. I allow for correlation

in these random shocks. For instance, construction outside the classroom on test day may

provide a distraction that negatively affects the performance of all students.

A student’s utility is defined

Ui = u(Yi, ci(ei, e−i); Si). (3.2)

Students derive utility from achievement and disutility from effort. Exerting effort is costly;

the costs are captured by the term ci(ei, e−i) with ∂ci(·)/∂ei ≥ 0. Utility is decreasing in

ci(·). Furthermore, preferences for achievement and effort are determined by state variables

Si. A student with highly educated parents may face higher expectations regarding academic

performance and thereby derive greater utility from high achievement relative to an otherwise

similar student with less educated parents. Education policymakers or teachers may also

play a role in determining preferences for achievement, through policies such as imposing

achievement standards for promotion to the next grade level or rewarding high performance.18

The utility function (like the production function) permits both exogenous and endoge-

nous peer effects. Peer characteristics may enter through the state variable Si. Furthermore,

the costs of effort include a “social component,” which captures an alternative source of the

endogenous peer effect, e−i. Intuitively, peer pressure imposes psychic costs to deviations

from the behavioral norm, leading students to seek to conform to the behavior of peers.

For instance, a student may prefer not to exert much effort in order to avoid earning the

derogatory title of “nerd.” However, being a nerd may entail no psychic costs in a classroom

full of nerds.19 This type of peer spillover has received a great deal of attention in the social

interactions literature.20

The vector of state variables S = (S1, ..., SN) is common knowledge to all students in

18Equivalently, one could think of Si as affecting the cost of effort. “Good” teachers make achievement
fun in the sense that effort is less costly.

19See Bishop et al. (2003) for a discussion of these types of peer spillovers, particularly in the high school
setting.

20See Brock and Durlauf (2001b), Graham (2004), and Sweeting (2004). An alternative model may have
the utility from achievement depend on the achievement of peers, i.e, students care more about whether they
perform better than others rather than how hard they work relative to others. Ultimately the implications
are similar, since this model would suggest that a given student is induced to exert more effort when his
peers are exerting more effort in order to maintain his rank in the classroom.
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the classroom, while (θi, θ−i) are observed ex post.21 Students possess a common prior on θ,

f(θi|S).22 Suppose θi is defined on the set Θ. Then the expected utility for a given level of

effort, (ei, e−i), is denoted as follows:

Ũi(ei, e−i; S) ≡
∫

Θ

Ui(ei, e−i; Si, θi)f(θi|S)dθi.

3.2 Equilibrium

A student chooses effort to maximize his expected utility conditional on his information set.

Let the superscript “∗” denote a utility-maximizing action. The best response e∗i (e−i; S) of

a student i to a given vector of peer effort is then:

e∗i (e−i; S) ∈ argmaxei
Ũi(ei, e−i; S). (3.3)

A pure strategy Nash equilibrium to the game involves everyone playing their best re-

sponses.

Definition 3.1 (Equilibrium). The vector e∗ ≡ (e∗1, ..., e
∗
N) is a pure strategy Nash equilib-

rium if and only if for every i in a given peer group e∗i solves (3.3).

To show that an equilibrium exists requires imposing additional assumptions on the

structure of the model. I begin with an ordinal concept of complementarities introduced by

Milgrom and Shannon (1994), which they show to be a necessary condition to obtain best

responses that are non-decreasing in peer effort and state variables. Let T be a partially

ordered set and h : A× T 7→ R, where A ≡ R. Throughout, I assume that ≤ partial orders

vectors according to the component-wise order, which is defined as follows:

Definition 3.2 (Component-wise order). For the vector t = (t1, ..., tn) ∈ Rn where ti ∈ R
for i = 1...n, t

′ ≤ t
′′

in Rn if t
′
i ≤ t

′′
i in R1 for i = 1...n.

Definition 3.3 (Single Crossing Property). A function h satisfies the single crossing prop-

erty in (a; t) if for a
′
> a

′′
and t

′
> t

′′
, h(a

′
, t

′′
) ≥ h(a

′′
, t

′′
) implies h(a

′
, t

′
) ≥ h(a

′′
, t

′
).

21Alternatively, (θi, θ−i) may in fact not be observed, but only inferred by the student after a level of
achievement is realized.

22An alternative model is one of private information. I can show that a simple model of private information
has similar implications to the symmetric information model described above.
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Assumption 3.1 (Single Crossing of Ex Ante Utility). Let Si be defined on the set S ⊂ Rd.

Ũ(ei, e−i; Si) satisfies single crossing in (i.) (ei; e−i) on [e, e]N , and (ii.) (ei, Si) on [e, e]× S
for every i.23

Holding the state variables fixed, single crossing in (ei; e−i) implies that if an individual

prefers to exert a higher level of effort when peers are exerting e
′′
−i < e

′
−i, then he will still

prefer to exert that higher level of effort when peers exert more effort, e
′
−i. A sufficient

condition such that this holds is ∂2Ũi/∂ei∂ej ≥ 0 for all j 6= i. Holding peer effort fixed,

consider the implications of imposing single crossing in the state variables. Single crossing

in (ei; Si) simply assumes that if the higher level of effort is preferred for a given level of

state variables, Si = S
′′
i , then the higher effort is also preferred for higher values of the state

variables, Si = Si
′ > S

′′
i . For example, suppose we compare two students, A and B, who are

similar in state variables except that A has better-educated parents. If B prefers e
′

to e
′′

where e
′
> e

′′
, then A will as well. This would follow if the marginal utility of achievement

were higher (or if the marginal cost of effort were lower) for the student with better-educated

parents.

Because best responses are monotonically increasing under Assumption 3.1, it follows

from Milgrom and Shannon (1994, Theorem 4) that an equilibrium to the game exists,

which is restated as:

Theorem 3.1 (Existence of Pure-Strategy Nash Equilibrium). Given that Assumption 3.1

holds, a pure strategy Nash equilibrium, as defined in 3.1, exists in non-decreasing strategies.

If effort were observable to the econometrician, the natural object of interest would be

the best response to peer effort. Unfortunately, effort is not observable. However, placing

the following monotonicity assumption on the achievement production function ensures that

the game in effort maps into a game in achievement that is observable to the econometrician.

Assumption 3.2 (Monotonicity in effort). Achievement production is strictly monotonic in

effort, i.e.,
∂g(·)
∂ei

> 0.

23Milgrom and Shannon (1994) show that single crossing may not be preserved under addition. A sufficient
condition for this assumption to hold is that the conditional distribution of θi is log-supermodular (i.e., types
are affiliated) and that ex post utility satisfies increasing differences.
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Definition 3.4 (Achievement Equilibrium). Given Assumption 3.2, the vector (Y ∗
1 , ..., Y ∗

N)

is a pure strategy Nash equilibrium if and only if for every i in a given peer group, Y ∗
i is

the achievement realized by exerting the effort e∗i that solves (3.3).

Theorem 3.2 (Existence of Achievement Equilibrium). Under Assumption 3.2, the game

in effort maps into a game in achievement, which can be represented as

Y ∗
i = q(Ỹ ∗

−i, Si, S−i, θi), (3.4)

where Ỹi =
∫

Θ
g(ei, e−i; Si, θi)f(θi|S)dθi.

See Appendix A.1 for proof. Equation 3.4 is similar in form to the production functions with

peer effects estimated in the literature. Observed achievement is a function of peer achieve-

ment, an individual’s own characteristics and classroom inputs (Si), peer characteristics

(S−i) and unobservables (θi).

4 Identification

A growing body of research treats the difficulties associated with identifying peer effects.24

The pioneering work of Manski (1993) presents two negative identification results for the

linear-in-means model. First, the effect of peer characteristics (exogenous peer effects) can-

not be separated from the effect of peer behaviors (endogenous peer effects). Second, social

effects (exogenous and endogenous) cannot be separated from unobserved group effects, or

correlated effects. The literature on peer effects in education simplifies the problem by

focusing on exogenous peers effects, while minimizing the importance of endogenous peer

effects in the context of achievement production.25 In contrast, the model presented in Sec-

tion 3 illustrates a potentially important role for contemporaneous spillovers in achievement

production.

If the social interactions take a nonlinear form as posited in this paper, Manski (1993)

first identification problem is alleviated, as illustrated by Brock and Durlauf (2001a) in the

24See Brock and Durlauf (2001b) for an overview.
25For example, Hanushek et al. (2003), Betts and Zau (2002), and Vigdor and Nechyba (2004) use variation

in grade and class peer composition respectively to study the effect of observed peer characteristics—race,
income and ability as measured by lagged achievement.
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discrete choice setting. However, while the discrete choice setting is nonlinear in nature,

assuming nonlinearities to obtain identification in the continuous choice setting considered

here is less palatable. Furthermore, even when the social effect is nonlinear, the second

problem of distinguishing unobserved group effects from social effects remains. Intuitively,

the problem is that similarity in outcomes could be a result of coordination on the part

of students or unobserved classroom inputs, such as teacher quality, which simultaneously

improve everyone’s outcomes.26

The reflection problem can be recast as a simultaneity problem. Because individual

and peer achievement are simultaneously determined in equilibrium, in the absence of an

exclusion restriction that shifts the achievement of the individual independently of his peers,

I cannot identify a causal effect of peers. In Section 4.1, I describe conditions for the existence

of a valid instrument in the context of the equilibrium model of achievement. Assumptions

are presented such that the peer effect is identified in a nonlinear setting, though these are

also sufficient to guarantee identification in the linear-in-means framework. Furthermore,

while the instrument helps alleviate endogeneity of peer achievement due to unobserved

group effects, I also include a direct control for teacher quality, one of the most salient

unobserved group effects in achievement production, by including teacher fixed effects.

Section 4.2 provides some background information and presents evidence in support of

the particular exclusion restriction used in this paper. Section 4.3 expands the argument to

consider identification when there exists a strategy-relevant individual characteristic that is

observed to the student and his peers, but not the econometrician (i.e., unobserved ability).

Finally, in Section 4.4, I discuss the implications of non-random assignment.

4.1 Simultaneity in Achievement

To discuss identification, it is useful to distinguish between the different components of the

state space. Let (Si, S−i) ≡ (Xi, X−i, Pi, K, µ), where Xi captures characteristics of i such

as race, sex, parental education, and ability, while X−i captures the characteristics of i’s

peers (i.e., exogenous effects). Pi captures an education policy that affects i’s utility from

26 Graham (2004) presents an innovative solution to this problem of unobservables, exploiting excess
variation in random assignment to large and small classrooms to identify the presence of social effects in
a linear-in-means setting, relying on an experimental setting where unobserved group effects are plausibly
random.
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achievement. It is discussed in Assumption 4.1 below. Besides the composition of the peer

group, classrooms are differentiated by characteristics (K, µ), which may capture classroom

resources, teacher quality, or overall classroom productivity. I assume that while K and µ

are observed by the students and therefore taken into account when choosing effort, µ is

unobserved to the econometrician (i.e., a correlated effect). Intuitively, µ can be thought

of as the part of classroom productivity not captured by teacher fixed effects (or teacher

quality), which are included in K. Thus, µ could describe the degree to which students get

along with the teacher or something more random like a flu outbreak that negatively affects

the achievement of all students in a classroom.

Let Ȳ ∗
−i capture expected average peer achievement and similarly, X̄−i, average peer char-

acteristics. The achievement best-response function is simplified to depend on the expected

average peer achievement and average peer characteristics, rather than the entire vector as

permitted in (3.4),27 i.e.,

Y ∗
i = q(Ȳ ∗

−i, Xi, X̄−i, Pi, K, µ, θi). (4.1)

As mentioned previously, an important aspect of this production function is that it is

permitted to be nonseparable in the error, which provides a much richer picture of the

distributional achievement tradeoffs that can be obscured in the linear context. I assume

that q(·) is strictly increasing in θi, a property that is satisfied by models that are additively

separable in the residual. Since the structural function q(·) is only identified up to positive

monotone transformations when the error is nonseparable, I follow the literature on quantile

treatment effects in assuming that θi is independently and identically distributed U(0, 1).

Since θi is inherently without units, assuming a uniform distribution simply pins down θ. In

contrast, the additive model normalizes θi to have the same units as Yi. By fixing θi = τ ,

Equation 4.1 describes the dependence of the τ th quantiles of the achievement distribution

on average expected peer achievement and covariates. Identification of q(·) is defined as

follows:

Definition 4.1 (Identification). The structural function q(·) is identified on the joint support

of (Y ∗
i , Ȳ ∗

−i, Xi, X̄−i, Pi, K), if there exists a unique q(·) that rationalizes F (Y ∗
i , Ȳ ∗

−i|Xi, X̄−i, Pi, K),

the observed joint distribution of achievement and peer achievement conditional on exogenous

state variables.

27This simplification is not necessary for identification. The argument follows through with some modifi-
cation when instead the peer effect is coming through a vector of moments of peer achievement.

13



The central problem in identifying the structural function (4.1) is that Y ∗
i and Ȳ ∗

−i are

simultaneously determined in equilibrium. Furthermore, they are a function of the the state

variable µ, which is unobserved by the econometrician. The solution that follows relies on

the existence of a valid exclusion restriction, which shifts the optimal behavior of peers

independently of µ. The following assumptions describe the properties of a valid exclusion

restriction and the other assumptions needed for identification of peer spillovers in the context

of the equilibrium model of classroom achievement production described in Section 3.

Assumption 4.1 (Utility Shifter). There exists a variable Pi that affects i’s utility from

effort (3.2), but does not directly affect achievement production (3.1).

Assumption 4.2 (Independence). Conditional on (Xi, X̄−i, K, µ),

θi is independent of (Pi, P̄−i).

Assumption 4.3 (Exclusion Restriction). Conditional on (Xi, X̄−i, K),

µ, θi are jointly independent of P̄−i.

Assumption 4.4 (Monotonicity of Peer Achievement). With probability one,

h(Xi, X̄−i, Pi, P̄−i, K, µ) is strictly monotonic in µ.

Assumption 4.5 (Independence of Residuals). Conditional on (Xi, X̄−i, K),

θi is independent of µ.

Assumptions 4.1 and 4.2 ensure that there is no direct effect of Pj on the equilibrium

achievement of i for any peer j 6= i, i.e., Equation (4.1) includes Pi but not Pj. To ensure

this, Pi cannot enter i’s achievement production directly (Assumption 4.1) because of the

direct spillovers from effort in achievement production. Intuitively, if Pj had a direct effect

on achievement production for student j, it would affect the achievement of his classmate

i 6= j because expected peer achievement net of other inputs serves as a proxy for direct

spillovers from unobserved peer effort in achievement production.

I argue that such a utility shifter exists in North Carolina’s accountability policies, which

require that students perform above a certain level on standardized End of Grade (EOG)

exams (Achievement Level III) in order to be automatically promoted to the next grade. To

be a valid exclusion restriction, the policy must not affect teacher incentives (because then

Pi would affect i’s achievement directly). This assumption seems reasonable in the present

context. Under the School Based Management and Accountability Program of 1996, bonuses
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for schools and teachers were awarded based on the criteria that not too many students

perform below Achievement Level III on the standardized EOG exams, which suggests that

teachers and schools had strong incentives to shift attention to low achievers well before the

introduction of student accountability.

To have any identifying power, the policy must also have different effects on students

within the same peer group. Intuitively, student accountability is likely to have a direct

effect on the effort of students “in danger of being retained,” but no direct effect on the effort

of those well above the threshold for passing. Students who performed below Achievement

Level III in the year before the standards were put in place are induced to exert more effort

to meet the requirement due to the increased cost of low achievement. On the other hand,

high achievers can effectively disregard the new standards because they would probably meet

the cut-off for passing even with minimal effort.

The independence of θi and Pi, P̄−i (Assumption 4.2) ensures that P−i does not en-

ter i’s expected utility through the distribution of θ, i.e., f(θj|Xj, X̄−j, K, µ, Pj, P̄−j) =

f(θj|Xj, X̄−j, K, µ). This ensures that i’s utility-maximizing effort is a function of Pi and not

P−i (i.e., e∗i = e∗i (e−i; Xi, X−i, K, µ, Pi)). Otherwise, P̄−i would enter i’s utility-maximizing

effort through his prediction of peer utility-maximizing effort. In the present context, this

means simply that the effect of the policy on the individual and his peers is independent of

the unobserved individual shock after controlling for characteristics that are observable at

the time the student makes his strategic choice. In other words, students in danger of being

retained under the policy draw from the same distribution of θ as similar students in similar

peer groups for whom the policy does not apply.

Given Assumptions 4.1 and 4.2, the system of response functions for students i = 1, ..., N

in a given peer group is then as follows:

Y ∗
1 = q(Ȳ ∗

−1, X1, X̄−1, P1, K, µ, θ1),

Y ∗
2 = q(Ȳ ∗

−2, X2, X̄−2, P2, K, µ, θ2),

...

Y ∗
N = q(Ȳ ∗

−N , XN , X̄−N , PN , K, µ, θN).

I assume that there exists some function h(·) that approximates the average expected value
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of peer achievement, such that

Ȳ ∗
−i = h(Xi, X̄−i, Pi, P̄−i, K, µ). (4.2)

Intuitively, expected peer achievement is a function of the state variables that are common

knowledge to all students in the peer group, including µ, which is unobservable to the econo-

metrician. If q(·) were linear-in-means, then I could solve explicitly for Ȳ ∗
−i as a function of

individual characteristics, average peer characteristics, and the shared components (K, µ).

With q(·) nonlinear, this assumption, while more restrictive, still offers a fairly flexible ap-

proximation of average expected peer achievement.

Equations 4.1 and 4.2 form a triangular system of equations. If the structural function

is restricted to be linear-in-means, these equations are comparable to the second and first

stages, respectively, of a two-stage least squares regression. For the peer effect to be iden-

tified, there needs to exist a valid exclusion restriction that enters Equation 4.2 but not

Equation 4.1 and is plausibly independent of the unobserved components, as described in

Assumption 4.3. The requirement of full independence is stronger than the mean indepen-

dence required for the linear-in-means context, but is a necessary trade-off for identification

of the production function under weaker functional form assumptions.

In the present context, Assumption 4.3 requires that the percentage of students in danger

of failing under the new standards for promotion be independent of µ and θi. Independence of

θi and P̄−i seems fairly straightforward. However, a particular concern is that µ and P̄−i are

not independent if teachers responded in some way to these new standards (for instance, by

shifting resources to low achievers) and that the unobserved classroom productivity µ and the

instrument are therefore correlated. I argued above that because student accountability was

preceded by school accountability, which already provided incentives for teachers to focus on

low achievers, the teacher incentives would not be affected. I discuss this assumption further

in Section 4.2.

For the structural function to be nonparametrically identified, I need to place one further

restriction on the structure of the reduced-form equation for average expected peer achieve-

ment (4.2), namely that it is strictly monotonic in the unobserved group effect as stated in

Assumption 4.4. Note that an important special case where this property is satisfied is in

models that assume additive separability in the unobserved components. To fix a value for

µ, I assume that it is distributed U(0, 1). Under the above assumptions, µ can be recovered
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from the first-stage regression as shown in Imbens and Newey (2003, Theorem 1) and stated

formally in the following theorem.

Theorem 4.1 (Identification of µ). Given Assumptions 4.3, 4.4 and µ ∼ U(0, 1),

FȲ ∗
−i|Xi,X̄−i,Pi,P̄−i

(Ȳ ∗
−i|Xi, X̄−i, Pi, P̄−i) = µ.

See Appendix A.1 for details.

Given that µ can be recovered from (4.2), it remains to be shown that the structural

function, q(·), is identified. This requires imposing the additional assumption, Assumption

4.5, that the unobserved group effect is independent of the individual type. Recall that the

individual shocks θi can be correlated within the classroom. This assumption just requires

that the state variable that is unobserved to the econometrician but observed to the students

is independent of the individual shock, which is fairly straightforward given that θi is realized

ex post.

Under Assumption 4.5, for values of θi = τ , the structural function q(·; τ) can be inter-

preted as a conditional quantile function that describes the dependence of the τ th quantile

of achievement on peer achievement conditional on observed state variables (Xi, X̄−i, K, Pi)

and the common component µ.

Theorem 4.2 (Identification of the Structural Function). Given Assumptions 4.2, 4.4, and

4.5, q(Ȳ ∗
−i, Xi, X̄−i, Pi, K, µ, θi) is identified on the joint support of (Ȳ ∗

−i, Xi, X̄−i, Pi, K, µ, θi).

See Appendix A.1 for details. The proof of this result follows from Imbens and Newey (2003,

Corollary 6). Intuitively, conditioning on the unobserved group effect µ controls for the

endogeneity of peer achievement, thus identifying the structural function.

4.2 Exclusion Restriction

In this section, I provide a little more background on North Carolina’s student accountability

policy and discuss the implications of Assumption 4.3. Student accountability began to take

effect for all fifth graders in the North Carolina public school system in 2001. Thus, fifth

graders prior to 2001 and fourth graders effectively act as two types of control groups. The
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standards are absolute, in the sense that they are not set such that a certain percentage of

students fails in a given year.28

As mentioned before, and important aspect of the identification argument is that ac-

countability has a different effect on students within the same classroom, i.e., affecting those

“in danger of failing.” The actual effect of student accountability on the distribution of

achievement for fifth graders in the largest North Carolina school district is shown in Fig-

ure 1. Comparing the year prior to accountability (2000) to the first year of accountability

(2001), we see that the lower tail of the distribution shifted toward the center while the

upper tail remained about the same, suggesting that low achievers responded to the threat

of retention.

Given the differential effect, if accountability itself were the instrument, I could plausibly

identify the peer effect for higher achievers (those not in danger of failing), but it would

not be possible to separate the direct effect of accountability on the achievement of those in

danger of failing from the endogenous peer effect. Because much of the current policy debate

centers around improving the performance of low achievers, such an instrument would not

be useful for answering some of the more pertinent questions.29 However, the model suggests

using an aggregate measure of the policy effect on peers (P̄−i) as the instrument. Intuitively,

classrooms with a larger percentage of students in danger of failing will experience a larger

shift in peer achievement as a result of student accountability. Such an effect is illustrated

in Figure 2, which compares the distribution of achievement in two districts with different

concentrations of low achievers. Though the size of the shift is different at all percentiles

of the achievement distribution, there was a large shift in both the upper and lower tails of

the distribution for the district with a high percentage of low achievers, while the shift in

the upper tail of the distribution was smaller for the district with a lower percentage of low

achievers.

Independence of P̄−i and µ (Assumption 4.3) may not hold if teachers or administrators

redistribute resources to low achievers as a result of student accountability. For instance, a

28In the short term, it is sufficient that low-achievers feel like there is an increased threat of retention
and not that retention rates actually increases. However, I do find that the retention rate for fifth graders
increased by 50% after student accountability policies were enacted (from .010 to .015). Over the same
period, retention of fourth graders only increased by 7% (from .015 to .016).

29Of course, the problem is solved if one is willing to assume that the marginal effect of peer achievement is
constant across percentiles of the achievement distribution. As this paper illustrates, making this assumption
is not very plausible assumption.
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teacher may choose to teach more to the low achievers as a result of the policy, suggesting

a direct effect of student accountability on achievement production. If this occurs, then

classes with higher percentages of low achievers may experience shifts in the achievement

distribution simply as a result of teachers devoting more time to low achievers and less time

to high achievers. As mentioned before, policies that were in place 5 years earlier already

provided teachers with incentives to shift attention to low achievers.

To provide further suggestive evidence in support of this argument, given that teachers

and schools are forward looking, we might expect these types of resource shifts to occur at

all grades. This does not appear to be the case. Returning to Figure 1, the distribution of

achievement for fourth graders, who were not held to the new accountability standards in

either year, remains almost identical across the two years. That said, to help ensure that the

change in achievement of the peer group is not due to shifts in the unobserved state variable

µ, I control for a direct effect of accountability on high- and low-performers by including a

quantile-specific shift in the achievement of students after accountability.30

A second related concern is that students may be reassigned to different classrooms as

a result of accountability. This might occur if parents become more concerned about the

threat of retention, and thus try to have their children placed in better classrooms, or if school

administrators determine that redistributing low achievers across classrooms can help lower

the probability of retention. If low achievers are being reassigned to classrooms in response

to student accountability, we should observe a shift in the dispersion of prior-year test scores

in peer groups. If parents or schools thought they could improve a low-performing student’s

achievement by placement with higher-achieving peers, then classrooms would become more

unequal, in the sense that there would be greater variation in prior test scores within the

class. As a measure of inequality, I calculate the Gini coefficient for fifth grade classrooms in

2000 and 2001. Then, I conduct a Kolmogorov-Smirnov test for the equality of distributions

of the Gini coefficients before and after accountability. Recovering an approximate p-value

of .19, I fail to reject that the distributions of the Gini coefficients are the same in the two

years.31

30As will be noted in Section 6, I find that accountability has only a small direct effect on achievement in
the linear-in-means model, but has the predicted positive and significant effect on those in danger of failing,
consistent with the intuition that accountability acts primarily as a preference shifter rather than a direct
input to production.

31It could also be the case that shifts occurred at the school level, i.e., districts reassigned students across
schools. After accounting for changes in inequality at the school level by taking the ratio of the Gini coefficient
at the classroom level to that at the school level, I also fail to reject that the distributions of the ratios are
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4.3 Ability

The identification of peer spillovers is further complicated if the student’s strategic effort

choice is based on a characteristic that is unobserved to the econometrician but observed

to the student and his peers. I loosely term this characteristic “observed ability” (Ai) or

accumulated human capital, since it is observed by the student, to differentiate it from the

unobserved component of ability that is included in θi. To clarify the distinction between

these two components, observed ability may be learned by a student over time through

consistent high performance in school or the relative ease in reading books. On the other

hand, students—especially elementary school students—do not have perfect knowledge of

their ability to perform on tests nor how they “measure up” next to other students, thus

suggesting an unobserved component to ability. If Ai is not observed to the econometrician

and students who perceive themselves to be more capable respond more to accountability

policies, then Pi is not independent of the θi which includes observed ability (i.e., Assumption

4.2 may not hold). By similar logic, the fact that peer observed ability, A−i, is unobserved

to the econometrician also brings into doubt Assumption 4.3, since then P̄−i may no longer

be independent of the µ that includes peer observed ability.

Previous studies attempt to control for unobserved ability using lagged achievement.32

While this is feasible in the present setting, a drawback is that it is unclear what lagged

achievement is capturing. Prior achievement is a function of previous strategic effort choices,

which may be fairly persistent when peer groups do not vary much from one grade to the

next.33 I use an alternative proxy for observed reading ability, namely the portion of leisure

time spent reading for fun. This is somewhat analogous to the strategy used in Olley and

Pakes (1996) and Levinsohn and Petrin (2003) in that it recovers the unobserved state

variable (in their context firm productivity rather than ability) from observed inputs to

production.

Partition Xi into two components, observed ability Ai and observed characteristics X1
i ,

i.e., Xi = (X1
i , Ai). Similarly partition X̄−i into two components, such that X̄−i = (X̄1

−i, Ā−i).

Denote the time student i spends reading for fun and watching television by Ri and TVi.

the same across the two years with an approximate p-value of .62. Thus, I do not find evidence of significant
regrouping as a result of student accountability.

32See Hanushek et al. (2003) for a detailed discussion of this approach and Todd and Wolpin (2003) for a
description of some of the drawbacks.

33It is worth noting that the estimates of the endogenous peer spillover are robust to including lagged
achievement in the specification.
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Students differ in their leisure time (Ti ≡ TVi + Ri). The portion of leisure time spent

reading for fun is as follows:

Ri/Ti = ρi(X
1
i , Ai).

Observed leisure time allocation may follow from either student optimization or parental

mandate. Recall that X1
i includes observable characteristics of the parents (such as educa-

tion) that may make them more or less likely to promote reading at home. Identification of

Ai relies on the intuition that the portion of leisure time spent reading for fun and ability are

positively correlated. When parents are the decision makers, the positive correlation arises

simply because parents who encourage their children to spend more leisure time reading for

fun will have more capable readers relative to parents who do not. When the student is

the decision maker, more capable readers may choose to spend more time reading for fun

because the activity is less costly or they derive greater intrinsic benefits relative to less

capable readers. This is captured in the following assumption:

Assumption 4.6. The portion of leisure time spent reading for fun is strictly increasing in

ability, ∂(Ri/Ti)/∂Ai > 0.

It is important to emphasize that I focus on free reading time as a portion of total leisure

time because the total amount of leisure time may vary greatly across students in ways

unrelated to ability. For instance, some may face longer bus rides to/from school; others

may participate more in after-school activities. Some teachers may assign more homework,

and some students may take longer to complete homework assignments. All of these factors

can detract from the amount of leisure time at a student’s disposal.

Under Assumption 4.6, ability can be expressed as a function of observable characteristics—

free reading time, leisure time and individual characteristics, i.e.,

Ai = ρ−1
i (Ri/Ti, X

1
i ). (4.3)

Similarly, peer ability can be approximated as Ā−i = (1/(N − 1))
∑

j 6=i ρ
−1
j (Rj/Tj, X

1
j ) ≡

ρ̄−1
−i (R−i/T−i, X

1
−i). Effectively, I am able to control for the portion of ability that is observed

to the individual and his peers through the leisure-time choices that reveal his type.
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Plugging in for observed ability and peer ability in the achievement equation, I get,

Y ∗
i = q(Ȳ ∗

−i, X
1
i , X̄1

−i, Pi, K, ρ−1
i (Ri/Ti, X

1
i ), ρ̄−1

−i (R−i/T−i, X
1
−i), µ, θi).

34

An alternative strategy to deal with unobserved individual heterogeneity in the linear-

in-means context when panel data are available, as in the present setting, would be to

include individual fixed effects. I do not pursue this strategy for several reasons. It does not

generalize very well to the nonparametric quantile context.35 Second, even if I were to assume

the location shift model as in Koenker (2004), I could not difference out the fixed effect as

would be feasible in the linear-in-means case. Alternatively, it is not computationally feasible

to estimate the model with a large set of dummy variables due to the large sample size and

the excessive memory requirements needed to estimate the parameters.

4.4 Non-Random Assignment

A well-known problem in the identification of peer effects is non-random assignment to peer

groups. In the present context, the primary source of selection bias arises from parents

selecting their child’s schools, often through their choice of residence. This is further com-

plicated by non-random assignment to classrooms within schools. Policies for classroom

placement diverge widely across schools. In some cases, parents have little to no control

over their child’s classroom assignment, while in others they can request certain teachers.

Non-random assignment suggests that observable and unobservable characteristics of the

individual and his classroom peers may be correlated. To the extent that observable char-

acteristics are correlated, this simply affects our interpretation of exogenous effects in our

achievement production estimates. Similarly, the above arguments do not restrict the un-

observable characteristics to be uncorrelated, and I account for potential correlation of θi in

estimation.

A particular concern is that when parents exercise control over classroom assignment,

more “attentive” parents, those who select the better teachers, may at the same time have

34 Note that I assume that free reading time does not enter the production function because it is an activity
that takes place outside of the classroom. However, this assumption is not necessary and only affects the
interpretation of the estimates. In fact, I conduct some specification checks using forward values of free
reading time, which could not directly affect prior achievement, and the results are unchanged.

35See Koenker (2004) for a description of quantile regressions using longitudinal data.
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higher-achieving children. By selecting better teachers, they effectively select into better peer

groups. This might lead one to mistakenly conclude that positive peer achievement spillovers

exist, when in fact the positive correlation in outcomes stems from selection. Furthermore,

school administrators may not assign students randomly to classrooms, but may instead

employ some sort of ability tracking. To some extent, the concern for certain types of

selection are alleviated by including ability controls.

However, selection in the present context remains problematic if students are assigned

to classrooms based on the unobserved µ. The primary type of selection that occurs within

schools, be it at the principal or parent level, is likely to be on perceived teacher quality.

Further assuming that teachers stay in similar “quality” schools with similar “quality” class-

rooms over the period of the data, including teacher fixed effects controls for non-random

assignment to classrooms and schools. Formally, partition classroom level inputs into the

teacher fixed effect (Tch) and other inputs, K = (Tch, K1). I modify (4.1) as follows:

Y ∗
i = q̃(Ȳ ∗

−i, Xi, X̄−i, Pi, K
1, µ, θi) + β(θi)Tch, (4.4)

where the teacher fixed effect enters flexibly in the form of a quantile-specific location shift,

with different effects on different types of students.

5 Estimation

Suppose time is indexed t = 1, ..., T and classrooms c = 1, ..., C. Estimation of the quantile

structural function proceeds in two steps. First, I recover the residual from Equation (4.2),

the reduced form regression predicting the ex ante expected value of peer achievement. I

then estimate the quantile structural function defined in Equation (4.4), controlling for the

residual from the first stage which captures the unobserved group effect. Each of these steps

is discussed in detail in the following sections.

5.1 Reduced Form

The first stage of the estimator is analogous to the first stage in 2SLS. I recover the un-

observed classroom productivity, the correlated effect, from a reduced-form equation for

23



peer achievement, as described in (4.2). As discussed previously, allowing the spillovers

to vary across races and to vary across different race-based reference groups is an im-

portant feature of this analysis. Let NWi be an indicator for a nonwhite student, and

the superscripts k ∈ {W, NW} indicate white and nonwhite respectively. Then, Ȳ NW
−ict =

1P
j NWj−NWi

(
∑

j NWjY
∗
j − NWiY

∗
i ) denotes the observed mean achievement of student i’s

nonwhite classroom peers and similarly Ȳ W
−ict for white peers.

The reduced-form equation for peer achievement is approximated as

Ȳ k
−ict = α0 + Xitα1 + X̄−ictα2 + α3Pit + ~̄P−ictα4 + K1

ctα5 + Tchit + Y eart + µct + δict, (5.1)

where dependence of the parameters on the race subgroup k is suppressed. The covariates

Xit include the sex of the student, parental education, a dummy for low-performance defined

as whether the student performed below the 30th percentile in the previous year, and the

portion of leisure time spent reading for fun as an ability proxy. The mean characteristics of

i’s peers are captured by X̄−ict, which includes the peer average for each of the above, i.e., the

percentage of peers with college-educated or high-school-educated parents, the percentage

of peers who are low performing, the average portion of leisure time peers devote to free

reading, and the percentage of nonwhite students in the classroom. Other than teacher fixed

effects, Tchit, classroom level-inputs K1
ct include an indicator for years/grades when student

accountability policies are in place and a dummy for classrooms with no peers of the other

race. Finally, Pit is the utility shifter; it indicates students for whom Student Accountability

policies are binding. Formally, Pit is equal to 1 for fifth graders in years 2001 and beyond who

are low performers, i.e., if they performed below the 30th percentile in reading in the prior

year. The percentage of peers of each race who are held accountable are the instruments for

peer achievement, i.e., ~̄P−ict = {P̄W
−ict, P̄

NW
−ict }.

The remaining residual δict can be thought of as measurement error and captures the fact

that the sample average of observed peer achievement is only an approximation for ex ante

expectations of average peer achievement, i.e., Ȳ−ict = Ȳ ∗
−ict + δict. Given that classes are

sufficiently large, about 23 students on average, δict should be of relatively small magnitude.

I estimate the two first-stage regressions for white and nonwhite peer achievement sep-

arately for students of each race. From these regressions, I recover four estimates of the

correlated effect µ̂ct = µct + δict as the residual from OLS estimates of (5.1) and four values

of the predicted teacher fixed effects, T̂ chit. The triangular structure in (5.1) implicitly ap-
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proximates peer achievement for multiple peer groups flexibly. An important case when the

approximation becomes exact is when there are no cross-subgroup spillovers.

5.2 Quantile Structural Function

In the second stage, I estimate the structural function (4.4), which describes a student’s

achievement as a function of peer characteristics and peer achievement at different points

of the conditional achievement distribution. If the mean effect of peers were sufficient, I

could proceed simply using the familiar 2SLS estimator, estimating the second stage also

as a mean regression. However, as mentioned before, regrouping students does not affect

average achievement in the linear-in-means context because the losses to one student are

perfectly offset by the gains to another. Previous studies have also acknowledged the impor-

tance of capturing these types of nonlinearities, but pursued alternative strategies, such as

categorizing students as high- or low-ability based on prior test scores and estimating mean

regressions on different subsets of the sample or including interactions of these dummies

with exogenous peers effects.36 Effectively, these strategies provide evidence of the marginal

effects at different points of the unconditional achievement distribution. Alternatively, the

quantile regression provides evidence of the marginal effects at different points in the condi-

tional distribution. It is difficult to relate the evidence from the unconditional distribution

to the parameters of the structural response function. Furthermore, the quantile approach

offers considerable flexibility, can be estimated for a large number of quantiles,37 and is not

sensitive to outliers.

While it is feasible to estimate the quantile structural function without assuming a para-

metric form,38 in this setting it is useful to assume a parametric approximation for the system

of equations because of the large number of covariates. Therefore, I approximate (4.4) as

Y ∗
ict = β0 + β1Ȳ

W
−ict + β2Ȳ

NW
−ict + Xitβ3 + X̄−ictβ4 + β5Pit

+ K1
ctβ6 + β7

ˆTch
W

it + β8
ˆTch

NW

it + Y eart + β9µ̂
W
ct + β10µ̂

NW
ct + uict, (5.2)

where dependence of the parameters on the quantile (β(θi)) and race is suppressed to sim-

36See Hanushek et al. (2004), Hanushek et al. (2003) and Hoxby and Weingarth (2005).
37This is emphasized in Chernozhukov and Hansen (2005).
38See Imbens and Newey (2003) for a discussion of the fully nonparametric estimator.
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plify notation. Teacher fixed effects are allowed to vary by race, capturing the fact that

the effectiveness of the teacher may vary across races.39 The µ̂ct’s capture the unobserved

classroom characteristics, or correlated effects, that simultaneously affect the achievement

of an individual and his peers. These enter achievement in a flexible way, with the marginal

effect permitted to vary both by race and quantile.40 Finally, it is worth noting that this

approximation of the achievement best-response predicts a unique equilibrium.

For each subgroup and a given quantile θit = τ , parameter estimates
~̂
β(τ) solve the

following optimization problem:

argmin~β(τ)

1

NCT

∑
i

∑
c

∑
t

ρτ (uict),

where ρτ (uict) = τu+
ict + (1− τ)u−

ict.

Before proceeding to the results, interpretation of the exogenous effects (β̂4) and corre-

lated effects (µ̂ct) merits further discussion. First, consider exogenous effects. If there were

no contemporaneous peer spillovers and students did not choose effort, then X̄−ict would only

affect i’s achievement through the state variables that enter his achievement directly. This

is the way that exogenous effects are generally thought about in the literature. In this case,

we would expect that increasing, say, the percentage of peers with high parental education

would have a positive effect on i’s achievement. However, when student i is able to choose

effort, it is unclear whether increasing X̄−ict will have a positive or a negative effect. For

any level of effort, students with higher X̄−ict would attain a higher level of achievement,

suggesting that raising X̄−ict could lower effort, i.e., effort and peer characteristics could act

as substitutes. On the other hand, any amount of effort may also be more productive as a

result of the “better” peer group, suggesting a higher level of optimal effort, in which case

effort and peer characteristics are complementary. Finally, when there are spillovers from

peer effort, X̄−ict has a direct effect on i’s achievement through peer effort. Holding Ȳ−ict

fixed, higher X̄−ict would predict lower peer effort and therefore have a negative effect on i’s

39This would control for discrimination, if, for instance, teachers form lower expectations of the capability
of nonwhite students that in turn inhibits these students’ performance. For instance, see Ferguson (1998).

40Alternatively, for the typical 2SLS estimator, one could plug in the fitted values of peer achievement
from the first stage in place of observed peer achievement and remove µ̂ct. However, this is not consistent
with the model, in which students make a best respond to Ȳ−ict not ˆ̄Y−ict.
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achievement. Given these three countervailing effects, the sign of β̂4 is indeterminate.41

A similar conclusion holds for classroom productivity, µ. It is generally assumed that

OLS estimates of the peer effect are biased upwards due to these unobserved correlated

effects. Similar to the argument for peer characteristics above, this makes sense if µ is only

an element in Si, students do not choose effort, and there are no spillovers from peer effort

in production. Otherwise, higher µ could negatively affect achievement through its inverse

relation with peer effort. Secondly, higher µ could predict higher or lower utility-maximizing

effort. Thus, careful consideration of the strategic behavior of students suggests that the

assumption of an upward bias from unobserved correlated effects may not hold.

6 Results

This section presents results on the magnitude of peer spillovers to achievement and distri-

butional effects. To provide a baseline comparable to previous estimates in the literature,

Section 6.1 describes estimates of the endogenous peer effect in a linear-in-means model,

comparing 2SLS to OLS with contemporaneous and lagged peer achievement. In Section

6.2, I present results for the two-stage quantile estimator described in Section 5, and allow

peer spillovers to vary by race. In Section 6.3, I compare the relative magnitude of exogenous

and endogenous peer effects.

6.1 Baseline: Linear-in-Means

Before exploring the distributional effects of peers, it is useful to begin with 2SLS of the

linear-in-means model, which are most readily comparable to previous estimates in the liter-

ature. I modify the first stage of the 2SLS estimator so that the dependent variable is peer

achievement for the whole class (not broken out by race subgroups). The second stage is

then

Y ∗
ict = β0 + Ȳ−ictβ1 + Xitβ2 + X̄−ictβ3 + β4Pit + K1

ctβ5 + Tchit + Y eart + β6µ̂ct + θict,

41Cooley (2006) expands on the intuition for the interpretation of exogenous effects in the context of
various peer spillover mechanisms.
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where all exogenous effects X̄−ict are defined at the class level.42 Parameter estimates from

the first and second stages of this estimator are presented in the second two columns of

Table 3. The first two columns correspond to two comparison cases: (1) the “naive” case,

an OLS regression that does not account for simultaneity in achievement and (2) OLS using

twice-lagged peer achievement to break the simultaneity.43

I begin by comparing estimates of the endogenous effect (β1) across my estimator and the

comparison cases. The naive estimates predict an average peer effect of -.07, in comparison

to .48 for the 2SLS estimator. Using twice-lagged peer achievement to proxy for the endoge-

nous peer effect even more severely underestimates peer spillovers, as the coefficient on peer

test scores is -.15. If the direct effect of unobserved group productivity µ on achievement

dominates, one would expect the naive estimates of the peer effect to be biased upwards

relative to 2SLS. However, I find that this is not the case. The downward bias of OLS can

be explained if the dominant effect of µ, after controlling for teacher fixed effects, is coming

through peer effort spillovers to production or strategic effort choices rather than a direct

effect.44 To interpret the 2SLS estimate, it predicts that a one standard deviation increase in

peer achievement (.45) leads to about 22% of a standard deviation increase in achievement.45

Estimates of the exogenous peer effects also differ considerably across the estimators,

with marginal effects frequently opposite in sign. For instance, lagged OLS predicts relatively

small but positive effects from increasing peer parental education,46 while 2SLS predicts a

larger negative effect. Intuitively, as discussed in Section 5.2 this negative effect follows

if the spillovers from peers’ parental education arise primarily through peer effort, which is

ignored in the twice-lagged specification. In other words, suppose that the parental education

of i’s peers does not directly affect student i’s achievement. Then, holding peer achievement

fixed, higher parental education of i’s peers suggests lower peer effort. This intuition can

be extended to the other exogenous effect parameters to help explain the marked differences

42Note that in the linear-in-means case, it is easy to control for the teacher fixed effect directly, and it is
also no longer necessary to include the controls for classrooms without a given subgroup in K1

ct.
43These estimators skip the first-stage regression (i.e., µ̂ct = 0 in the above equation).
44These results suggesting downward bias in OLS estimates are very sensitive to changes in specification.

For instance, with school by year fixed effects (rather than teacher fixed effects), the naive OLS results
are biased upward relative to 2SLS and lagged OLS results give a small but positive coefficient on peer
achievement.

45As an aside, it is worth noting that this estimate is within the 95% Bayesian credibility set, .0827 to
.6976, calculated in Graham (2004), using a similar linear-in-means model.

46Estimates using twice-lagged peer achievement with school by year fixed effects give positive effects
from peer’s parental education, suggesting that the spillovers from parents in the classroom may be driven
primarily from some type of teacher selection mechanism within schools.
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between the lagged estimator that ignores contemporaneous peer spillovers and the 2SLS

estimator.

Finally, the first-stage regression in Column 3 presents evidence regarding the validity

of the instrument. The percentage of students held accountable is a statistically significant

predictor of peer achievement, with a sizable marginal effect of .17. Thus, students in classes

with higher percentages of low performers witnessed greater increases in peer achievement

from accountability. Furthermore, the second-stage regression reveals that the advent of

student accountability policies appears to have limited effects on high achievers (-.01), but a

much larger effect (.10) on those who are designated “low reading” students by prior years’

test scores. These estimates are consistent with the story that student accountability did

not entail a redistribution of resources away from high achievers, but rather induced low

performers to work harder and boost their achievement.47

6.2 Heterogeneous Reference Groups and Distributional Effects

Turning to the main results of the paper, I consider two relatively unexplored aspects of peer

effects that are particularly relevant to policymakers. First, I test whether students respond

differently to peers more similar to themselves in observable dimensions, namely race. Then,

I proceed to consider distributional effects, i.e., how the marginal effect of peer achievement

varies across percentiles of the achievement distribution.

Table 4 presents estimates of the endogenous effects parameter using the procedure de-

scribed in Section 5 and comparing the mean and the median case (β1(.5), β2(.5)). Each

column corresponds to a separate regression for the given race, while the rows describe the

achievement spillovers from peers of each race. Both the 2SLS and median two-stage quan-

tile estimators predict that white students receive positive spillovers from their white peers,

.40 and .39, but minimal spillovers from their nonwhite peers, .02. On the other hand, in

the mean case nonwhite students receive positive, but not statistically signficant, spillovers

from both their white and nonwhite peers, .20 and .16, while in the median case they receive

positive and significant spillovers from their nonwhite peers, .27, and smaller insignificant

spillovers from their white peers, .09. The standard errors are larger for nonwhite students

and particularly large for the effect of white peers on nonwhites. One potential explanation is

47Note that if resources were redistributed from high to low performers, this would suggest that the
endogenous spillovers are even larger.
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that the designation “nonwhite” groups Hispanic and black students together, and the within

peer group effects may not come through as strongly as a result. Another explanation is that

this is indicative of the particularly complex nature of spillovers from whites to nonwhites

documented in the literature. For instance, Fryer and Torelli (2005) find that the prevalence

of “acting white” depends on the racial composition of schools, with predominantly black

schools displaying no evidence of these negative peer effects. As a specification check, I try

interacting peer achievement with the percent nonwhite and breaking the sample into pre-

dominantly nonwhite and predominantly white schools, but the results are not statistically

significantly different. However, both stories suggest that more careful investigation of the

mechanisms of peer influences particularly for black students is merited.

While Table 4 suggests that peer spillovers vary by race, Figure 3 describes the distribu-

tional effect of peers, i.e., how the marginal effect of average peer achievement varies across

quantiles for each race. The story is fairly consistent with that for the median case where

white students respond almost entirely to white peers, while nonwhite students respond to

both white and nonwhite peers, though the response to nonwhite peers appears to be more

robust. Interestingly, I find evidence of strongly diminishing marginal returns to white peer

achievement for whites, from a high of .73 to a low of .22. In contrast, the marginal effect

of nonwhite peers appears to be weakly increasing for nonwhites, from a low of about .17 to

a high of .30. This suggests that at least within the same race, detracking classrooms would

be more efficient (i.e., would raise overall achievement) for white students and slightly less

efficient for nonwhites, while creating more equitable outcomes relative to tracking students

into high- and low-achieving classes. The effect of white peers on nonwhites is somewhat

U-shaped, with sizable effects on the lower and upper tails of the achievement distribution

of .31 to .27 and smaller effects in the center, .09. Thus, there is some evidence that non-

whites receive positive spillovers from white peers, however the standard errors are fairly

large, so that the effects are only statistically significant for the lower tail of the achievement

distribution.

6.3 Endogenous vs Exogenous Effects

Exogenous peer effects have served as the focal point of the literature on peer effects in

education, though the estimates in the previous section provide compelling evidence that

endogenous effects do indeed exist. In this section, I compare the relative magnitude of
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endogenous and exogenous effect parameters and consider the implications of exogenous

spillovers for desegregating classrooms.

Tables 5 and 6 present marginal effects for whites and nonwhites of a one standard

deviation increase in each of the peer variables using the estimates from the two-stage quantile

regression corresponding to those shown in Figure 3. The first column presents the average

over quantiles within a given race, while the remaining columns present the marginal effect for

a given quantile and race. The first two rows describe the marginal effect of peer achievement

in each subgroup. The marginal effects of peer achievement are stronger for whites than for

nonwhites. The effect of a one standard deviation increase in white peer achievement is

.18 for whites and .11 for nonwhites, while the effect of a one standard deviation increase

in nonwhite peer achievement is 0 for whites and .11 for nonwhites. Thus, for nonwhites

the marginal effect of white and nonwhite peer achievement is about the same on average,

though again only nonwhite peer achievement is statistically significant.

This table also reveals that increasing the percentage of nonwhite students has a small

negative effect on whites and nonwhites, -.02. This is consistent with evidence in Hanushek

et al. (2004) that high concentrations of nonwhites have a negative effect on the achievement

of both whites and nonwhites. The effect of racial composition is further illustrated in

Figure 4, which compares the quantile derivatives of the portion of peers who are nonwhite

on white and nonwhite achievement. It is worth pointing out that since I do not include

any income controls, the effect of the higher concentration of nonwhites could be picking up

an income effect. Furthermore, as discussed previously, it is generally difficult to interpret

the exogenous effects. The effect of percentage nonwhite on nonwhites is diminishing across

quantiles, with nonwhites in the highest quantiles receiving only small, and statistically

insignificant, negative effects.

The table also considers the other exogenous peer effects, with the main conclusion being

that endogenous effects appear to be considerably larger than exogenous effect. This suggests

that the former will play the dominant role in any changes to achievement from desegregating

peer groups. Nonetheless, it is important also to account for the role of exogenous effects.

Section 7.1 paints a clearer picture of the effect of desegregating peer groups taking into

account both endogenous and exogenous effects.
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7 Counterfactual Classroom Assignment Policies

With parameter estimates of the achievement production function now in hand, I turn to

the central question of the paper: What is the effect of desegregating peer groups on the

achievement gap between white and nonwhite students? To reiterate the findings of the

previous section, the lack of cross-racial spillovers for whites suggests minimal negative con-

sequences to white achievement from being grouped with lower-achieving nonwhite peers.

Nonwhites at all percentiles of the achievement distribution stand to gain by being grouped

with higher-achieving white and nonwhite peers. While the dominant effect of peers appears

to be coming through these endogenous effects, exogenous effects will also play a role. Since a

higher concentration of nonwhites is negatively correlated with achievement, this would sug-

gest that creating more diverse peer groups would raise nonwhite achievement while lowering

white achievement and narrowing the achievement gap. Disparities in parental education

and free reading time across races will also enter into the overall effect of any student reas-

signment policy. Thus, while it appears that desegregating peer groups may indeed help to

narrow the achievement gap, it remains difficult to conjecture the magnitude of the effect

and the efficiency implications.

To provide some context, school desegregation policies are almost exclusively restricted

to be within district lines, a result of the Supreme Court’s ruling in the 1974 case of Milliken

v. Bradley that a federal court could not force integration across district lines. As a result,

it is not uncommon to find wealthy, high-achieving, predominantly white school districts

next to poorer, lower-achieving, racially-mixed school districts. I consider an experiment

of desegregating schools across the lines of two such neighboring school districts in North

Carolina–Durham (home of Duke University) and Chapel Hill (home of University of North

Carolina-Chapel Hill). As illustrated in Table 7, the contrast across these districts is very

stark. Durham public schools have a much larger minority population—68% of fourth and

fifth graders are nonwhite, as compared to only 23% in Chapel Hill. Students in Durham

schools have average reading scores that are about 70% of a standard deviation lower than

Chapel Hill students. The contrast further extends to indicators of socioeconomic status;

80% of Chapel Hill parents have at least a 4-year degree compared to only 37% of Durham

parents.

Yet, Table 7 also provides suggestive evidence of considerable differences in within-district

segregation. The average class for a white Durham student is only 51% nonwhite, while the
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average class for a nonwhite Durham student is 76% nonwhite. In contrast, the racial

composition of the classroom does not appear to vary as much in Chapel Hill schools. The

standard deviation in the percentage nonwhite peers in the average class in Durham is .22,

compared to .11 for Chapel Hill. This within-district segregation is even more disconcerting

taken in the context of recent trends. Evidence suggests that segregation in North Carolina’s

public schools has actually increased over the past decade, a marked contrast to the sharp

declines in segregation over the previous decades.48 The resegregation of public schools

can be attributed in large part to a recent succession of court rulings that have declared

school districts unitary (i.e., sufficiently integrated) and have thereby released them from

the obligation of proactively integrating.49

At the same time that segregation is increasing in public schools, North Carolina policy-

makers advocate desegregated/mixed-ability classrooms as most conducive to narrowing the

racial achievement gap, though there is little evidence on the magnitude of such an effect.

With these observations in mind, Section 7.1 simulates achievement outcomes when students

are randomly assigned to classrooms within the district and compares this to random assign-

ment across districts. Because I hold the student population to be fixed in the experiment,

this clearly abstracts away from important issues of residential sorting, proximity constraints

and the potential to select out of public schools. To provide evidence on the returns to “bet-

ter” peer groups in a context where general equilibrium sorting effects are unlikely to be

important, I then estimate the achievement premium associated with moving a student from

Durham to Chapel Hill in Section 7.2.

7.1 Desegregating Peer Groups

To begin to quantify the potential effects of desegregation, I perform an experiment where I

randomly assign students to classrooms, thereby creating racially desegregated and mixed-

ability peer groups. I restrict attention to fifth graders in the 2002-03 academic year and

assign to every student the average teacher fixed effect and average correlated effect to ensure

that variation in school productivity across races does not obscure the impact of altering peer

groups. While various efficiency and equity measures are relevant, I begin by comparing the

48See Clotfelter et al. (2005).
49For instance, the Fourth Circuit Federal Court of Appeals ruled that the Charlotte-Mecklenburg school

district could no longer use race in making school assignments, which led to sharp increases in segregation.
See Chemerinsky (2003) for a more detailed discussion of the courts’ role.
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average achievement for whites and nonwhites, the gap between average white and nonwhite

achievement and the overall average achievement under these alternative assignment policies.

Table 8 compares the achievement of Durham and Chapel Hill students under observed

groupings to the counterfactual achievement realized under (1) desegregation (random as-

signment to classrooms) within the district and (2) desegregation across district lines. The

95% confidence intervals are reported in brackets. I use parameter estimates from the two-

stage quantile regression to simulate achievement outcomes under the alternative assignment

policies.50

In both districts, within-district desegregation creates the largest gains nonwhite stu-

dents, around .04 on average, though whites also have marginal gains in achievement on

average. However, the effect is only statistically significantly different for nonwhites in

Durham, perhaps partially due to sample sizes. As a result, the achievement gap decreases

a little, by about .02 in both districts, but it does not appear to be a statistically significant

change. Not surprisingly, desegregation across districts produces gains for Durham students

and marginal losses to Chapel Hill students on average, compared to within-district deseg-

regation. Nonwhites in Durham gain .05 of a standard deviation relative to within-district

desegregation, while nonwhites in Chapel Hill lose .01. Whites in Durham make comparable

gains to nonwhites, .05, while whites in Chapel Hill make comparable losses to nonwhites,

.01. Thus, the point estimates suggest that the gains (losses) to nonwhite achievement are

offset by gains (losses) to white achievement for students in each of the districts with the

result that desegregation across districts has minimal additional effects on the gap.

The confidence intervals further show that the losses to Chapel Hill students from the

merger are not statistically significantly different from the observed groupings or desegrega-

tion within districts. Furthermore, the gains to nonwhite Durham students are not signifi-

cantly different from the merger relative to the within district desegregation. The real gains

for nonwhite Durham students seem to be coming from the within district segregation. The

subgroup whose gains from the merger are most significant are the white Durham students.

This is because the larger effects of peers are within race and lower-achieving white Durham

students are benefitting from their placement with higher-achieving white Chapel Hill peers.

50In the simulations, it is necessary to assign a value of θi to each student. Consistent with the story that
the residual captures some persistent, unobserved ability, these simulations use the residual recovered from
observed outcomes. Alternatively, if θi captures more of a random shock, I could assign students randomly
to quantiles. Since the reality is likely to be somewhere in between, I try the simulations both ways and
using random rather than recovered residuals does not affect the conclusions.
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We do not see offsetting losses for white Chapel Hill students because the marginal effect of

peers is diminishing across quantiles for whites, and Chapel Hill students are more highly

concentrated in these upper quantiles where the peer effects are not as important.

Figure 5 provides further evidence on the effects of the merger on the gap and achievement

at different points of the achievement distribution. The benefits of the merger compared to

the observed groupings are presented in the left-hand-side figure, while the benefits of the

merger over within-district integration are presented on the right-hand-side. In both cases,

the gains appear to be diminishing across percentiles of the achievement distribution for

the population overall. Comparing to the observed groupings, the nonwhite students make

the largest gains from the merger, ranging from .06 to .14, while whites gain between 0

and .08. As shown in Figure 6, the white-nonwhite achievement gap remains highest at

the lowest percentiles of the achievement distribution and lower at the upper percentiles

under each of the alternative groupings. Within district integration (relative to observed

groupings) has ambiguous effects on the percentile achievement gap, actually increasing the

gap at some percentiles. However, the merger narrows the gap at all percentiles compared

to within-district integration, with some of the largest gains being for students in the middle

percentiles

As emphasized above, an innovation of this paper is allowing for heterogeneity in peer

effects by estimating quantile rather than mean regressions. To provide further evidence

on the importance of this dimension for policy implications, I compare predictions from the

2SLS estimator, where the marginal effects are allowed to vary by race, to the predictions of

the two-stage quantile regression estimator. As Figure 7 shows, the predictions of the 2SLS

and two-stage quantile regression estimators for the achievement gap at different percentiles

of the achievement distribution are quite different. Most remarkably, the 2SLS estimator

severely overpredicts the achievement gap for the lower to middle percentiles. Furthermore,

the 2SLS regression actually predicts increases in the achievement gap from integration

at the lowest quantiles, whereas the two stage quantile regression predicts in most cases

that the gap is actually narrowed for the lower quantiles, particularly from the integration

across district lines. This contrast is particularly important given the important placed on

improving outcomes for students in the lowest percentiles.

It is worth noting that the Durham public school district is much larger—2099 students

versus only 667 in Chapel Hill. On the one hand, because of the large discrepancy in

achievement, we would expect the benefits from the merger of these two districts to capture
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something of an upper bound on the benefits of integration, but as there are significantly

fewer Chapel Hill students it is more difficult to make this case. Thus, I also conducted

a much broader experiment where I randomly assigned students to any school in the state

of North Carolina. The results were very similar to this localized example, in that the

larger experiment only narrowed the average gap by about 6% of a standard deviation. This

narrowing was not only fairly uniform across percentiles of the achievement distribution, but

the gains were largely through improvements in average nonwhite achievement rather than

losses in average white achievement, as suggested by the local experiment.

7.2 Durham to Chapel Hill

While the previous section provides estimates of the benefits to desegregation, there are

considerable barriers to actually implementing such a large-scale desegregation plan. For

instance, if the districts of Durham and Chapel Hill were to merge, it is unlikely that the

population of students currently attending the public schools would remain constant. In fact,

the intense desegregation of the 1970s was accompanied by “white flight” from urban school

districts to the suburbs, thus hampering efforts to integrate schools. In choosing where to live,

parents often face the trade-off of higher housing prices and “better” schools/peer groups

versus lower housing prices and “worse” schools/peer groups. In this section, I quantify

the achievement benefits of moving a student from Durham to Chapel Hill, isolating the

effect of “better” peer groups. Since Chapel Hill parents are unlikely to select out of public

schools as a result of the introduction of one new Durham student, this experiment may be

more realistic in that general equilibrium sorting effects are unlikely to be important in this

context.

In particular, I conduct a partial equilibrium experiment to estimate the effect on a

Durham student’s achievement from random assignment to a classroom in a Chapel Hill

public school and the effect on a Chapel Hill student from random assignment to a Durham

school. Again, I focus on fifth graders in the 2002-03 academic year and assign to every

student the average correlated effect and teacher fixed effect to isolate the peer effect. The

results in Section 5 suggest that moving a nonwhite student from Durham to Chapel Hill may

raise his achievement in two ways—from higher-achieving white peers and higher-achieving

nonwhite peers. Moving a white student from Durham to Chapel Hill is likely to entail much

larger benefits because the pool of white peers is much higher performing.
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Table 9 compares the achievement of students in Durham to the simulated achievement

for each Durham student from random placement in a Chapel Hill classroom. On average

Durham students benefit from placement in Chapel Hill schools, with achievement rising

from .34 to .42. Furthermore, whites gain slightly more than nonwhites from the move,

.09 compared to .07. To emphasize the negative consequences of concentrating nonwhite

students in low-performing schools, the second three rows of Table 9 show gains to achieve-

ment for students in Durham schools with high concentrations of low-performing nonwhites.

Intuitively, the gains for these students are likely to be higher, given that their peers are

generally reinforcing a low-achievement equilibrium. I identify predominantly nonwhite,

low-equilibrium Durham schools as those with a student population that is more than 90%

nonwhite and where average achievement was below 0 in 2003. There are six such schools

in Durham, with a total student population of 297 (11% of Durham’s fifth graders in 2003).

On average the gain is much higher for nonwhite students in these low-equilibrium schools

relative to the nonwhite students in the other schools, .15, but the gain for whites is even

larger, .33.

What are the effects of moving a student from a higher-performing to a lower-performing

peer group? Table 9 reveals that there are significant losses to achievement on average from

moving a Chapel Hill student to a Durham public school. Whites lose .17 of a standard

deviation in achievement, while nonwhites lose .07. Thus, the gains to achievement from

moving a white Durham student to Chapel Hill are dominated by the large losses to achieve-

ment from moving a white Chapel Hill student to Durham, whereas the benefit of moving a

nonwhite Durham student to Chapel Hill are comparable to the losses of moving a nonwhite

student from Chapel Hill to Durham. Overall, these estimates suggest that there is a sig-

nificant achievement premium associated with residing in a “better” school district, without

even accounting for other non-peer related differences in school quality.

8 Conclusion

To answer the central question posed in this paper, desegregating peer groups only appears

to lead to marginal improvements in the achievement gap. I find evidence of strong spillovers

from peer achievement. White students appear to conform only to white peers. While there

is some evidence that nonwhites benefit from both white and nonwhite peers, generally only

spillovers from nonwhite peers are statistically significant. The lack of cross-racial spillovers
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limits the effect of desegregation. I perform an experiment of merging a predominantly white,

higher-achieving school district with a neighboring lower-performing, racially-mixed school

district, where one might expect the returns to be particularly large, and find only small

effects on the achievement gap. It appears that the gains for white students are working to

offset the gains to nonwhites in lower-achieving districts and similarly the losses for each race

are offsetting each other in the higher-achieving districts. However, there do appear to be

gains from removing a nonwhite student from a low-achieving, predominantly nonwhite peer

group as illustrate in the partial equilibrium experiment, though again the benefit primarily

arises from the removal of negative peer influences.

To place my results in context, previous studies attempting to link changes in black

outcomes to desegregation have met with mixed success. The failure to account for con-

temporaneous peer effects may explain some of the mixed evidence in the literature, since

ignoring endogenous effects when they exist will bias estimates of exogenous effects, or in the

present context, peer racial composition or ability.51 Furthermore, while I do find a negative

correlation between the percentage nonwhite in the classroom and achievement for white and

nonwhite students, the effects are very small, with a one standard deviation decrease in the

percentage nonwhite (more than 20%) only raising achievement by about .02 of a standard

deviation.

While the focus of this paper is on isolating one mechanism through which desegregation

may help narrow the achievement gap–peers–it is worth emphasizing that a full assessment of

the effect of desegregation would need to take other factors into account. In particular, I do

not explore other potential effects of desegregation, such as the reallocation of resources and

general equilibrium effects of residential sorting or selection out of public schools. Further-

more, it seems likely that over time the greater interracial contact that results from desegre-

gated schools could itself foster larger cross-racial spillovers in the classroom. Though beyond

the scope of this paper, such an effect could eventually serve to narrow the achievement gap.

Beyond presenting evidence on policy concerns close to the heart of both civil rights ad-

vocates and education policymakers, this paper contributes to the broader social interactions

literature on the identification of peer effects and even more generally to the identification

of spillovers to production.52 I discuss the conditions needed to identify peer effects under

51See Moffitt (2001) for a careful discussion.
52Models of strategic interactions among agents are also important in the industrial organization litera-

ture, particularly in models of entry and auction models. For instance, see Ackerberg and Gowrisankaran
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minimal functional form assumptions. In particular, I describe a set of informational assump-

tions and conditions on the quantile structural function that permit quantile instrumental

variables techniques to be applied to the identification of peer effects. My estimates show

that contemporaneous peer effects are very important to achievement and that in ignoring

them, the literature to date has severely underestimated the impact of peers in education

production.

To the best of my knowledge, my paper is also the first to apply a flexible nonparametric

estimator to the context of peer effects in education or to estimate an educational production

function more generally. With evidence of significant variation in responses to peers across

race and percentiles of the achievement distribution, moving from the typical linear-in-means

model to a more flexible model leads to a much richer understanding of the effect of peers

and alternative grouping strategies. Furthermore, the simulations illustrate that allowing

for sufficient flexibility in responses to peers across races and percentiles of the achievement

distribution is critical to accurately assessing the tradeoffs inherent in alternative grouping

strategies and in particular, the effect on the lower quantiles of the achievement distribution.

This paper can ultimately serve as a building block to answer the broader and more

elusive question of what is the “optimal” grouping of students in classroom given different

policy objectives. A useful, and straightforward, extension of the model would allow other

moments of peer achievement, beyond the mean, to enter achievement. This would be par-

ticularly important for evaluating the effect of tracking and developing broader implications

for optimal classroom assignment. Furthermore, when placed in the larger context of a

general equilibrium model, the production function estimates could help provide a deeper

understanding of the effects of alternative school choice mechanisms and competition.

(Forthcoming), Aguirregabiria and Mira (Forthcoming), Bresnahan and Reiss (1991), Ciliberto and Tamer
(2004), Pakes et al. (2005), Pesendorfer and Schmidt-Dengler (2003), and Rysman (2004). See Athey and
Haile (Forthcoming) for an overview of auction models.
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Honoré, B. E. and Hu, L. (2004), ‘On the performance of some robust intrumental variables

estimators’, Journal of Business and Economic statistics 22(1), 30–39.

41



Hoxby, C. M. and Weingarth, G. (2005), Taking race out of the equation: School reassign-

ment and the structure of peer effects. Working Paper.

Imbens, G. W. and Newey, W. K. (2003), Identification and estimation of triangular simul-

taneous equations models without additivity. Working Paper.

Jencks, C. and Phillips, M., eds (1998), The Black-White Test Score Gap, The Brookings

Institution, Washington, DC.

Koenker, R. (2004), ‘Quantile regression for longitudinal data’, Journal of Multivariate Anal-

ysis 91(1), 74–89.

Lazear, E. P. (2001), ‘Educational production’, Quarterly Journal of Economics 116(3), 777–

803.

Levinsohn, J. and Petrin, A. (2003), ‘Estimating production functions using inputs to control

for unobservables’, Review of Economic Studies 70, 317–341.

Ma, L. and Koenker, R. (2004), Quantile regression methods for recursive structural equation

models. Working Paper.

Manski, C. (1993), ‘Identification of endogenous social effects: The reflection problem’, The

Review of Economic Studies 60(3), 531–542.

Milgrom, P. and Shannon, C. (1994), ‘Monotone comparative statics’, Econometrica

62(1), 157–180.

Moffitt, R. A. (2001), Policy interventions, low-level equilibria and social interactions, in S. N.

Durlauf and H. P. Young, eds, ‘Social Dynamics’, Brookings Institution, Washington, DC,

pp. 45–82.

Olley, G. S. and Pakes, A. (1996), ‘The dynamics of productivity in the telecommunications

equipment industry’, Econometrica 64(6), 1263–1297.

Pakes, A., Ostrovsky, M. and Berry, S. (2005), Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples). Working Paper.

Pesendorfer, M. and Schmidt-Dengler, P. (2003), Identification and estimation of dynamic

games. Working Paper.

42



Rivkin, S. G. (2000), ‘School desegregation, academic attainment, earnings’, The Journal of

Human Resources 35(2), 333–346.

Rysman, M. (2004), ‘Competition between networks: A study of the market for yellow pages’,

Review of Economic Studies 71, 483–512.

Simmons, T. (1999), ‘Lower expectations limit black’s potential’, Raleigh News and Observer

.

Slavin, R. E. (1990), ‘Achievement effects of ability grouping in secondary schools: A best-

evidence synthesis’, Review of Educational Research 60(3).

Sweeting, A. (2004), Coordination games, multiple equilibria and the timing of radio com-

mercials. Working Paper.

Todd, P. E. and Wolpin, K. I. (2003), ‘On the specification and estimation of the production

function for cognitive achievement’, Economic Journal 113(485), F3–F33.

Vigdor, J. and Nechyba, T. (2004), Peer effects in North Carolina Public Schools. Working

Paper.

43



A Appendix

A.1 Proofs

Proof of Theorem 3.2. I illustrate how the game in effort maps into a game in achievement.

Given Assumption 3.2, ex ante expected achievement can proxy for effort. Denote the ex

ante expected value of achievement (Ỹi) as

Ỹi = g̃(ei, e−i; S) ≡
∫

Θ

g(ei, e−i; Si, θi)f(θi|S)dθi.

The following system describes the effort for all students in the classroom as a function of

ex ante achievement and peer effort:

e1 = g̃−1(Ỹ1, e2, ..., eN ; S)

...

eN = g̃−1(ỸN , e1, ..., eN−1; S).

I assume that the solution to this system is unique and is captured by the function G(·), i.e.,

ei = G(Ỹi, Ỹ−i; S) for i = 1, ..., N.

The vector of peer effort as a function of the vector of achievement and state variables is

e−i = (..., G(Ỹi−1, Ỹ−(i−1); S), G(Ỹi+1, Ỹ−(i+1); S), ...)

≡ G−i(Ỹi, Ỹ−i; S).

Therefore, the effort best response can be written as a function of peer achievement, i.e.,

e∗i (e−i; S) = e∗i (G−i(Ỹi, Ỹ−i; S); S)

= e∗i (Ỹ
∗
i , Ỹ−i; S).

Plugging utility-maximizing effort into ex ante expected achievement, we have the achieve-
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ment best response of a student i to any level of peer achievement Ỹ−i:

Ỹ ∗
i = g(e∗i (Ỹ

∗
i , Ỹ−i; S), G−i(Ỹ

∗
i , Ỹ−i; S); S).

Let q̃(·) represent an explicit solution for Ỹ ∗
i as follows:

Ỹ ∗
i = q̃(Ỹ−i, Si, S−i).

The ex post achievement realized by i under his best response is as follows:

Y ∗
i = q(Ỹ ∗

−i, Si, S−i, θi).

Proof of Theorem 4.1. Because all results hold conditional on the exogenous state variables

(Xi, X̄−i, K, Pi), dependence on these variables is suppressed. Following the proof in Imbens

and Newey (2003):

FȲ ∗
−i|P̄−i

(Ȳ ∗
−i|P̄−i)

(1)
= Pr(Ȳ ∗

−i ≤ ȳ0|p̄0)

(2)
= Pr(h(P̄−i, µ) ≤ ȳ0|p̄0)

(3)
= Pr(µ ≤ h−1(p̄0, ȳ0)|p̄0)

(4)
= Pr(µ ≤ h−1(p̄0, ȳ0))

(5)
= Fµ(h−1(p̄0, ȳ0)).

The first equality follows by definition; the second by the representation of peer achievement

in (4.2). The third follows by Assumption 4.4, and the fourth by Assumption 4.2. Therefore,

µ = h−1(p̄0, ȳ0) is identified by the joint distribution of (Ȳ ∗
−i, P̄−i).
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Proof of Theorem 4.2. Following the proof in Imbens and Newey (2003, Corollary 6):

FY ∗
i |Ȳ ∗

−i,µ
(Y ∗

i |Ȳ ∗
−i, µ)

= Pr(Y ∗
i ≤ y0|ȳ0, µ0)

= Pr(q(Ȳ ∗
−i, µ, θi) ≤ y0|ȳ0, µ0)

= Pr(θi ≤ q−1(ȳ0, µ0, y0)|ȳ0, µ0)

= Pr(θi ≤ q−1(ȳ0, µ0, y0))

= Fθi
(q−1(ȳ0, µ0, y0)) = q−1(ȳ0, µ0, y0).

Since the inverse of the structural function is identified, the function itself is also identified

on the joint support of (Ȳ ∗
−i, µ, θi).

A.2 Tables

Table 1: Summary Statistics: Class Level Peer Groups (N=876,176)

Variable Mean Std. Dev. Min Max
Reading score (standardized) 0.1441 0.9500 -3.346 3.064
Avg. peer reading score 0.1228 0.4541 -2.385 2.070
Class size 22.53 3.53 9 29
Male 0.4990 0.5000 0 1
Black 0.2952 0.4561 0 1
Hispanic 0.0343 0.1819 0 1
Parent HS/some post-sec. 0.6421 0.4794 0 1
Parent 4-year degree+ 0.2956 0.4563 0 1
Free/reduced price lunch 0.3946 0.4888 0 1
Free reading hours per week 0.9076 0.6266 0 2.5
TV hours per week 2.4643 1.6618 0 6
Avg. white peer reading score 0.3162 0.4758 -3.236 2.329
Avg. nonwhite peer reading score -0.2732 0.5534 -3.026 2.737

Source: Author’s calculations using North Carolina Education Research Data Center, End of Grade exams.
Sample restricted to grades 4 and 5 and academic years 1998-99 to 2002-03.
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Table 2: Summary Statistics by Race

White Nonwhite
Mean Std. Dev. Mean Std. Dev.

Reading score (standardized) 0.3642 0.9021 -0.3038 0.8853
Class size 22.84 3.43 21.90 3.64
Male 0.5044 0.5000 0.4882 0.4999
Parent HS/some post-sec. 0.5852 0.4927 0.7580 0.4283
Parent 4-year degree+ 0.3664 0.4818 0.1514 0.3585
Free/reduced price lunch 0.2431 0.4290 0.7029 0.4570
Free reading hours per week 0.9436 0.6281 0.8344 0.6170
TV hours per week 2.214 1.497 2.974 1.852

Characteristics of Classroom Peer Groups
Avg. peer reading score 0.2049 0.4286 -0.0444 0.4588
Avg. white peer reading score 0.3490 0.4435 0.2450 0.5322
Avg. nonwhite peer reading score -0.2395 0.5955 -0.3324 0.4646
% nonwhite 0.2384 0.2099 0.5244 0.2643
% parents HS degree 0.6174 0.2169 0.6857 0.1959
% parents 4-year degree 0.3168 0.2377 0.2465 0.2081
% FRP lunch 0.3410 0.2084 0.5191 0.2473
% without peers of other race 0.1468 0.3539 0.0637 0.2442
N 587,483 288,693

Source: Author’s calculations using North Carolina Education Research Data Center, End of Grade exams.
Sample restricted to grades 4 and 5 and academic years 1998/99 to 2002/03.
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Table 3: Comparison of Contemporaneous to Lagged Achievement
(Dependent variable: standardized reading score)

OLS OLS 1st Stage 2nd Stage
Contemporaneous Twice-Lagged Contemporaneous

Avg. peer reading -0.0715*** -0.1454*** 0.4794***
[0.0088] [0.0081] [0.0511]

Accountability 0.0033 0.1353*** -0.0200*** -0.0101***
[0.0039] [0.0200] [0.0053] [0.0024]

Low reading -1.1135*** -1.1472*** -0.0096*** -1.1077***
[0.0024] [0.0044] [0.0006] [0.0037]

Accountable*low reading 0.1081*** 0.1414*** 0.0043*** 0.1038***
[0.0041] [0.0055] [0.0008] [0.0038]

% low reading -0.2234*** -0.3098*** -1.1831*** 0.3977***
[0.0143] [0.0174] [0.0110] [0.0571]

Accountable*% low reading 0.1733***
[0.0144]

Nonwhite -0.2642*** -0.2535*** -0.0039*** -0.2620***
[0.0020] [0.0028] [0.0005] [0.0024]

Male -0.0632*** -0.0520*** -0.0026*** -0.0617***
[0.0015] [0.0021] [0.0006] [0.0020]

Parent HS degree 0.2139*** 0.2159*** -0.0030*** 0.2156***
[0.0033] [0.0046] [0.0008] [0.0029]

Parent 4-year+ 0.5672*** 0.5591*** -0.0012 0.5680***
[0.0037] [0.0052] [0.0009] [0.0033]

Free reading hours 0.2266*** 0.2512*** 0.0071*** 0.2227***
[0.0035] [0.0051] [0.0009] [0.0048]

% nonwhite -0.0939*** -0.1002*** -0.3520*** 0.1000***
[0.0108] [0.0163] [0.0096] [0.0187]

% male -0.0559*** -0.0599*** -0.1245*** 0.0123
[0.0122] [0.0172] [0.0113] [0.0096]

% HS degree -0.0555*** 0.0169 0.2021*** -0.1654***
[0.0170] [0.0242] [0.0157] [0.0137]

% 4-year degree 0.0109 0.1478*** 0.6110*** -0.3240***
[0.0185] [0.0269] [0.0167] [0.0326]

Avg. free reading hrs. 0.1479*** 0.0858*** 0.3493*** -0.0431**
[0.0187] [0.0277] [0.0171] [0.0201]

N 876,176 421,787 876,176 876,176
R2 0.5356 0.5541 0.9042 0.4364

*significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets, clustered at
the peer group level. Sample restricted to 4th and 5th graders, academic years 1998-99 to 2002-03. Teacher
and year fixed effects and constant also included.
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Table 4: Heterogeneous Reference Groups
(Dependent variable: standardized reading score)

2SLS Median
White Nonwhite White Nonwhite

Avg. white peer reading 0.3957*** 0.1973 0.3867*** 0.0857
[0.0901] [0.1360] [0.0909] [0.1629]

Avg. nonwhite peer reading 0.0157 0.1585 0.0182 0.2729*
[0.0449] [0.1577] [0.0536] [0.1462]

Accountability -0.0026 0.0049 -0.0150*** -0.0184**
[0.0037] [0.0085] [0.0042] [0.0089]

Low reading -1.1832*** -0.9991*** -1.1525*** -0.9788***
[0.0037] [0.0036] [0.0049] [0.0054]

Accountable*Low reading 0.1251*** 0.0606*** 0.1542*** 0.1076***
[0.0056] [0.0062] [0.0067] [0.0074]

% white low reading 0.3673*** 0.1822 0.3510*** 0.0474
[0.1055] [0.1550] [0.1078] [0.1841]

% NW low reading -0.0037 0.1032 -0.0037 0.2205
[0.0439] [0.1517] [0.0526] [0.1349]

% nonwhite -0.0646*** -0.1050*** -0.0851*** -0.0769***
[0.0105] [0.0209] [0.0120] [0.0194]

Male -0.0495*** -0.0881*** -0.0429*** -0.0860***
[0.0016] [0.0025] [0.0021] [0.0039]

Parent HS degree 0.2636*** 0.1531*** 0.2633*** 0.1497***
[0.0043] [0.0046] [0.0055] [0.0074]

Parent 4-year + 0.6087*** 0.4174*** 0.6218*** 0.4107***
[0.0046] [0.0083] [0.0063] [0.0138]

Free reading hours 0.2745*** 0.0739*** 0.2973*** 0.0592***
[0.0043] [0.0057] [0.0064] [0.0065]

% male -0.0039 0.0026 -0.0141 0.0092
[0.0143] [0.0293] [0.0180] [0.0343]

% HS degree -0.1392*** -0.1209*** -0.1488*** -0.1705***
[0.0240] [0.0431] [0.0247] [0.0290]

% 4-year degree -0.2654*** -0.2023** -0.2727*** -0.2185***
[0.0576] [0.0915] [0.0566] [0.0749]

Avg. free reading hrs. -0.0232 0.0390 -0.0263 0.0495
[0.0425] [0.0600] [0.0429] [0.0599]

No peers of other race 0.0008 0.0576 0.0009 0.0214
[0.0092] [0.0487] [0.0111] [0.0492]

N 587,484 288,693 587,483 288,693
R2 0.4895 0.4941

*significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets, clustered at
the peer group level. Standard errors calculated using bootstrap with sample size of 100. Year and teacher
fixed effects and constant also included.

49



Table 5: Average Marginal Effects of Peers for Whites
(Dependent variable: standardized reading score)

Mean .1 Quantile Median .9 Quantile
Avg. white reading 0.1841*** 0.3220*** 0.1715*** 0.0971

[0.0493] [0.0574] [0.0403] [0.0642]
Avg. nonwhite reading 0.0032 -0.0216 0.0101 -0.0056

[0.0335] [0.0450] [0.0298] [0.0430]
% white low performing 0.0586*** 0.1156*** 0.0526*** 0.0238

[0.0198] [0.0227] [0.0162] [0.0256]
% NW low performing -0.0044 -0.0188 -0.0012 -0.0070

[0.0184] [0.0249] [0.0164] [0.0237]
% nonwhite -0.0179*** -0.0127*** -0.0179*** -0.0215***

[0.0046] [0.0065] [0.0025] [0.0051]
% male -0.0002 0.0020 -0.0012 -0.0015

[0.0019] [0.0021] [0.0016] [0.0024]
% parents with HS degree -0.0310*** -0.0343*** -0.0323*** -0.0311***

[0.0058] [0.0074] [0.0053] [0.0077]
% parents with 4-year degree -0.0660*** -0.0973*** -0.0648*** -0.0468**

[0.0160] [0.0194] [0.0135] [0.0211]
Avg. free reading -0.0022 -0.0092** -0.0019 0.0031

[0.0039] [0.0048] [0.0031] [0.0049]

*significant at 10%; ** significant at 5%; *** significant at 1%. The marginal effects are for a one standard
deviation increase in the peer variable using the two-stage quantile regression regression broken out by
subgroup, i.e., that depicted in Figures 3 and 4. Marginal effects are averaged over quantiles for the first
column.
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Table 6: Average Marginal Effects of Peers for Nonwhites
(Dependent variable: standardized reading score)

Mean .1 Quantile Median .9 Quantile
Avg. white reading 0.1095 0.1589* 0.0444 0.1413

[0.0819] [0.0958] [0.0845] [0.0930]
Avg. nonwhite reading 0.1056* 0.0777 0.1265* 0.1285**

[0.0625] [0.0842] [0.0677] [0.0651]
% white low performing 0.0426 0.0687 0.0103 0.0564

[0.0385] [0.0453] [0.0399] [0.0436]
% NW low performing 0.0420 0.0345 0.0508 0.0504

[0.0293] [0.0398] [0.0311] [0.0307]
% nonwhite -0.0194** -0.0331*** -0.0203*** -0.0084

[0.0089] [0.0127] [0.0051] [0.0092]
% male 0.0014 0.0011 0.0009 0.0030

[0.0033] [0.0044] [0.0032] [0.0034]
% parents with HS degree -0.0352*** -0.0433*** -0.0334*** -0.0299***

[0.0059] [0.0079] [0.0057] [0.0059]
% parents with 4-year degree -0.0583*** -0.0786*** -0.0455** -0.0584***

[0.0173] [0.0217] [0.0156] [0.0188]
Avg. free reading 0.0012 -0.0014 0.0036 -0.0045

[0.0046] [0.0056] [0.0044] [0.0049]

*significant at 10%; ** significant at 5%; *** significant at 1%. The marginal effects are for a one standard
deviation increase in the peer variable using the two-stage quantile regression regression broken out by
subgroup, i.e., that depicted in Figures 3 and 4. Marginal effects are averaged over quantiles for the first
column.
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Table 7: Avg. Characteristics of Durham and Chapel Hill Public Schools
(Grades 4 and 5, Academic Year 2002-03)

Durham Chapel Hill
Reading 0.3164 1.0393
Avg. white reading 0.8700 1.2870
Avg. nonwhite reading 0.0432 0.1585
% Free/reduced pricelunch 0.4140 0.1476
% Nonwhite 0.6696 0.2195
% NW in avg. white class 0.5090 0.2222
% NW in avg. nonwhite class 0.7563 0.2497
% Parents with HS degree 0.6116 0.1862
% Parents with 4-year degree 0.3606 0.8014
N 4143 1294
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Table 8: Merger of Durham and Chapel Hill Districts (5th graders 2002-03, N=2,766)

Nonwhite White Gap Average
Durham Students

Observed 0.0623 0.9358 0.8736 0.3390
[0.0444, 0.0782] [0.9261, 0.9429] [0.8525, 0.8908] [0.3269, 0.3497]

Deseg. within district 0.1064 0.9607 0.8543 0.3771
[0.0881, 0.1739] [0.9265, 0.9873] [0.7840, 0.8756] [0.3566, 0.4222]

Deseg. across district 0.1603 1.0059 0.8456 0.4282
[0.1118, 0.2520] [0.9719, 1.0454] [0.7552, 0.8999] [0.3884, 0.4939]

Chapel Hill Students
Observed 0.1909 1.2968 1.1059 1.0597

[0.1913, 0.2257] [1.2833, 1.3126] [1.0728, 1.1091] [1.0525, 1.0778]
Deseg. within district 0.2358 1.3189 1.0830 1.0867

[0.2110, 0.2868] [1.3011, 1.3506] [1.0303, 1.1169] [1.0709, 1.1176]
Deseg. across district 0.2291 1.2914 1.0624 1.0637

[0.1666, 0.3531] [1.2510, 1.3476] [0.9659, 1.1428] [1.0265, 1.1203]
Overall

Observed 0.0739 1.0949 0.9296 0.5128
[0.0585, 0.0912] [1.0842, 1.1053] [1.0002, 1.0382] [0.5054, 0.5231]

Deseg. within district 0.1181 1.1185 0.9094 0.5482
[0.0998, 0.1838] [1.0938, 1.1449] [0.9310, 1.0254] [0.5288, 0.5862]

Deseg. across district 0.1666 1.1317 0.8978 0.5815
[0.1188, 0.2612] [1.0948, 1.1784] [0.8835, 1.0322] [0.5446, 0.6482]

95% confidence interval reported in brackets.
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Table 9: Durham to Chapel Hill

Nonwhite White Gap Average
Durham 5th graders 2002-03 (N=2,099)

Observed 0.0623 0.9358 0.8736 0.3390
Counterfactual 0.1346 1.0210 0.8864 0.4154
Change 0.0723 0.0852 0.0129 0.0764

Low Equilibrium Durham Schools
Observed -0.1155 0.3193 0.4348 -0.0950
Counterfactual 0.0314 0.6518 0.6203 0.0607
Change 0.1470 0.3325 0.1855 0.1557

Chapel Hill 5th graders 2002-03 (N=667)
Observed 0.1909 1.2968 1.1059 1.0597
Counterfactual 0.1224 1.1277 1.0053 0.9122
Change -0.0685 -0.1691 -0.1006 -0.1475
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A.3 Figures

Figure 1: Student Accountability in Charlotte-Mecklenburg Schools
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Figure 2: Comparison of Two Districts with Different Concentrations of Low Achievers
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Low achiever is defined as a student who performs below the 30th percentile based on prior test scores. In
the high percentage district 25% of students were in danger of failing as compared to only 14% in the low
percentage district.
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Figure 3: Effect of Average Peer Achievement: Two-stage quantile regression
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Figure 4: Exogenous Peer Group Composition Effects: % Nonwhite
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Figure 5: Achievement Gains from Merger of Durham and Chapel Hill
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Figure 6: Achievement Gap–Two Stage Quantile Regression
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Figure 7: Achievement Gap–2SLS
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