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1 Introduction

Since the seminal contributions of Oaxaca (1973) and Blinder (1973), one of the most

extensive strands of the literature in empirical labor economics has aimed at decompos-

ing intergroup wage differentials into components attributable to group composition and

net effects of group membership, often referred to as the explained component and the

unexplained component, respectively. Recently, several researchers (Barsky et al. 2002;

Black et al. 2006; Melly 2006; Fortin, Lemieux, and Firpo 2011) have noted that the unex-

plained component in the most basic version of the Oaxaca–Blinder decomposition is also

a consistent estimator of the population average treatment effect on the treated (PATT),

thus incorporating this technique into the treatment effects literature. Kline (2011) has

shown that such an estimator satisfies a beneficial “double robustness” property (Robins,

Rotnitzky, and Zhao 1994), since it constitutes a propensity score reweighting estimator

based on a linear model for the treatment odds. At the same time, semiparametric and

nonparametric extensions of the Oaxaca–Blinder decomposition have been proposed to

account for possible nonlinearities in the existing wage structures (Barsky et al. 2002;

Black et al. 2006; Frölich 2007; Mora 2008; Ñopo 2008) and the decomposition literature

has been extended to other distributional statistics besides the mean (Juhn, Murphy, and

Pierce 1993; DiNardo, Fortin, and Lemieux 1996; Machado and Mata 2005; Melly 2005;

Firpo, Fortin, and Lemieux 2007; Chernozhukov, Fernández-Val, and Melly 2012).

One of the major discussions in the Oaxaca–Blinder decomposition literature has con-

cerned the comparison group choice problem, i.e. the question of which wage structure

should be used as the counterfactual for observed wages.1 Both Oaxaca (1973) and Blin-

der (1973), whose main goal was to study U.S. gender wage gaps, referred to the problem

of choosing either male or female wage coefficients as an “index number problem”, thus

suggesting this choice to be unclear.2 Subsequent contributions have established a ten-

1Fortin et al. (2011) have referred to this as the “reference group choice problem”. I prefer the
expression of “comparison group” to distinguish this issue from the omitted group problem which is also
sometimes referred to as the issue of choosing “reference groups” (see, e.g., Oaxaca and Ransom 1999).

2As Oaxaca (1973, p. 695) put it: “On the basis of either of two assumptions, we can estimate the
male-female wage ratio that would exist in the absence of discrimination: If there were no discrimination,
1) the wage structure currently faced by females would also apply to males; or 2) the wage structure
currently faced by males would also apply to females”.

1



dency to regard the comparison coefficients as the “nondiscriminatory” or “competitive”

wage structure (Reimers 1983; Cotton 1988; Neumark 1988; Oaxaca and Ransom 1994;

Fortin 2008). It is only recently that Fortin et al. (2011) have distinguished between com-

parison wage structures based on the assumption of “simple counterfactual treatment”

(Oaxaca 1973; Blinder 1973) and alternative structures which “represent the appropriate

counterfactual for the way women would be paid in the absence of labor market discrim-

ination” (Fortin et al. 2011, p. 47). In that case, the latter structures are assumed to

capture what would happen in general equilibrium if discrimination ceased to exist.3

In this paper I challenge this common practice of interpreting the propositions of

Reimers (1983), Cotton (1988), and Fortin (2008) as reflecting “the world without dis-

crimination”. First, neither of these propositions has been based on a theoretical model

of the labor market, so they can hardly address such general equilibrium considerations.

Second, I use the treatment effects framework to show that these decompositions are

easily interpretable within it, and they estimate some generally uninteresting weighted

averages of subpopulation-specific average treatment effects.

A natural question in this context is whether the population average treatment effect

(PATE) can be consistently estimated with some new version of the Oaxaca–Blinder

decomposition. I derive such a new estimator which uses a linear combination of the

regression coefficients for both subpopulations (treated and nontreated, men and women,

union and nonunion workers, etc.) as the comparison wage structure. However, these

coefficients are weighted in a nonstandard way, namely the sample proportion of group

one is used to weight the coefficients for group two, and vice versa. Although such a

weighting procedure may at first look counterintuitive,4 the treatment effects framework

provides a clear rationale for this approach. Precisely, the role of each group’s wage

structure is to serve as counterfactual for the other group, so we need more weight to be

3This distinction mirrors the well-known discussion of union/nonunion wage gaps and wage gains in
Lewis (1986).

4Note that a similar estimator had already been used by Duncan and Leigh (1985) to estimate union
wage premiums, but such an approach was heavily criticized – as “not a very intuitive procedure” – by
Oaxaca and Ransom (1988, p. 143). Neither of these papers made any reference to the treatment effects
framework, which was then practically unknown in economics, while showing that such an estimator is
consistent for the PATE is a major contribution of the present paper.
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put on the coefficients for the smaller group in order to consistently estimate the PATE.

In this paper I also provide an empirical example which uses this new estimator as well

as other versions of the Oaxaca–Blinder decomposition to study gender wage differentials

with the UK Labour Force Survey (LFS) data, for each year from 2002 to 2010. I also use

normalized reweighting and a combination of stratification and different versions of the

Oaxaca–Blinder decomposition to account for possible nonlinearities in the existing wage

structures, and provide separate estimates of three parameters which I refer to as the

population average gender effect (PAGE), the population average gender effect on men

(PAGM), and the population average gender effect on women (PAGW). This is the first

paper to clarify the distinction between these parameters and provide separate estimates

for each of them.5

The remainder of this paper is organized as follows. In the next section, I briefly review

the treatment effects framework and the Oaxaca–Blinder decomposition. In Section 3,

I provide my theoretical contributions. In Section 4, I describe an empirical application

to UK gender wage differentials. Finally, I conclude and review my findings in Section 5.

2 Background

2.1 The Treatment Effects Framework

Consider a population of N individuals (i = 1, . . . , N) who belong to either of two

mutually exclusive groups indexed by di ∈ {0, 1}.6 The division of individuals into these

two groups is based on whether an individual has been exposed to regime referred to as

5Note, however, that I do not put forward a causal interpretation of these results, and do not use the
concept of potential outcomes to define average gender effects. First, no manipulation of the “treatment”
status is (typically) available in the context of being male or female. Hence no well-defined potential
outcomes exist. Second, the assumption of unconfoundedness is implausible in a study of gender wage
differentials, because in most studies there are several omitted control variables which have been shown
to be correlated with both gender and wages. Such covariates (which are absent in the majority of
microeconomic datasets) include subject of degree (Brown and Corcoran 1997; Loury 1997; Machin and
Puhani 2003; Black et al. 2008), test scores (Blackburn 2004), absenteeism (Ichino and Moretti 2009),
gender role attitudes (Fortin 2005), propensity to negotiate wages (Leibbrandt and List 2012), and various
personality traits (Mueller and Plug 2006; Fortin 2008; Manning and Swaffield 2008). For an insightful
discussion of “causal effects of perceived immutable characteristics”, see also Greiner and Rubin (2011).

6Since the treatment effects framework is now widespread in empirical microeconomics, I assume the
reader to be reasonably familiar with its basics. Recent reviews are given in Angrist and Pischke (2009),
Blundell and Costa Dias (2009), and Imbens and Wooldridge (2009).
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treatment. If unit i has been (has not been) exposed to treatment, she is called a treated

(nontreated) individual and di = 1 (di = 0). Moreover,
∑N

i=1 di = N1 and N0 + N1 = N ,

i.e. there are N1 (N0) treated (nontreated) individuals in the population. For each i, a

row vector of covariates, Xi, is also observed.

Let there also be a variable, the outcome, whose codetermination by the treatment

is of key interest. For each individual i, the realized (observable) outcome is denoted

by yi. It is assumed, however, there exist two potential outcomes which could have been

observed, y0i and y1i, dependent on whether the individual has been exposed to treatment.

If di = 1, then it is only y1i, the treated outcome, which is realized (and observed). On the

other hand, if di = 0, then we only observe y0i, the nontreated outcome. Consequently, it

is the group membership of each individual i which causes one of the potential outcomes

to become observable and the other to become counterfactual.

An extensive literature seeks to identify and estimate treatment effects. An individual-

specific treatment effect is defined as τi = y1i − y0i. Typically, these effects are averaged

over certain (sub)populations of interest. For the whole population, the population av-

erage treatment effect (PATE) is the appropriate parameter:

τPATE = E[τi] = E[y1i − y0i]. (1)

Alternatively, individual-specific treatment effects can be averaged over the subpopulation

of treated (nontreated) individuals to obtain the PATT (PATN), i.e. the population

average treatment effect on the treated (nontreated):

τPATT = E[τi | di = 1] and τPATN = E[τi | di = 0]. (2)

There are two main strands in the treatment effects literature, typically referred to

as selection on observables and selection on unobservables, and this division is based on

their identifying assumptions. The present paper refers only to selection on observables

(unconfoundedness), i.e. a strand which assumes that treatment is orthogonal to potential

outcomes, conditional on Xi. Under unconfoundedness various average treatment effects
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of interest can be estimated using regression methods, methods based on the propensity

score, matching on covariates, and their various combinations (see, e.g., Imbens and

Wooldridge 2009 for an excellent review). Recent contributions of Barsky et al. (2002),

Black et al. (2006), Melly (2006), Fortin et al. (2011), and Kline (2011) have noted that a

consistent estimator of the PATT is also provided by the Oaxaca–Blinder decomposition.

2.2 The Oaxaca–Blinder Decomposition

Let the model for outcomes be linear and separable in observable and unobservable char-

acteristics, and allow the regression coefficients to be different for both groups of interest:

yi = Xiβ1 + υ1i if di = 1 and yi = Xiβ0 + υ0i if di = 0, (3)

where E[υ1i | Xi] = E[υ0i | Xi] = 0. Suppose we are concerned with decomposing gender

wage differentials. In that case, let di = 1 for males and di = 0 for females, and let yi be

the observed (log) wages. The gender wage differential, E[yi | di = 1]−E[yi | di = 0], can

then be decomposed into two components:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 1] · (β1 − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β0, (4)

where the first element, E[Xi | di = 1] · (β1 − β0), reflects gender differences in regression

coefficients, and is often referred to as the unexplained component, while the second

element, (E[Xi | di = 1]−E[Xi | di = 0]) ·β0, reflects gender differences in mean covariate

values, and is often referred to as the explained component. Similarly:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 0] · (β1 − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β1. (5)

The difference between Equations 4 and 5 rests upon using alternate comparison coeffi-

cients to calculate the explained component as well as measuring the distance between

5



the regression functions, β1 − β0, for a different set of covariate values. Moreover, under

unconfoundedness consistent estimators of the PATT and the PATN are also provided

by Equations 4 and 5:

τPATT = E[Xi | di = 1] · (β1 − β0) and τPATN = E[Xi | di = 0] · (β1 − β0). (6)

There has been a long-lasting tendency in the decomposition literature to claim that

the choice of the comparison group in this context (choosing between Equations 4 and 5) is

necessarily ambiguous (see, e.g., Oaxaca 1973; Elder, Goddeeris, and Haider 2010).7 The

standard response has been to suggest alternative wage structures to solve this comparison

group choice problem. Such an approach has often been referred to as “generalized

Oaxaca–Blinder”, and it involves performing an alternative decomposition:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗, (7)

where β∗ is the set of comparison coefficients, typically referred to as the “nondiscrimi-

natory” or “competitive” wage structure.

Several influential papers have been devoted to suggesting alternative sets of com-

parison coefficients for Equation 7, and these coefficients have often been formulated as

β∗ = λ · β1 + (1 − λ) · β0 where λ ∈ {0, 1} is a weighting factor. If λ = 0, then women

are used as reference, β∗ = β0, and Equation 7 simplifies to Equation 4. Similarly, if

λ = 1, then men are used as reference, β∗ = β1, and Equation 7 simplifies to Equation 5.

Alternatively, Reimers (1983) suggested λ = 1
2

and Cotton (1988) suggested λ = N1

N0+N1
,

the population proportion of group one. Moreover, Neumark (1988) developed a simple

model of Beckerian discrimination, and showed that identification of the nondiscrimina-

tory wage structure is ensured, for example, if the utility function of the representative

producer is homogeneous of degree zero with respect to male and female labor inputs

(within each type of labor). Such a wage structure can be approximated by regression

7See, e.g., Black et al. (2006, 2008) for a different view which is close in spirit to the present paper.
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coefficients in a pooled model which excludes group membership (Neumark 1988). Al-

though this solution to the comparison group choice problem was popularized by Oaxaca

and Ransom (1994) and has been the most popular alternative to the basic Oaxaca–

Blinder decomposition (Weichselbaumer and Winter-Ebmer 2005), it has been criticized

by Fortin (2008) and Elder et al. (2010), since exclusion of the group membership dummy

can bias coefficients on other covariates which also affects the unexplained component.

Therefore, Fortin (2008) has proposed to use a pooled model including group membership

as the comparison wage structure. As noted by Fortin (2008) and Fortin et al. (2011),

the unexplained component in such a decomposition is equal (by construction) to the co-

efficient on the group membership dummy in linear regression. Consequently, empirical

researchers can currently choose between six versions of the Oaxaca–Blinder decomposi-

tion.8 Below I provide a further alternative and a treatment-effects reinterpretation of

Reimers (1983), Cotton (1988), and Fortin (2008).

3 Population Average Gender Effects

3.1 New Estimands

Using notation from Section 2, let di = 1 for males and di = 0 for females. Also, let yi be

the observed (log) wage. In that case, E[yi | Xi = x, di = 1] is the expected (log) wage of

a male with observable characteristics Xi = x and E[yi | Xi = x, di = 0] is the expected

(log) wage of a female with these characteristics. Moreover, define the average gender

effect conditional on Xi = x as τ(x) = E[yi | Xi = x, di = 1] − E[yi | Xi = x, di = 0],

i.e. the gap between the expected (log) wages of a male and a female with Xi = x.9

Dependent on the question we wish to answer, we may average these conditional average

gender effects over the whole population, over the subpopulation of men or over the

8These include: two original versions of the Oaxaca–Blinder decomposition which also provide consis-
tent estimators of the PATT and the PATN (Oaxaca 1973; Blinder 1973); and four further “generalized
Oaxaca–Blinder” decompositions (Reimers 1983; Cotton 1988; Neumark 1988; Fortin 2008).

9Note, again, that the notion of potential outcomes is not used in this definition. Also, unconfound-
edness is not required to identify such gaps, as long as they are not interpreted as causal. For a related
discussion of the causal interpretability of counterfactual distributions, see Chernozhukov et al. (2012).
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subpopulation of women. Define:

τPAGE = E[τ(Xi)] (8)

as the population average gender effect (PAGE). Note that this parameter is an equivalent

of the population average treatment effect (PATE). Moreover, denote:

τPAGM = E[τ(Xi) | di = 1] and τPAGW = E[τ(Xi) | di = 0] (9)

as the population average gender effect on men (PAGM) and the population average gen-

der effect on women (PAGW), respectively. Similarly, these parameters can be regarded

as equivalents of the PATT and the PATN. Moreover, since di = 1 for males, the PAGM

can be consistently estimated with the unexplained component of the Oaxaca–Blinder

decomposition in Equation 4, while the PAGW can be consistently estimated with the

unexplained component of the decomposition in Equation 5.10 Consequently, as already

noted by Black et al. (2006, 2008), there can hardly be any ambiguity about choosing

either male or female wage structure in the Oaxaca–Blinder decomposition, in spite of

many views to the contrary (see, e.g., Elder et al. 2010, p. 284). Any such choice should

be based on whether we are interested in the average male gain in comparison with similar

women (PAGM) or in the average female loss in comparison with similar men (PAGW).

No assumptions about (and no reference to) the “nondiscriminatory” wage structure are

needed to perform a meaningful decomposition, in spite of a strong tendency in the liter-

ature to claim otherwise (see, e.g., Oaxaca and Ransom 1994, p. 8; Mora 2008, p. 464).

3.2 Advantages of the PAGE Approach

In this paper I suggest a considerable reformulation of the Oaxaca–Blinder decomposi-

tion methodology. Instead of comparing current wages of both genders with an assumed

10In other words, whenever we use the male wage structure as reference in the Oaxaca–Blinder de-
composition, the unexplained component provides an estimate of the population average gender effect on
women (PAGW). If we use the female wage structure as reference, we estimate the population average
gender effect on men (PAGM).

8



“nondiscriminatory” wage structure, I argue that it is more informative to compare cur-

rent wages of men with current wages of similar women (and vice versa) and to estimate

the corresponding population average gender effects. This subsection lays out several

arguments for such an approach.

First, as already noted, comparisons of individual wages with an hypothesized nondis-

criminatory wage structure are unlikely to be meaningful if such a structure is not derived

from a theoretical model of the labor market. In the absence of such a model, a decom-

position intends to be structural without a structure, and this is true in the case of

the propositions in Reimers (1983), Cotton (1988), and Fortin (2008). The only excep-

tion is the Neumark (1988) decomposition which is derived from a theoretical model of

discrimination whose assumptions are, however, highly debatable.11

Second, the idea of comparing current wages of men (women) with current wages of

women (men) who possess similar observable characteristics is arguably more intuitive

and closer to the most common view of nondiscrimination as “equal pay for equal work”.

Third, an explicit definition of the underlying parameters as population average gen-

der effects induces a good explanation of an important empirical regularity which has

often been quoted in the decomposition literature. Namely, Fortin et al. (2011, p. 47)

have acknowledged that “[t]ypically . . . , with the female wage structure as reference, the

explained part of the decomposition (composition effect) is smaller than with the male

wage structure as reference”. Note that the traditional approach to the Oaxaca–Blinder

decomposition does not allow for a straightforward interpretation of such a phenomenon,

and indeed Fortin et al. (2011) do not provide it. However, as soon as one realizes that

this empirical regularity is equivalent to the PAGM being consistently larger than the

PAGW, an interpretation immediately becomes clear. Precisely, because men are located,

on average, higher in the wage distribution than women, such a phenomenon means that

11Namely, Neumark (1988) based his decomposition on a model of Beckerian discrimination. However,
statistical discrimination was therefore assumed out, while such a restriction is not necessarily supported
by empirical studies. Neumark (1999) and Belley, Havet, and Lacroix (2012) have suggested that sta-
tistical discrimination against women exists in the U.S. labor market. In nonlabor settings, Ayres and
Siegelman (1995) and List (2004) discovered statistical discrimination against women in the car market
and in the sportscard market, respectively. On the other hand, Levitt (2004) and Antonovics, Arcidia-
cono, and Walsh (2005) ruled out statistical discrimination in a TV game show. See Oettinger (1996),
Altonji and Pierret (2001), and Siniver (2011) for studies of other groups of workers.
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average gender effects tend to increase with wages. In such a situation, one can suspect,

for example, the existence of a glass ceiling (see, e.g., Albrecht, Björklund, and Vroman

2003; Arulampalam, Booth, and Bryan 2007; de la Rica, Dolado, and Llorens 2008), i.e. a

situation in which the wage gap “increases throughout the wage distribution with a sharp

acceleration in the upper tail of the distribution” (Albrecht et al. 2003).

Fourth, as noted by Fortin et al. (2011), such a relationship between the Oaxaca–

Blinder decomposition literature and the treatment effects literature allows for clarifying

the assumptions which underlie decomposition methods as well as using selected estima-

tors of average treatment effects in studies of gender wage differentials. If an estimator

has good properties in estimating the PATE (PATT), it is also advisable for the PAGE

(PAGM, PAGW). To give an example, in Section 4 I use normalized reweighting and a

combination of stratification and different versions of the Oaxaca–Blinder decomposition

to provide estimates of the PAGE, the PAGM, and the PAGW in the UK labor market.

3.3 A Consistent Estimator of the PAGE/PATE

In this subsection I develop a consistent estimator of the population average gender ef-

fect (PAGE) and, equivalently, of the population average treatment effect (PATE). This

alternative estimator is based on a nonstandard version of the Oaxaca–Blinder decompo-

sition, and it uses Equation 7 and a comparison wage structure constructed as a specific

linear combination of the regression coefficients for both subpopulations of interest.

Proposition 1 (Oaxaca–Blinder as an Estimator of the PAGE/PATE ). The

population average gender effect (PAGE) can be consistently estimated with Equation 7

if β∗ = N0

N0+N1
· β1 + N1

N0+N1
· β0.

Proof. Combine Equation 7 with β∗ = N0

N0+N1
· β1 + N1

N0+N1
· β0 and reformulate:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

= E[Xi | di = 1] · (β1 − (
N0

N0 +N1

· β1 +
N1

N0 +N1

· β0))
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+ E[Xi | di = 0] · (( N0

N0 +N1

· β1 +
N1

N0 +N1

· β0)− β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
N1

N0 +N1

· E[Xi | di = 1] · (β1 − β0)

+
N0

N0 +N1

· E[Xi | di = 0] · (β1 − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
N1

N0 +N1

· τPAGM +
N0

N0 +N1

· τPAGW

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

= τPAGE + (E[Xi | di = 1]− E[Xi | di = 0]) · β∗. (10)

Q.E.D.

Although using the population proportion of group one (two) to weight the coefficients

for group two (one) may at first look counterintuitive, each of the wage structures plays

a clearly defined role in such a decomposition – to serve as counterfactual for the other

group. This is exactly the reason why more weight should be put on the wage structure

of the smaller group which is used to provide a counterfactual for the larger one.

Interestingly, this alternative estimator is equivalent to a flexible OLS estimator of the

PATE presented in Wooldridge (2002) and Imbens and Wooldridge (2009), i.e. τPATE can

equivalently be estimated as the coefficient on di in the regression of yi on 1, di, Xi, and

di · (Xi −X). Precisely, Imbens and Wooldridge (2009, p. 29) show that such a flexible

OLS estimator can alternatively be written as:

τ̂PATE = y1 − y0 − (
N0

N0 +N1

· β̂1 +
N1

N0 +N1

· β̂0) · (X1 −X0), (11)

which is the sample counterpart of the Oaxaca–Blinder estimator in Proposition 1.12

12Similarly, the unexplained component of the Oaxaca–Blinder decomposition in Equation 4 is equal
(by construction) to the coefficient on di in the regression of yi on 1, di, Xi, and di · (Xi −X1) and the
unexplained component of the Oaxaca–Blinder decomposition in Equation 5 is equal (by construction)
to the coefficient on di in the regression of yi on 1, di, Xi, and di · (Xi −X0).
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3.4 Reimers (1983), Cotton (1988), Fortin (2008), and PAGE

The logic and approach of the previous subsection applies also to the well-known solutions

to the comparison group choice problem which have been provided by Reimers (1983),

Cotton (1988), and Fortin (2008). To preview my conclusions, each of the unexplained

components in these decompositions is a consistent estimator of a weighted average of

the population average gender effect on men (PAGM) and the population average gender

effect on women (PAGW).

Proposition 2 (A Reinterpretation of Reimers 1983 ). The unexplained compo-

nent of the Reimers (1983) decomposition is a consistent estimator of 1
2
·τPAGM+ 1

2
·τPAGW ,

i.e. the arithmetic mean of the population average gender effect on men (PAGM) and the

population average gender effect on women (PAGW).

Proof. To prove Proposition 2, combine Equation 7 with β∗ = 1
2
· β1 + 1

2
· β0 and

reformulate:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

= E[Xi | di = 1] · (β1 − (
1

2
· β1 +

1

2
· β0))

+ E[Xi | di = 0] · ((1

2
· β1 +

1

2
· β0)− β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
1

2
· E[Xi | di = 1] · (β1 − β0)

+
1

2
· E[Xi | di = 0] · (β1 − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
1

2
· τPAGM +

1

2
· τPAGW

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗. (12)

Q.E.D.
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Consequently, the Reimers (1983) decomposition has a clear interpretation as an estima-

tor of the arithmetic mean of the population average gender effect on men (PAGM) and

the population average gender effect on women (PAGW). As an example, assume that

τPAGM = 0.3 and τPAGW = 0.1, and also the proportion of men in the working popula-

tion equals 60%. In that case, although τPAGE would equal 0.22, the expectation of the

unexplained component of the Reimers (1983) decomposition would equal 0.2. When the

proportion of men (women) in the sample changes, then the unexplained component of

the Reimers (1983) decomposition does not change, even though τPAGE might increase

or decrease. Anyway, the Reimers (1983) decomposition is likely to overstate the impor-

tance of the smaller group when estimating average gender effects by attaching too large

a weight (1
2
> N0

N0+N1
) to the effect on this group.

Proposition 3 (A Reinterpretation of Cotton 1988 ). The unexplained component

of the Cotton (1988) decomposition is a consistent estimator of N0

N0+N1
· τPAGM + N1

N0+N1
·

τPAGW , i.e. a weighted average of the population average gender effect on men (PAGM)

and the population average gender effect on women (PAGW), with reversed weights at-

tached to both these effects (the population proportion of men is used to weight the PAGW

and the population proportion of women is used to weight the PAGM).

Proof. See S loczyński (2012) for a proof of an equivalent proposition in the treatment

effects context. This proof is restated in the Appendix for completeness.

Although the comparison wage structure proposed by Cotton (1988) is somehow similar to

the new structure in Proposition 1, the Cotton (1988) decomposition should arguably be

of little interest for empirical researchers, since it implicitly changes the “natural” weights

attached to the average effects on both subpopulations of interest. Using the example

above, if τPAGM = 0.3, τPAGW = 0.1, and N1

N0+N1
= 60% (and, therefore, τPAGE = 0.22),

then the expectation of the unexplained component of the Cotton (1988) decomposition

would equal 0.18, again overstating the importance of the smaller group. Also, note

that the larger the population proportion of a given group, the more distant is the un-

13



explained component of the Cotton (1988) decomposition from the average effect on this

group. When the proportion of women in the working population goes up, the Cotton

(1988) decomposition increases the weight which is attached to the population average

gender effect on men.

Proposition 4 (A Reinterpretation of Fortin 2008 Under Homogeneous Av-

erage Gender Effects). If average gender effects are homogeneous, τ(x) = τ , the

unexplained component of the Fortin (2008) decomposition is a consistent estimator of

the population average gender effect (PAGE), the population average gender effect on men

(PAGM), and the population average gender effect on women (PAGW).

Proof. See Wooldridge (2002, p. 611–612) for a proof of an equivalent proposition that

simple OLS provides a consistent estimator of the PATE and the PATT under homoge-

neous treatment effects. This proof is restated in the Appendix for completeness.

If gender effects are homogeneous, i.e. τ(x) = τ for all x, the Fortin (2008) decomposition

provides a consistent estimator of the PAGE, the PAGM, and the PAGW.13 This result

should not be surprising, as it is a simple extrapolation of the well-known proposition that

simple OLS provides a consistent estimator of various average treatment effects whenever

they are homogeneous. On the other hand, it is much less established what exactly is

provided by simple OLS if the assumption of homogeneous treatment effects is relaxed

and heterogeneity is allowed.

Proposition 5 (A Reinterpretation of Fortin 2008 Under Heterogeneous Av-

erage Gender Effects). If Xi is a scalar whose variance is equal in the male and

female subpopulations, the unexplained component of the Fortin (2008) decomposition is

a consistent estimator of N0

N0+N1
·τPAGM + N1

N0+N1
·τPAGW , i.e. a weighted average of the pop-

ulation average gender effect on men (PAGM) and the population average gender effect

13The subsequent discussion uses the fact that the unexplained component of such a decomposition
is equal (by construction) to the coefficient on the group membership dummy in a pooled regression
(Fortin 2008; Fortin et al. 2011).
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on women (PAGW), with reversed weights attached to both these effects (the population

proportion of men is used to weight the PAGW and the population proportion of women

is used to weight the PAGM).

Proof. See S loczyński (2012) for a proof of an equivalent proposition in the context of

linear least squares regression and treatment effects. Alternatively, see Elder et al. (2010)

and combine their result with Proposition 3 in the present paper. The proof is restated

in the Appendix for completeness.

In a recent paper, Elder et al. (2010) discussed various versions of the Oaxaca–Blinder

decomposition. For example, they proved that the coefficient on the group membership

dummy in a simple linear regression is equal (by construction) to the unexplained compo-

nent of the Cotton (1988) decomposition whenever Xi is a scalar whose variance is equal

in both subpopulations of interest. This result in Elder et al. (2010) is sufficient to prove

Proposition 5. Precisely, if the assumption of homogeneous gender effects is relaxed, then

– under these additional assumptions on Xi – the unexplained component of the Fortin

(2008) decomposition equalizes with the unexplained component of the Cotton (1988)

decomposition, while this parameter – under Proposition 3 – is precisely a weighted aver-

age of the population average gender effect on men (PAGM) and the population average

gender effect on women (PAGW), with reversed weights attached to both these effects.

In consequence, also the Fortin (2008) decomposition might overstate the importance of

the smaller group when estimating average gender effects.

Using the same numerical example again, if τPAGM = 0.3, τPAGW = 0.1, and N1

N0+N1
=

60% (τPAGE = 0.22), then the expectation of the unexplained component of the Fortin

(2008) decomposition would equal 0.18 whenever the assumptions above are satisfied.

Clearly, these assumptions are often too strong, but Proposition 5 should still (arguably)

provide a useful benchmark for predicting the behavior of the Fortin (2008) estimator.

In consequence, whenever we are concerned with gender effect heterogeneity, there is

good reason to choose the new version of the Oaxaca–Blinder decomposition in Propo-

sition 1 to estimate the population average gender effect (PAGE). When instead we use
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the Reimers (1983), Cotton (1988), or Fortin (2008) decompositions, we risk overstating

the importance of the smaller subpopulation. As an extreme example, assume that the

proportion of men in the population goes to zero. In that case, in the limit, the unex-

plained components of the Cotton (1988) and Fortin (2008) decompositions equalize with

the population average gender effect on men (PAGM), i.e. the group which has become

absent by assumption.

3.5 A Semiparametric Extension

If we indeed decide to aim at estimating the population average gender effect (PAGE),

the population average gender effect on men (PAGM), and the population average gen-

der effect on women (PAGW), i.e. parameters which are equivalent to various average

treatment effects, then any of the standard estimators of the PATE and the PATT can

be used to estimate the PAGE and the PAGM/PAGW, respectively, and we can safely

assume that the better an estimator is for various average treatment effects, the better

it is also for various average gender effects.

For example, consider a recent survey by Imbens and Wooldridge (2009) which has

provided a strong case for various combinations of linear regression and either match-

ing or methods based on the propensity score. A combination of stratification (on the

propensity score) and linear regression has been suggested by the authors as “one of the

more attractive estimators in practice” (Imbens and Wooldridge 2009, p. 41), while this

estimator is also known for having performed best in an influential study by Dehejia and

Wahba (1999). Such an estimator does not allow, however, for within-strata treatment

effect heterogeneity. Since the Oaxaca–Blinder decomposition can be regarded as a ver-

sion of flexible OLS (in the sense that it allows for gender/treatment effect heterogeneity),

such a shortcoming of the estimator suggested by Imbens and Wooldridge (2009) can be

addressed by a combination of stratification and the Oaxaca–Blinder decomposition.

Such a semiparametric estimator of the population average gender effect (PAGE)

requires a first-step estimation of the propensity score, i.e. the conditional probability

16



that a sample member is female (male) given his or her covariate values.14 The estimated

propensity score is then used to divide the whole sample into J strata. For each stratum j,

a separate estimate of the population average gender effect, τ̂PAGE, j, is obtained using the

decomposition in Proposition 1. Also, the estimated variance, V̂PAGE, j, can be computed,

and these estimates are averaged using a procedure in Imbens and Wooldridge (2009):

τ̂PAGE =
J∑

j=1

(
Nj0 +Nj1

N
) · τ̂PAGE, j and V̂PAGE =

J∑
j=1

(
Nj0 +Nj1

N
)2 · V̂PAGE, j. (13)

Similarly, an analogous estimator of the population average gender effect on men (PAGM)

involves estimating Equation 4 in each of the strata, while the population average gender

effect on women (PAGW) can be estimated with the use of the Oaxaca–Blinder decom-

position in Equation 5. These within-strata estimates are averaged to obtain:

τ̂PAGM =
J∑

j=1

(
Nj1

N1

) · τ̂PAGM, j and V̂PAGM =
J∑

j=1

(
Nj1

N1

)2 · V̂PAGM, j, (14)

τ̂PAGW =
J∑

j=1

(
Nj0

N0

) · τ̂PAGW, j and V̂PAGW =
J∑

j=1

(
Nj0

N0

)2 · V̂PAGW, j. (15)

These estimators require fewer functional form assumptions compared with the fully para-

metric approach, and such a property might be important to ensure robustness in the

presence of nonlinearities in the existing wage structures (see, e.g., Barsky et al. 2002).

They can also provide a useful alternative outside the gender wage differentials context,

and can be used to semiparametrically estimate the PATE or the PATT. These estima-

tors are tested in an empirical application in the next section together with parametric

Oaxaca–Blinder decompositions and normalized reweighting.15

14See Frölich (2007) for an early application of methods based on the propensity score in a study of
gender wage differentials.

15The latter estimator has recently been recommended by Busso, DiNardo, and McCrary (2011) on
the basis of an empirical Monte Carlo study tailored to the problem of estimating black-white wage gaps.
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4 An Empirical Application

In this section various versions of the Oaxaca–Blinder decomposition are compared in an

application to the UK gender wage gap.16 The source of data is the Quarterly Labour

Force Survey (LFS), 2002Q1–2010Q4 (Office for National Statistics 2008–2011). In this

application I append all the quarterly datasets and restrict the resulting sample in such a

way that yearly representative results, for each year from 2002 to 2010, can be produced.

I further restrict the 2002–2010 LFS dataset to those individuals who are at least

18 years old, have reported nonzero average gross hourly pay, and do not have missing

information on any of the control variables specified below. The outcome variable of

interest is the log hourly wage and in all instances sample weights recommended for

income data are used. The set of control variables includes polynomials in age, tenure,

and potential experience17 as well as dummies for country of residence (4 categories),

ethnic origin (11 categories), marital status (5 categories), occupation (9 categories), and

public/private sector.

Table 1 presents descriptive statistics for outcome and selected control variables in

all the yearly samples and Table 2 presents a comparison of various Oaxaca–Blinder

estimators of the covariate-adjusted gender wage differential (including estimates of the

PAGE, the PAGM, and the PAGW) as well as yearly measures of the unadjusted wage

gap. All these measures have generally been falling between 2002 and 2010, and have

reached their minimum values in 2010. For example, the unadjusted wage gap has fallen

from 23.06 to 16.86 log points, while the PAGM and the PAGW have fallen from 19.97

to 15.69 log points and from 15.59 to 12.28 log points, respectively.

There are several other empirical regularities which are worth mentioning. The popu-

lation average gender effect on men (PAGM) is larger than the population average gender

16All the applications of the Oaxaca–Blinder decomposition presented in this paper use the oaxaca

command in Stata (Jann 2008). The new version of the Oaxaca–Blinder decomposition in Proposition 1
is also easily implementable using this command. If local macros prf and xvars contain the proportion
of women in the estimation sample and the list of control variables, respectively, then this estimator can
be applied as oaxaca lnwage ‘xvars’, by(female) weight(‘prf’).

17For current students, potential experience is coded as 0. For individuals with no education, potential
experience is coded as the number of years since the age of fifteen.
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effect on women (PAGW) in a very robust way.18 This difference was as large as 3–5 log

points in all years and always statistically significant at the 1% level.19 In consequence,

men gain typically more in comparison with similar women than women lose in com-

parison with similar men. As already noted, such a phenomenon means that average

gender effects tend to increase with wages. Indeed, the coefficient estimates for a series

of quantile regressions suggest that in most years average gender effects at the top of the

UK wage distribution (90th centile) were at least 3 log points larger than at the bottom

of this distribution (10th centile).20 Both time series of estimates (τ̂PAGM and τ̂PAGW )

are also plotted in Figure 1, together with 95% confidence intervals.

At the same time, the Reimers (1983) and Cotton (1988) estimates of the covariate-

adjusted gender wage differential as well as the Oaxaca–Blinder estimates of the popu-

lation average gender effect (PAGE) lie always (by construction) in between the corre-

sponding estimates of the PAGM and the PAGW. The Reimers (1983), Cotton (1988),

and PAGE estimates are, however, not only bounded by τ̂PAGM and τ̂PAGW , but also

exactly equal (again by construction) to their weighted average, with weights equal to

sample proportions of men and women (PAGE), reversed sample proportions of both

groups (Cotton 1988), and 0.5 and 0.5 (Reimers 1983). Moreover, the Neumark (1988)

estimates of the adjusted gender wage differential are always significantly lower (again, at

the 1% level) than any other estimates (see Elder et al. 2010 for a theoretical explanation).

All of these time series of estimates, together with τ̂PAGM , τ̂PAGW , and Fortin (2008),

are also plotted in Figure 2. As evident in Figure 2, the differences between τ̂PAGE and

the Reimers (1983) and Cotton (1988) estimates are quantitatively quite small. Note,

however, that this is an artifact of nearly equal sample proportions of men and women

18As noted in Section 3, such a phenomenon has already been documented in the literature without
any reference to the concept of average gender effects and without a convincing explanation. See, e.g.,
Fortin et al. (2011, p. 47).

19All the tests of statistical significance referred to in this section are based on bootstrap standard
errors of the estimated differences between the unexplained components of various versions of the Oaxaca–
Blinder decomposition (with 100 resamples).

20One can also suspect the existence of the so-called glass ceiling effect. However, the results of the
quantile regressions provide mixed evidence on the existence of a glass ceiling in the UK labor market.
Although average gender effects generally increase throughout the wage distribution, their acceleration
in this distribution’s upper tail can rarely be regarded as “sharp”. See Arulampalam et al. (2007) for
related evidence on glass ceilings across EU countries, including the United Kingdom.
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Figure 1: A Comparison of the Population Average Gender Effect on Men (PAGM) and
the Population Average Gender Effect on Women (PAGW) in the UK Labor Market

in the LFS data. If these proportions were significantly different (e.g., when analyzing

ethnic/racial wage gaps, or union wage premiums, or gender wage differentials within a

predominantly male/female occupation, etc.), the estimates would tend to diverge.

Also, note that these differences, however small, are always statistically significant.

Further evidence on the differences between various Oaxaca–Blinder decompositions is

provided in Table 3 by presenting bootstrap standard errors (based on 100 resamples) of

the estimated differences between τ̂PAGE – the new estimator of the present paper – and

other Oaxaca–Blinder estimators of the adjusted gender wage differential, and testing the

statistical significance of these differences. All these differences are statistically significant

at the 5% level in all years (and, in most cases, also at the 1% level). We get the expected

result that τ̂PAGE is always significantly smaller than τ̂PAGM and larger than τ̂PAGW .

Also, consistent with the evidence in Elder et al. (2010), τ̂PAGE is always significantly

larger than the unexplained component of the Neumark (1988) decomposition, and this

difference is quantitatively quite large (4–6 log points). Importantly, however, Table 3
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Figure 2: A Comparison of Various Oaxaca–Blinder Estimators of the Adjusted Gender
Wage Differential in the UK Labor Market

reestablishes the empirical relevance of this paper’s critique of the Reimers (1983), Cotton

(1988), and Fortin (2008) decompositions. In all years these estimators overstate the

importance of τ̂PAGW (the effect on the smaller subpopulation) in estimating average

gender effects, and consequently τ̂PAGE is always significantly larger than the unexplained

components of these decompositions (because τ̂PAGM > τ̂PAGW ).21 In other words, using

the Reimers (1983), Cotton (1988), or Fortin (2008) decompositions would negatively

bias the estimate of the population average gender effect (PAGE) in an application to

21At first, this might be seen as surprising, given the small differences between τ̂PAGE and selected
other estimates. Take the difference between τ̂PAGE (17.86 log points) and the Reimers (1983) estimate
(17.78 log points) in 2002 as an example. Both these parameters are estimated with an error of 0.56 log
points, so it is natural to expect that the difference of 0.08 log points between them is not statistically
significant. As shown in Table 3, however, this is not the case, since this difference is actually estimated
with a very small error of 0.02. Why is the initial intuition wrong? First, note that these estimates are (by
construction) positively correlated over repeated samples. When τ̂PAGE is relatively large, the Reimers
(1983) estimate is also likely to be large, but probably smaller than τ̂PAGE (since τ̂PAGM > τ̂PAGW ).
Second, note that the null hypothesis of N1

N0+N1
·τPAGM + N0

N0+N1
·τPAGW = 1

2 ·τPAGM + 1
2 ·τPAGW can be

equivalently written as ( N1

N0+N1
− 1

2 ) · (τPAGM − τPAGW ) = 0. That the second factor (τPAGM − τPAGW )
is significantly larger than zero is evident from Figure 1. Using a one-proportion z-test and data in
Table 1, the equality of N1

N0+N1
and 1

2 can also be rejected (in favor of N1

N0+N1
> 1

2 ). Of course, a similar
logic applies also to other tests of statistical significance in Table 3.
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the UK labor market, although these biases can be quite small in the present application.

Tables 2–3 and Figure 2 also suggest that the empirical relationship between the

Oaxaca–Blinder estimates of various average gender effects and the corresponding Fortin

(2008) estimates is less clear than Proposition 5 would suggest. Indeed, while it is ex-

pected that the Fortin (2008) estimates should be approximately equal to the Cotton

(1988) estimates, the former are generally significantly smaller than the latter. Never-

theless, the correlation between the differenced series is very high (0.93) and – as already

noted and consistent with Proposition 5 – both the Cotton (1988) and Fortin (2008)

decompositions tend to overstate the importance of the smaller group when estimating

average gender effects. Indeed, also the Fortin (2008) estimates are always closer to

τ̂PAGW (the effect on the smaller group) than τ̂PAGM (the effect on the larger group),

while such a property is clearly undesirable.

As a robustness check, Table 4 presents a comparison of various estimators of the

PAGE, the PAGM, and the PAGW, both parametric (Oaxaca–Blinder) and semipara-

metric (stratification and Oaxaca–Blinder, normalized reweighting). Importantly, all the

qualitative results on the relationship between the PAGM and the PAGW are confirmed.

Also, the trends in the estimated average gender effects are very similar. This pattern is

consistent with the recent evidence in Ñopo (2008) who has concluded that the linearity

assumption is not particularly problematic when decomposing gender wage gaps.

5 Summary

In this paper I have introduced a new concept of average gender effects, and have shown

how this concept can be used to reformulate the Oaxaca–Blinder approach to decompos-

ing gender wage differentials. I have argued for a framework in which current wages of

men are compared with current wages of similar women (and vice versa), and not with

an hypothesized “nondiscriminatory” wage structure. To provide a tool for such com-

parisons, I have derived an alternative solution to the comparison group choice problem

which is fundamental in Oaxaca–Blinder, while this new decomposition can be used to
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consistently estimate the population average gender effect (PAGE) and the population

average treatment effect (PATE). I have also pointed out that several other versions of the

Oaxaca–Blinder decomposition (Reimers 1983; Cotton 1988; Fortin 2008) can produce

misleading results in empirical applications, since each of them is likely to overstate the

importance of the smaller of the subpopulations (men and women, treated and nontreated,

union and nonunion workers, etc.) when estimating average gender (treatment) effects.

This approach has also been illustrated empirically in an application to UK gender

wage differentials. Using data from the Quarterly Labour Force Survey (LFS) I have

estimated the population average gender effect (PAGE), the population average gender

effect on men (PAGM), and the population average gender effect on women (PAGW)

for the UK working population, for each year from 2002 to 2010. The major empirical

finding of this study is that men gain typically more in comparison with similar women

than women lose in comparison with similar men (the PAGM is consistently larger than

the PAGW). This phenomenon is explained by the fact that average gender effects tend

to increase with wages and this is indeed the case in the UK labor market.

Future work might involve establishing formal conditions under which causal effects

of gender can be estimated (for seminal discussions, see Greiner and Rubin 2011 and

Huber 2012) and, as already suggested by Fortin et al. (2011), improving the economic

structure behind decomposition methods. Before these paths can be successfully taken,

however, it is crucial to bridge the gap between the decomposition literature and the

treatment effects literature. Following an important review in Fortin et al. (2011), the

present paper has attempted to take this ongoing discussion one step further by providing

a new (Oaxaca–Blinder) estimator of the PATE as well as clarifying the treatment-effects

interpretation of the Reimers (1983), Cotton (1988), and Fortin (2008) decompositions.
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Appendix

Proof of Proposition 3. (Note that this proof is due to S loczyński 2012.) Combine

Equation 7 with β∗ = N1

N0+N1
· β1 + N0

N0+N1
· β0 and reformulate:

E[yi | di = 1]− E[yi | di = 0] = E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

= E[Xi | di = 1] · (β1 − (
N1

N0 +N1

· β1 +
N0

N0 +N1

· β0))

+ E[Xi | di = 0] · (( N1

N0 +N1

· β1 +
N0

N0 +N1

· β0)− β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
N0

N0 +N1

· E[Xi | di = 1] · (β1 − β0)

+
N1

N0 +N1

· E[Xi | di = 0] · (β1 − β0)

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
N0

N0 +N1

· τPATT +
N1

N0 +N1

· τPATN

+ (E[Xi | di = 1]− E[Xi | di = 0]) · β∗. (16)

Q.E.D.

Proof of Proposition 4. (Note that this proof is due to Wooldridge 2002.) Decompose

both potential outcomes into their population means and individual-specific stochastic

components:

y0i = E[y0i] + ε0i and y1i = E[y1i] + ε1i, (17)

where E[ε0i] = E[ε1i] = 0. Note that the assumption of treatment effect homogeneity

is equivalent to E[ε0i | Xi] = E[ε1i | Xi], i.e. there are no individual-specific gains from

participation (treatment effects). To see this, combine this assumption with conditional
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mean independence:

E[y1i | Xi, di]− E[y0i | Xi, di] = E[y1i | Xi]− E[y0i | Xi]

= E[y1i − y0i] + E[ε1i − ε0i | Xi]

= E[y1i − y0i]

= τPATE. (18)

Since E[y1i | Xi, di]−E[y0i | Xi, di] = τPATE, we also have E[y1i | di]−E[y0i | di] = τPATE

by the law of iterated expectations, and therefore τPATE = τPATT = τPATN . Next, we

can write yi as:

yi = y1i · di + y0i · (1− di)

= y0i + di · (y1i − y0i)

= E[y0i] + ε0i + di · (E[y1i] + ε1i − E[y0i]− ε0i)

= E[y0i] + di · τPATE + ε0i + di · (ε1i − ε0i), (19)

and therefore:

E[yi | Xi, di] = E[y0i] + di · τPATE + E[ε0i | Xi, di] + di · E[ε1i − ε0i | Xi, di]

= E[y0i] + di · τPATE + E[ε0i | Xi] + di · E[ε1i − ε0i | Xi]

= E[y0i] + di · τPATE + E[ε0i | Xi]

= α + di · τPATE + g(Xi) · β, (20)

where E[ε0i | Xi] = η+ g(Xi) ·β and α = η+ E[y0i]. Therefore, τPATE, τPATT , and τPATN

can be estimated by ordinary least squares as the coefficient on di in the regression of yi

on 1, di, and g(Xi).

Q.E.D.
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Proof of Proposition 5. (Note that this proof is due to Elder et al. 2010 and S loczyński

2012.) In a recent paper, Elder et al. (2010) have proven that the coefficient on a binary

variable in linear least squares regression is equal (by construction) to the unexplained

component of the Cotton (1988) decomposition, provided that Xi is a scalar whose vari-

ance is equal in both subpopulations of interest. This result has recently been accom-

panied by a lemma (Proposition 3) on the Cotton (1988) decomposition and treatment

effects (S loczyński 2012). Together these results imply Proposition 5. Below, I restate a

simplified version of the proof in Elder et al. (2010). See also S loczyński (2012).

Using xi to denote the scalar covariate, the true data generating process can be

specified as (note that this process allows for treatment effect heterogeneity):

yi = λ0 + λddi + λxxi + λdxdixi + εi, (21)

where also:

V[xi | di = 1] = V[xi | di = 0] = σ2
d. (22)

Under this model, and also combining Equation 7 with β∗ = N1

N0+N1
· β1 + N0

N0+N1
· β0, the

unexplained component of the Cotton (1988) decomposition can be written as:

τC = (E[yi | di = 1]− E[yi | di = 0])− (E[Xi | di = 1]− E[Xi | di = 0]) · β∗

=
Cov[di, yi]

V[di]
− Cov[di, xi]

V[di]

· ( N1

N0 +N1

· Cov[xi, yi | di = 1]

V[xi | di = 1]
+

N0

N0 +N1

· Cov[xi, yi | di = 0]

V[xi | di = 0]
)

=
Cov[di, yi]

V[di]
− Cov[di, xi]

V[di]

·
N1

N0+N1
· Cov[xi, yi | di = 1] + N0

N0+N1
· Cov[xi, yi | di = 0]

σ2
d

. (23)

The incorrectly specified model (which assumes treatment effect homogeneity) can be

written as:

yi = α + βddi + βxxi + υi. (24)
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We therefore need to prove that βd = τC . Using d̃i to denote the residual from a regression

of di on xi, we can write:

βd =
Cov[d̃i, yi]

V[d̃i]

=
Cov[di − xi · Cov[di, xi]/V[xi], yi]

V[d̃i]

=
Cov[di, yi]

V[d̃i]
− Cov[di, xi]

V[xi]
· Cov[xi, yi]

V[d̃i]

=
1

V[d̃i]
· (Cov[di, yi]−

Cov[di, xi] · Cov[xi, yi]

V[xi]
)

=
V[xi]

V[di] · V[xi]− Cov[di, xi]2
· (Cov[di, yi]−

Cov[di, xi] · Cov[xi, yi]

V[xi]
)

=
Cov[di, yi] · V[xi]− Cov[di, xi] · Cov[xi, yi]

V[di] · V[xi]− Cov[di, xi]2

=
Cov[di, yi] · V[xi]− Cov[di, xi]

2 · Cov[di, yi]/V[di]

V[di] · V[xi]− Cov[di, xi]2

− Cov[di, xi] · Cov[xi, yi]− Cov[di, xi]
2 · Cov[di, yi]/V[di]

V[di] · V[xi]− Cov[di, xi]2

=
Cov[di, yi]

V[di]
− Cov[di, xi]

V[di]
· Cov[xi, yi] · V[di]− Cov[di, xi] · Cov[di, yi]

V[di] · V[xi]− Cov[di, xi]2

=
Cov[di, yi]

V[di]
− Cov[di, xi]

V[di]
· Cov[xi, yi]− Cov[di, xi] · Cov[di, yi]/V[di]

V[xi]− Cov[di, xi]2/V[di]

=
Cov[di, yi]

V[di]
− Cov[di, xi]

V[di]

·
N1

N0+N1
· Cov[xi, yi | di = 1] + N0

N0+N1
· Cov[xi, yi | di = 0]

σ2
d

= τC , (25)

where the next to the last equality follows from the decomposition of (co)variance (see

S loczyński 2012 for details).

Q.E.D.
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