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Does hosting a sports team boost the visibility of a city among 

tourists? I test this proposition by looking at the effect of playing 

soccer’s UEFA Champions League on air travel. I compare routes 

across cities that had their teams randomly drawn into the same 

group in the first phase of the competition to routes across cities 

hosting teams randomly allocated to different groups. The average 

effect of being drawn into the same group is between 5 and 8 

percent more arrivals for the three months following the group 

stage, a period which coincides with a break in the competition. 
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I. Introduction 

Professional teams are often taken to increase their home city’s visibility among 

tourists. As teams get extensive media coverage, their home cities make the news, 

and this is thought to turn anonymous places into potential tourism destinations. 

Such potential benefits are often behind sports teams’ demands for public 

subsidies. Yet, so far no analysis has shown that the increased visibility generated 

by a team brings more visitors into town. 



Estimating the effect of team visibility on the attractiveness of a city as a 

destination is difficult, as both the location of teams and their decision to move 

are likely to be related to some of the factors that also make cities attractive to 

tourists (Siegfried and Zimbalist, 2000). I present the first evidence of a positive 

causal effect of team visibility on city travel by exploiting the random draw of the 

Union of European Football Associations (UEFA) Champions League soccer 

tournament, a European competition that takes place once a year. In the first 

phase of the tournament, participating teams are randomly divided into groups of 

4, and have to play a 3-months round-robin tournament with the teams of their 

group. During this phase, the teams – and their home cities – are likely to get 

more mention in cities hosting group rivals, and the visibility of a city should 

therefore increase more in cities hosting teams in the same group than in other 

Champions League cities. As the groups are formed randomly, this setup allows 

to compare air travel between cities hosting teams in the same group (treated 

routes), to air travel between Champions League cities hosting teams assigned to 

different groups (control routes). The control routes represent a valid 

counterfactual for treated routes because the teams in these cities could have met, 

and did not by pure chance. 

The group phase of the UEFA Champions League ends in early December and 

is followed by a break in the competition that lasts until early March. Looking at 

monthly data of intra European flights, I find that over the months from January 

to March cities hosting rivals in the group phase see an increase in monthly air 

traffic of 5 to 8 percentage points relative to routes across cities whose teams 

played in different groups. At the mean, this effect implies that between January 

and March around 2700 more people travel on treated routes. The effect fades 

away as the tournament proceeds to its final phase, and teams that were initially 

assigned to the same group no longer play against each other. 



The UEFA Champions League brings enormous media attention to the 32 

participating soccer teams. Football is by far the most popular sport in Europe, 

and the UEFA Champions League is the major continental competition for 

European soccer teams. The competition is covered widely by national and local 

media, and the games are watched by millions of people across the continent. 

Participating clubs do not play any other continental competition during the 

season, and Champions League games are never played on days when domestic 

league or other continental competitions take place, which means that no other 

game competes for attention. The first phase of the tournament takes place during 

fall and lasts for around three months. During this phase participating teams are 

randomly divided into groups of 4 and teams in the same group play against each 

other twice. My estimation strategy exploits the random formation of these groups 

and compares city travel between cities hosting teams in the same group with city 

travel between cities hosting teams in different groups. The advantage of this 

approach is that it eliminates the effect of participation in the UEFA Champions 

League, which is unlikely to be random. 

Although the formation of groups is inherently random, I find that treated routes 

tend to be busier 9 to 3 months before the group phase starts (figure 1). I clean the 

residual heterogeneity across treated and control routes by estimating all 

regressions with route fixed effects. Figure 2 shows that air traffic has identical 

distribution across treated and control routes once route fixed effects are 

accounted for. I also estimate dyadic standard errors on incomplete networks of 

cities (Fafchamps and Gruber, 2007a and 2007b) and find that results are robust to 

dyadic inference. 

The paper proceeds as follows. The next section reviews the related literature. 

Section III explains the identification strategy and presents the data. Section IV 

shows that observable variables are balanced across treated and control routes. 



Section V presents the main results and section VI proves their robustness. 

Section VII discusses the results and concludes. 

II. Related Literature 

This paper relates to the empirical literature that has analyzed the impact of 

professional teams on local communities (Coates, 2007). This literature has 

examined the effect of sport franchises on the local economy and their 

contribution to the recovery of depressed urban areas (Baade, 1996; Coates and 

Humphreys, 2003). A recent strand of the literature has also examined the 

intangible benefits that teams bring to the local population. Carlino and Coulson 

(2004) argue that higher house rents in cities with NFL franchises compensate for 

better quality of life, and Coates and Humphreys (2006) show that, when asked to 

vote on the public funding of a new stadium, people living in areas closer to the 

proposed site of the facility support the project more than people living farther 

away. 

With the exception of Coates and Humphreys (2006), these papers study a panel 

of U.S. cities. In this context, identification comes from a difference-in-difference 

approach that exploits the relocation of some professional teams across U.S. 

cities. Since the decision to relocate might be related to other time-varying 

determinants of cities' economic success, researchers control for existing city-

specific linear trends. Coates and Humphreys (2006) on the other hand, analyze 

the voting behavior across different areas of a city during referendums to 

introduce subsidies for local sports facilities. Their empirical results are 

essentially descriptive, and they do not claim to uncover any causal relation. To 

the best of my knowledge, this is the first paper in the literature that exploits a 

natural experiment to establish the causal effects of having a sports team in town. 



III. Identification and Data 

A. Identification and Sample 

If a team increases the visibility of its home town, then we should observe 

visitors travel to the city after the club appears on high-profile international 

games. Moreover, the greatest number of visitors should come from cities where 

rival teams reside, and where the matches are arguably more salient. 

The Champions League is the most important showcase for European football 

teams, and the group phase of the competition offers the opportunity to be under 

the spotlight repeatedly over a period of three months. If the visibility effect is 

truly greater in the cities where opposing teams reside, it is possible to test its 

existence by regressing visitor arrivals from city j to city i in month m (Vij,m) on an 

indicator of whether the two cities had their team matched in the previous group 

phase of the Champions League (Gij): 

(1) mijijmij eGV ,10,   . 

 

In equation (1) β1 is identified consistently because, within the population of all 

routes across cities with at least 1 team in the Champions League, Gij is randomly 

assigned. Notice that even observing Vij,m with no error, equation (1) is a 

conservative test for the visibility effect, because taking part to the Champions 

League is likely to increase the visibility of a city in all participating cities, 

regardless of the group in which they play. Since equation (1) compares visitors 

from cities with a team in the same group to visitors from cities with teams in 

different groups, it tests for the presence of an effect of being in the same group 

on top of the simple effect of taking part in the same edition of the Champions 

League. 



Before discussing the data, it is useful to explain the format and timing of the 

Champions League. As of the 2012-13 edition, the group phase is played by 32 

European teams divided in 8 groups of 4 teams each. Access to the group phase is 

reserved to the teams that performed best in their respective national leagues 

during the previous season. Once admitted to the group phase, every team is 

seeded into one of four pots according to its international standing: the eight 

strongest teams are seeded into pot number 1, the next eight teams into pot 

number 2, and so on. After seeding, each of the 8 groups is made of exactly one 

team randomly drawn from every pot, with the only provision that teams from the 

same Football Federation should not play in the same group. The random draw is 

performed publicly in front of the press at the end of August. Once the groups are 

formed, between September and December each club has to play twice against 

each of the other 3 teams in its group: once at home and the another time as 

visitor.  

Games are always played on Tuesday or Wednesday, and they are broadcasted 

live on national televisions in prime time. These matches, and the media attention 

that they create in the two cities where they take place, is my treatment. Since 

teams assigned to different groups have no occasion to play against each other 

between September and December, and since only one group phase match was 

forfeited in the past 15 years, compliance is always perfect1. After the conclusion 

of the group phase in early December, the first two teams of every group advance 

to the final phase: this has the knock-out format and proceeds from the round of 

sixteen in March to the final in May2. 

 
1

 The forfeited match is A.S. Roma versus Dynamo Kyiv F.C., that was scheduled for the 15th of September 2004. For 
reasons that I will explain shortly, I exclude all routes that connect cities in Ukraine, and for this reason this observation is 
never part of the sample analyzed. 

2
 The interested reader may refer to appendix C for additional details on the structure and history of the competition. 



The rules of the random draw imply that not all routes across Champions 

League cities are valid controls for treated routes. Teams in the same pot and 

teams from the same country never play in the same group: since routes across the 

cities of these teams could not have been treated, I exclude them throughout. 

Teams that have been seeded in the same pot tend to be of similar strength, and so 

this approach makes sure that routes across cities with two very strong (or two 

very weak) teams are not over represented in the control group. Since the strength 

of a team might be correlated with the economic performance of its home town, 

excluding these routes makes sure that results are not biased by the different 

composition of treated and control groups. On the other hand, teams coming from 

the same country never play in the same group in the Champions League, but 

have to play against each other in their national league. Since also these national 

games have the potential to increase the visibility of a city, dropping these routes 

makes sure that results are not biased downward by the inclusion of these routes 

among the controls. 

In addition to these exclusions, I always omit treated and control routes to and 

from UEFA countries that require a passport and/or a visa to enter (these are: 

Israel, Serbia, Russia, Turkey and Ukraine). I do so because travel to these 

countries requires significantly more time and effort than travel within the 

Schengen Area, and these costs are likely to offset any boost coming from the 

Champions League. Although randomization was performed using teams from 

these countries too, between 1998-99 and 2010-11 only 13 percent of participants 

came from these nations, and their exclusion makes no difference in terms of 

balance of the remaining treated and control routes. Inclusion of these routes has 

two consequences on the results shown later. First, the distribution of variables 

across treatment and control routes is more balanced when these routes are 

included. Second, coefficients from all regressions are less precise and somewhat 

smaller (but still significant). 



B. Data 

High frequency data on city-to-city number of visitors is scarce, and Vij,m in 

equation (1) can be observed only imperfectly. I proxy Vij,m, the number of 

visitors from city j to city i in month m, with (the logarithm of) Pij,m, the number 

of arrivals from all airports serving city j to all airports serving city i in month m. 

These data are available from Eurostat at monthly frequency since 1998, so I will 

focus on all Champions League editions between the 1998-99 and the 2010-11. 

Data on all Champions League games comes from the UEFA official website. See 

appendix A for further details. 

Studying the visibility effect on air traffic alone would not be a limitation if 

visitors traveling with other modes of transport are affected in similar ways. In 

practice, the relative importance of different modes of transport depends on the 

relative position of two cities, so that the visibility effect is likely to have 

heterogeneous effects across different routes and modes of transport. Random 

assignment implies that estimated coefficients are consistent estimates of the 

Average Treatment Effect (ATE) of the Champions League on air traffic. Since 

most Europeans travel abroad by plane, this is a relevant effect to estimate3. 

Moreover, if we were willing to assume that on average the Champions League 

effect is the same for other modes of transport, then the estimated coefficient 

 
3

 Among the countries considered, across any pair of countries for which both air and train traffic is available, there was 
a median of 11.2 air travelers for every passenger arriving by train between 2004 and 2010. For countries that are 
connected via sea, the median ratio of air to boat arrivals over the same period was 2.9. There are no similar statistics on 
intra European road traffic, but given that within the countries considered the median ratio of passenger-Km transported by 
car (by coach) to those transported by train is 11.2 (1.6), air traffic is likely to be at least as important as car travel, and 
several times more relevant than either train, coach or boat. Notice moreover that these numbers are likely to be lower 
bounds of the relevance of air traffic within Europe, because they are computed only for country pairs for which a direct 
connection is active (either by train or via sea). For several country pairs in the sample no such link exists, and on many 
routes airplanes are simply the only practical mode of transport available. 



would be a consistent estimate of the proportional effect of the Champions 

League on overall travel4. 

Finally, notice that the definition of the dependent variable is likely to give a 

lower bound for the total effect of Champions League on air travel. Not all routes 

have equal capacity, and affected visitors might find it convenient to fly across 

airports that do not serve directly the cities in the Champions League (for 

instance, tourists going to Turin may land in the larger airport of Milan for 

convenience). Since I only look at the airports directly serving cities with teams in 

the Champions League, and do not control for potential stopovers or airports in 

nearby cities, my estimates would be biased downward if the effect spills over to 

routes that are classified as controls, or if some of the effect travels on routes that 

I do not consider. 

IV. Balancedness 

This section documents the balance between treated and control pairs. The first 

line of table 1 shows that the baseline value of the variable of interest is not 

balanced across treated and control routes. Average arrivals between January and 

June are 0.21 log points greater on routes that will be treated the following 

September (p-value = 0.016). Figure 1 shows that also the distribution of this 

variable is different across treated and controls (the Kolmogorov-Smirnov test 

rejects the null of identical distributions at the 0.1 percent level). Since between 

January and June most participants of the Champions League edition that starts in 

September are still to be decided, these tests suggest that treated routes tend to be 

busier than control routes always.  

 
4

 In order to estimate the ATE of the Champions League on the overall number of travelers one would still need to 
multiply the estimated proportional change by the average overall travel across all routes in the sample. Since city-level 
information on non airborne travel is not available, these computations are not feasible. 



Although the formation of groups is inherently random, cities that send their 

teams more often to the Champions League are more likely to have their teams 

matched together, and at the same time might be richer and have busier routes. In 

general, if unobservable characteristics of two cities affect both the average air 

traffic and the likelihood of their teams to meet during the group phase of the 

Champions League, the estimates of the Champions League effect will be 

inconsistent. This is especially true when the dependent variable is air arrivals, 

because air traffic is extremely persistent5, and in these cases Bruhn and 

McKenzie (2009) insist that consistency of estimates is warranted only when also 

the baseline value of the outcome of interest is balanced across treated and 

controls. 

I address the heterogeneity in the baseline value of air arrivals across treated 

and controls by exploiting the panel structure of my data. In figure 2 I plot the 

distributions of the residuals of a regression of air arrivals between January and 

June before the group phase on route fixed effects (FE). The figure shows that the 

distribution of these residuals in treated routes is very similar to the distribution in 

control routes, and the Kolmogorov-Smirnov tests can not reject the null of 

identical distributions (p-value = 0.194). Figure 2 suggests that including route FE 

in my specifications allows to estimate consistently the effect on air arrivals of 

playing in the same Champions League group: for this reason I will only present 

results from regressions that include routes FE. 

The rest of table 1 shows that treated and control pairs are very balanced also 

with respect to other economic, geographic and demographic observables that 

should correlate with air arrivals. Notice that the units of observation are pairs of 

cities, since both air travel and the treatment are defined over a network of 

European cities. Network analysis leads to dyadic regression, and appendix B 
 
5

 In the sample considered, a univariate regression of log arrivals on its value 12 months before explains 93 percent of 
total variability. 



discusses issues of identification and inference that arise in this context. Here it is 

sufficient to note that the treatment Gij does not vary within a route: when a team 

from city i plays in the same group of a team from city j the opposite is also true. 

In this case the balance of treated and control routes with respect to city-specific 

characteristics must be tested both for the average and for the absolute difference 

of the variables across the two cities on a route. The intuition is that both the 

levels and the difference of these variables may correlate with air travel across the 

two cities, and consistency is warranted when treatment is uncorrelated with both. 

Appendix B deals with the details. 

Overall treated and control routes are balanced in terms of all observables. With 

the exception of the test on air arrivals before the group phase starts (first two 

lines in table 1) almost all of the other tests in table 1 can not reject the null of 

identical means across treated and control routes. Out of 60 tests, three are 

significant at the 10 percent level and only one at the 5 percent level. Also a joint 

test that allows correlation across these variables cannot reject the null of identical 

means: when I standardize all variables and run a single regression on the 

treatment dummy, the coefficient of this dummy is not significant (p-value = 

0.284). Since in this stacked regression I use standard errors clustered at the route-

year level, this procedure tests for significant differences across treatment and 

control routes while allowing errors of different variables to be correlated within a 

single route-year. Although the test is not perfect, estimation of 60 Seemingly 

Unrelated Regressions (SUR) is not feasible in this context because the 

covariance matrix of errors is singular. 

By and large these results are reassuring. They prove that treatment is randomly 

assigned with respect to both time invariant and time varying characteristics, and 

that also pre trends do not differ significantly across treated and control routes. 

Notice moreover that not observing all air routes should not be source of concern. 

Panel B of table 1 shows that out of all the routes across cities that could have met 



but did not, 14.9 percent have non missing air data for both ways of the route 

during the months of the group phase. This proportion is very similar to the 

proportion of routes across cities that had two teams playing in the same group (p-

value = 0.248). 

V. Results 

A. Effect on the Month of the Match 

I start by documenting the effect of being drawn into the same Champions 

League group on air arrivals in the month in which the game is played. Groups of 

supporters usually follow their team when this plays international competitions, 

and visitors coming to watch the game are likely to be attracted by the match, 

rather than by the increased visibility of the city. For this reason, the evidence 

presented here is not especially interesting per se and it does not prove that cities 

whose teams appear on international competition attract more visitors after the 

event. The objective of this section is to show that a group phase game is a 

relevant shock for city-to-city air travel, and that monthly air traffic picks this 

shock very precisely. This seems a necessary “sanity check” before showing that 

playing in the same group increases the flow of visitors also after the group phase 

concludes. 

 Figure 3 shows that a single group phase games increases monthly air traffic by 

7.5 percent on average (p-value < 0.000). The figure plots the coefficients from 

the regression of log Pij,m: the logarithm of monthly arrivals, on Gij,m: a dummy 

variable that is equal to 1 if in that month teams from the two cities play a game 

of the group phase of the Champions League, and 0 otherwise. I add to the 

regression and plot in the figure 6 leads and 12 lags of this dummy (Gij,m–l: l = –



6,...,+12) in order to have a visual idea of the dynamic effect of this shock6. The 

complete specification of the regression is: 
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where δt is a year fixed effect, μm × t is a trend specific to month m and ∑c (ci + cj) 

× t and ∑c (ci - cj) × t are trends specific to every country of origin and of 

destination. As explained in the previous section, consistent identification of the 

effect of Gij,m–l on log Pij,m requires the inclusion of route fixed effects (αij). In this 

specification I include a different route fixed effect for every month m (αij,m) 

because seasonality of air arrivals is very correlated with route fixed effects. Since 

all games are played during the fall, inclusion of route fixed effects biases the 

estimates when all months are included. When in the next section I estimate a 

separate regression for every month of the year, I include only route fixed effects 

(αij). 

The way country of origin and country of destination trends enter this and all 

the following regressions requires some explanations. Equation (2) is a 

directional dyadic regression (i.e. log Pij,m ≠ log Pji,m), and for this reason I insert 

country trends ci × t as suggested by Fafchamps and Gruber (2007b). This 

procedure is intended to impose symmetry on the effect that country trends have 

on air traffic. To see how this works, take all arrivals to and from Italy (ci = ITi): 

for this country, ϕIT captures the average trend of passengers to and from all 

Italian airports in the sample, while  ψIT picks the average trend of passengers for 

 
6

 The number of leads and lags was chosen in order to span half a year before and one year after the event, but figures 
similar to figure 3 can be produced with any number of leads and lags. Standard errors used to compute the confidence 
interval shown are clustered at the route-month level as in the regressions (3) and (4) below. See the discussion therein for 
details. 



routes whose origin is in Italy. Symmetry in this context requires that the average 

trend of passengers for routes that have destination in Italy be equal to minus the 

average trend for routes with origin there. The terms ∑c ϕ
c (ci + cj) × t and ∑c ψ

c 

(ci - cj) × t in equation (2) impose this condition. 

Since treatment is randomly assigned once route treated effects are controlled 

for, all γl plotted in figure 3 have causal interpretation. On average, each 

Champions League match increases city-to-city monthly air travel by 7.5 percent. 

On a monthly average of 16545 arrivals, this equals 1238 passengers more for 

every match, 0.06 standard deviations or almost 7 full Airbus A320. Note 

moreover that not only the spike is exactly on the month of the match, but that all 

coefficients before the match are not significantly different from 0, neither alone 

nor jointly (F = 1.26; p-value = 0.271).  

Figure 3 also suggests that treated routes stay relatively busier during the 

months following the game, although the effect seems to dim overtime. A joint 

test of the first 8 lags of Gij m-l rejects the null of no effect (F = 3.09; p-value = 

0.002), but only the fourth lag is individually significant at the 5 percent level. 

Notice however that regression (2) is a good test for the effect on the month of the 

match, but it is not appropriate to test for the existence of an effect after the group 

phase concludes. To see why, note that when teams from cities i and j are in the 

same group, they play twice between September and December. The problem 

with specification (2) is that it treats these two matches as separate events with 

identical effects after a fixed number of periods, while the “treatment” that 

matters is likely to be the whole group phase, from September to December. To 

make an example, if A.S. Rome plays against F.C. Barcelona in October and 

November, equation (2) imposes the effect of the first match in January (three 

months after it) to be the same as the effect of the second match in February (three 

months after the second game). However, it seems more meaningful to estimate 

the joint effect of the two matches in January and February separately, without 



imposing to the two effects to be identical. This is the approach that I adopt in the 

next section. 

B. The Effect after the Group Phase 

In order to test more carefully the hypothesis that air travel increases more on 

treated routes after the group phase ends, I focus on one month at a time, and for 

every month between the end of the group phase and start of following edition I 

estimate a separate regression of the form: 

(3) 
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where Gij = 1 if the teams from the two cities played in the same group in the last 

edition of the Champions League and the meaning of other symbols is the same as 

in regression (2). Consistency of β is warranted by random assignment of Gij and 

the inclusion of route fixed effects αij. 

Since the format of the competition has changed over the past 12 years, and 

since the likelihood of teams to access the group phase evolves overtime 

according to the UEFA ranking of their home country, both year and country 

trends could be correlated with the likelihood that a specific team accesses the 

group phase (see appendix C for a discussion of how country rankings affect the 

likelihood of accessing the group phase, and how UEFA computes them). In 

practice neither years nor country trends are correlated with the treatment: in a 

regression of Gij on route-fixed effects, years fixed effects and country trends, it is 

not possible to reject the null of joint insignificance of year fixed effects and 

country trends (F = 0.55; p-value = 0.979). I include these controls to improve 



precision, but point estimates of β are barely affected when only route fixed 

effects (αij) are included.  

Table 2 shows estimates of (3) for the month of the match and for all months 

from January through August. In all regressions standard errors are clustered at 

the route-month level7. The sample consists of all international routes across 

cities that could have met in the Champions League group phase between the 

1998-99 and 2010-11 editions but it excludes routes across cities that have their 

teams playing a match during the Champions League knock-out stage either that 

year or the year before. I exclude these routes because knock-out phase matches 

are a bigger shock to air traffic than group phase matches and teams playing in the 

same group are less likely to meet again at later stages: as a result, inclusion of 

these routes biases estimates downwards8. 

The pattern in table 2 is clear: the effect of playing in the same group of the 

Champions League is large and significant both on the month of the match  (row 

1) and in the first three months following the end of the group phase. The effect is 

smaller and not significant by April, when the knock-out phase reaches its most 

important games (quarter of finals and semi finals), and it disappears before the 

start of the new season in September. The effect is also economically relevant: in 

the first 3 months of the year, the estimates imply 996 more passengers in 

January, 775 in February and 921 in March at the mean number of arrivals for 

these three months (11794, 12089 and 14798 respectively). Overall, two matches 

 
7

 The correct unit of clustering is the route-month and not the route as a whole because here the “Moulton problem” is 
more troublesome than the persistence of the treatment. The Moulton problem arises because the dependent variable varies 
within a route-month while the treatment does not (Moulton, 1986 and Angrist and Pischke, 2009, p.313). On the other 
hand, the treatment is not persistent at all (the coefficient of a regression of treatment status on its lag on yearly data gives a 
coefficient of 0.01, p-value = 0.75): for this reason serial correlation is not an issue as in DD studies (Bertrand, Duflo and 
Mullainathan, 2004) and the correct unit of clustering is route-month rather than the whole route. 

8
 The probability to meet a team from the same group is 0 for the round of sixteen, and very low afterwards. Excluding 

routes across cities that met in the knock-out phase one year before avoids that mean reversion 12 months after the event 
results in downward bias of the β, because meeting in a knock-out phase in a year is correlated with the probability of 
ending in the same group the year after. Inclusion of these routes drives estimates downward and worsen precision, but is 
not crucial for any of the results shown. Moreover, balance of treated and control routes holds also after excluding these 
routes. 



played during the fall attract 2692 visitors during the first three months of the 

year. 

Notice that the positive effects shown in the three months after the end of the 

group phase is not confounded by other matches played during the same period: 

the last group phase game is played on the first week of December, and I exclude 

all routes across cities that played a knock-out phase match during the spring. 

Moreover, teams are not allowed to take part in more than one international 

competition a year, and once they compete in the Champions League group phase 

they have no opportunity to meet until the next season (unless they advance in the 

Champions League and are pitched in a knock-out game, in which case they are 

dropped from my sample). 

VI. Robustness Checks 

In this section I show that all results shown in section V are robust to different 

strategies of inference. Traditional standard errors estimated in regression (3) are 

likely to be biased for several reasons. First, since the dependent variable varies 

within a route while the treatment does not, the “Moulton problem” (Moulton, 

1986) is a serious issue. Second, standard errors in (3) can be biased because the 

regression is specified on a network of cities. Finally, the panel structure of data 

might complicate further the structure of standard errors, to the point that no 

single formula is appropriate to estimate them. I deal with these three issues in 

turn. 

The Moulton problem arises here because, for every route ij in the sample, the 

dependent variable is observed twice: once as the number of arrivals from city i to 

city j in month m (log Pij,m) and another time as number of arrivals from city j to 

city i in the same month (log Pji,m). However, when a team from city i plays in the 

same group as a team from city j the opposite is also true, which means that the 



treatment variable does not vary within the route (i.e. Gij = Gji always). Moulton 

(1986) shows that in these cases traditional standard errors are severely downward 

biased, and Angrist and Pischke (2009) propose several solutions to the problem. 

In figure 3 and in table 2 I estimate standard errors clustered at the route level; 

here, I follow another of the solutions proposed by Angrist and Pischke (2009) 

and use a single observation for every route-month. Panel A of table 3 shows 

estimates of (3) when I use as dependent variable the logarithm of the average 

number of arrivals across both ways of the route (log Avg Pij,m  ≡ log [0.5 × (Pij,m  

+ Pji,m)]). Standard errors reported in this table are robust  to heteroschedasticity. 

Although the point estimates are estimated less precisely than in table 2, all results 

go through. 

Equation (3) specifies a dyadic regression because the units of observation are 

pairs of cities. This type of regression creates a complex variance-covariance 

matrix of errors, because shocks hitting a specific city can in principle affect air 

traffic between this city and all others destinations in the network. As a result, 

E(eij,ekl) ≠ 0 whenever i = k or i = l or j = k or j = l, and traditional standard errors 

are inconsistent. Fafchamps and Guber (2007a and 2007b) propose a formula to 

correct standard error in dyadic regressions and panel B of table 3 reports 

estimates of dyadic standard errors for the estimates presented in table 29. These 

estimates are very close to the clustered standard errors estimated for table 2 and 

results with dyadic standard errors are, if anything, stronger than those with 

standard errors clustered at route-month level. 

The panel structure of the data introduces additional complications, because the 

number of air arrivals is serially correlated overtime. I exploit the known structure 

of the Champions League random draw to assess the goodness of standard error 

shown in table 2 with a bootstrap-like procedure. More precisely, given the set of 
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 See appendix B for details on dyadic standard errors formula. 



all routes across cities that had at least one team playing in the Champions League 

group phase between 1998 and 2010, I randomly create groups of four teams 

following the same rules UEFA applies to create its groups. Every year, each of 

my group is formed with exactly one team randomly drawn from each of the four 

pots. I also make sure that no two teams from the same football federation ever 

end up in the same group. Since these “placebo treatments” are not associated 

with any actual treatment, if standard errors are correct, estimates of equation (3) 

should on average be significant at the 5 percent level only 5 percent of the times. 

I draw 1000 such placebo treatments and for each draw I estimate regression (3) 

and store the p-value of the coefficient β. The first column of table 4 shows for 

each months in which regression (3) is estimated, the percentage of simulations 

that had a p-value smaller than 0.05. The results suggest that standard errors are 

slightly downward biased, as the likelihood to make a type I error at the 5 percent 

confidence is greater than 5 percent. However, the last column in table 4 also 

suggests that the bias in the standard errors is not so large as to invalidate all 

results. The last column in the table shows the share of simulations that estimated 

a β larger than the coefficient reported in table 2: overall they support the 

conclusion that a visibility effect exists at least for the three months following the 

group phase. 

VII. Summary 

Do professional teams make their home towns more visible among tourists? 

Using a natural experiment embedded in the European Champions League 

competition, I have shown that cities hosting teams receive more visitors from 

cities where Champions League games are more salient. My findings provide the 

first causal evidence that teams have the potential to increase the visibility of their 

home towns. To the extent that my results carry over to the US, they may help 



explain Carlino and Coulson’s (2004) finding that house rents are significantly 

higher in U.S. cities with NFL franchises. The greater visibility of these cities 

may increase the flow of visitors, which would bring direct advantages for retail 

business and hotels for example, and ultimately should increase rents.  

In any case, it is important to stress that the visibility effect I find appears to 

require continuous media exposure. The effect of playing in the same group of the 

Champions League disappears soon after teams stop playing against each other. 

This implies that the visibility effect depends on the structure of the competitions. 

For example, teams participating in leagues with no turnover (such as major 

American leagues) and teams that have to play more games per season may be 

more valuable for the visibility of a city. 



Appendix A. Data description 

I source air traffic data from Eurostat’s “Detailed air passenger transport by 

reporting country and routes” tables10. For every airport in each European 

country, this database contains information on monthly air travel on every route 

from 1998 to 2010. On every route both arrivals and departures are available. 

Moreover, two different variables are available both for arrivals and for 

departures: total number of passengers carried and total number of passengers 

onboard. Passengers onboard equals passengers carried plus passengers that stop 

over and proceed to a different destination on the same aircraft, but in practice the 

two measures are almost identical (between January and August the correlation is 

0.9994, p-value < 0.0001). Since for some countries only one between passengers 

carried and passengers onboard is reported, I pool all available information as 

follows. There are 4 measures of number of arrivals on each direction of a route: 

passengers carried and passengers onboard recorded as arrivals in the airport of 

destination, and passengers carried and passengers onboard recorded as departure 

in the airport of origin. The dependent variable used in the paper is the simple 

average of all measures available on every direction of a route. In the regressions 

shown in table 2, 67.9 percent of routes have all 4 measures available between 

January and August. Using information from the other end of a route cleans some 

of the noise present at the end of every month, when some passengers are 

recorded as flying on one month in one airport and on the following one at the 

other end11. In all regressions I use the natural logarithm of the dependent 

 
10

 Data are available online at: http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/data/database. 
11

 Although also arrivals from j to i are very correlated with departures from j to i (0.9942, p-value < 0.0001) every 
month during which the former are greater than the latter are followed by a month in which the opposite happens, by 
exactly the same number of passengers. 



variable so defined, and I winsorize the top and bottom 0.005 percent of 

observations to avoid extreme values to drive results.  

Both tourism data (night spent in every NUTS 2 region) and demographic and 

economic data for European cities come from Eurostat12. Data on rail, maritime 

and road travel across and within European countries also come from Eurostat, 

and refer only to the countries used in the regressions13. Data on geographic 

coordinates of every European city used to compute distances come from 

Wikipedia. I hand-collected every match of the UEFA Champions League from 

the 1997-98 to the 2010-11 edition from the UEFA official website14. 

Appendix B. Dyadic Regression 

This appendix is based on Fafchamps and Gubert (2007a and 2007b): refer to 

these papers for details. Both air traffic (log Pij,m) and the Champions League 

treatment (Gij) are observed on networks in which observations are city-pairs, and 

every city appears on several different pairs. Regression analysis on network data 

requires to specify a dyadic model, and both identification and inference need to 

be adjusted: I discuss these issues in turn. 

Identification.—A simpler version of the dyadic regression analyzed in the text 

takes the form: 

(B1) ijijij eGP  log , 

where time subscripts are omitted for simplicity. In (B1) the treatment Gij is 

specific to the route across city i and city j: in this case identification does not 

 
12

 Tourism data is available at http://epp.eurostat.ec.europa.eu/portal/page/portal/tourism/data/database; data on cities 
at http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/city_urban/data_cities/database_sub1. 

13
 All available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/data/database. 

14
 Online at: http://www.uefa.com/uefachampionsleague/history/. 



require any correction. When characteristics specific to the two cities enter a 

dyadic regression however, it is important that they affect both ways of the route 

symmetrically: this means that the effect of city characteristic c on air travel must 

be such that the effect of ci and cj on log Pij is the same as the effect of cj and ci on 

log Pji. In order to impose this symmetry, Fafchamps and Gubert (2007a and 

2007b) propose two different solutions, depending on whether the dyadic 

relationship is directional (as with air traffic, for which log Pij ≠ log Pji) or un-

directional (as the average arrivals across a route log Avg Pij = log Avg Pji). When 

the relationship is directional, symmetry is imposed by specifying the model: 

(B2) ijjijiijij eccccGP  )()(log  , 

When the dyadic relationship is un-directional, symmetry is satisfied with: 

(B3) ijjijiijij eccccGAvgP  ||)(log  , 

Regressions (2) and (3) are directional dyadic regressions (since arrivals from j 

to i in month m need not be equal to arrivals from i to j during the same period): 

in these regressions country-trends must enter the equation as in (B2). The 

dependent variables in the regressions on data collapsed at the route-month level 

and the treatment Gij define un-directional relationships (log Avg Pij = log Avg Pji 

and Gij = Gji). For this reason country dummies enter regressions on collapsed 

data as in (B3), and for every city-specific variable for which I test the equality of 

means in table 1 I do so both for the sum and for the absolute difference across 

the two cities on a route. 

Inference.— Standard errors in model (B1) need to take into account that shocks 

affecting city i will have an impact on all routes connecting i, and that this is true 

for all cities on all routes. This implies that in general E(eij,ekl) ≠ 0 whenever i = k 

or i = l or j = k or j = l, and that the structure of the errors in regression (B1) has a 

form similar to that of a regression with clusters. Fafchamps and Gubert (2007a 



and 2007b) propose to correct the variance-covariance matrix of coefficients in a 

dyadic regression with a formula similar to the one proposed by Conley (1999) 

for spatially correlated errors: 
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where  is the K×1 vector of estimated coefficient, N is the number of 

observations X is the matrix of all regressors, eij is the error in equation (B1) and 

mijkl = 1 if either i = k or i = l or j = k or j = l. 

̂

Fafchamps and Gubert (2007a and 2007b) estimate (B4) on complete networks, 

i.e. networks in which every node is connected to every other node in the 

network. However, the air traffic network analyzed here is not complete: first, not 

every city has a direct connection to every other city taking part in the Champions 

League (there might exist both a Rome-Lille and a Rome-Valencia route, but no 

Lille-Valencia connection). Second, even if all routes existed, some routes are not 

valid “controls” for my treated routes, because cities that had teams in the same 

pot could not meet, and teams from the same country can not end up in the same 

group. In order to estimate (B4) on an incomplete network I coded a new option 

in the Stata program provided by Fafchamps: this is available upon request. 

Appendix C. The UEFA Champions League 

The first edition of the UEFA Champions League was held in 1955-56. Since 

then the number of participating teams and the general format of the competition 

have both changed many times. The group phase was introduced in the 1991-92 

edition, and since 1994-95 all the matches in the group phase have been played 

between September and the first week of December. The number of groups has 



grown overtime, but these have always been formed randomly. Since the 1999-

2000 edition there have always been 8 groups.  

The rules to admit teams to the group phase vary by country and by year. 

“Major” leagues send the first 2 or 3 teams of the previous season directly to the 

group stage. Teams that ended first and second in one of the “minor” leagues, and 

teams that ended third or fourth in one of the major leagues take part to a 

“preliminary phase”. Official country rankings determine the number of teams 

that every country can send to the group phase or to the preliminary phase. These 

rankings are updated by UEFA every season according to 5-year moving average 

of the performance of national teams in all European competitions. The 

preliminary phase, played between July and August, consist of a series of knock-

out matches that selects 10 of the 32 teams participating in the group phase. These 

games are not very popular and, since UEFA does not manage directly the TV 

rights for these games, they are only occasionally broadcasted, even in interested 

countries (European  Commission, 2003).  

Note that the format of the competition implies that both the year and the 

countries of team pairs might be correlated with the treatment. Year matters 

because the rules to qualify changed overtime (most notably in 1999, when the 

number of participating teams became 32, and in 2009, when the rules to access 

the group phase were renewed). These changes might have affected the 

probability of any 2 particular teams to meet, even conditional on reaching the 

group stage. Country specific trends are important because the number of 

participating teams from any country, and the pots where these teams are seeded 

depend on national UEFA coefficients, which in turn are updated every year, 

according to the current and past performance of national teams in UEFA 

competitions. Country rankings have evolved very differently over the last 

decade, often trailing domestic economic growth. For this reason, they might 

correlate with both the probability of treatment and the evolution of air traffic. In 



order to control for this confounders I include in every specification a set of 

dummies for both years and country of origin of the two teams. 



 

REFERENCES 

Angrist, Joshua D., and Jörn-Steffen Pischke. 2009. “Mostly Harmless 

Econometrics - An Empiricist's Companion.” Princeton, NJ: Princeton University 

Press. 

Baade, Robert A. 1996. “Professional Sports As Catalysts For Metropolitan 

Economic Development.” Journal of Urban Affairs, 18(1): 1–17. 

Bertrand, Marianne, Ester Duflo, and Sendhil Mullainathan. 2004. “How 

Much Should We Trust Differences-in-Differences Estimates?” Quarterly 

Journal of Economics, 119(1): 249–275. 

Bruhn, Miriam, and David McKenzie. 2009 “In Pursuit of Balance: 

Randomization in Practice in Development Field Experiments.” American 

Economic Journal: Applied Economics, 1(4): 200–232. 

Carlino, Gerald, and Edward N. Coulson. 2004. “Compensating Differentials 

and the Social Benefits of the NFL.” Journal of Urban Economics, 56(1): 25–

50. 

Coates, Dennis. 2007. “Stadiums And Arenas: Economic Development Or 

Economic Redistribution?,” Contemporary Economic Policy, 25(4): 565–577. 

Coates, Dennis, and Brad R. Humphreys. 2003 “The effect of professional 

sports on earnings and employment in the services and retail sectors in US 

cities,” Regional Science and Urban Economics, 33(2): 175–198. 

Coates, Dennis, and Brad R. Humphreys. 2006. “Proximity benefits and voting 

on stadium and arena subsidies.” Journal of Urban Economics, 59(2): 285–299. 

Conley, Timothy G. 1999. “GMM estimation with cross sectional dependence,” 

Journal of Econometrics, 92(1): 1–45. 

European Commission. 2003. “Commission Decision of 23 July 2003 relating to 



a proceeding pursuant to Article 81 of the EC Treaty and Article 53 of the EEA 

Agreement.” 2003/778/EC. (COMP/C.2-37.398 — Joint selling of the 

commercial rights of the UEFA Champions League). 

Eurostat. 1990-2011. “Occupancy in collective accommodation establishments: 

domestic and inbound tourism. Nights spent in tourist accommodation 

establishments by NUTS 2 regions - annual data.” European Commission, 

Eurostat, Tourism statistics. 

http://epp.eurostat.ec.europa.eu/portal/page/portal/tourism/data/database 

(accessed February 25, 2013). 

Eurostat. 1998-2010. “Air transport measurement - passengers. Detailed air 

passenger transport by reporting country and routes.” European Commission, 

Eurostat, Transport statistics. 

http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/data/database 

(accessed February 25, 2013). 

Eurostat. 1999-2012. “Urban audit. Reduced set of derived indicators for 570 

cities.” European Commission, Eurostat, General and regional statistics. 

http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/city_urban/data

_cities/database_sub1 (accessed February 25, 2013). 

Fafchamps, Marcel, and Flore Gubert. 2007a. “Risk Sharing and Network 

Formation,” American Economic Review Papers & Proceedings, 97(2): 75–79. 

Fafchamps, Marcel and Flore Gubert. 2007b. “The formation of risk sharing 

networks,” Journal of Development Economics, 83(2): 326–350. 

Moulton, Brent, R. 1986. “Random group effects and the precision of regression 

estimates,” Journal of Econometrics, 32(3): 385–397. 

Siegfried, John, and Andrew Zimbalist. 2000. “The Economics of Sports 

Facilities and Their Communities.” Journal of Economic Perspectives, 14(3): 

95–11. 



 
FIGURE 1. DISTRIBUTION OF ARRIVALS BETWEEN JANUARY AND JUNE ON ROUTES ACROSS CITIES TAKING PART TO THE 

CHAMPIONS LEAGUE GROUP PHASE BETWEEN 1998 AND 2010 

Notes: There is one observation per route: number of arrivals is the average on the 2 directions. Treated routes have their 
team playing in the same group from September to December, control routes are routes across cities that could have met 
but eventually had their teams playing in different groups. I exclude all routes that: (i) could not have been treated given 
the seeding structure of the random draw and (ii) connect cities in Israel, Russia, Serbia, Turkey or Ukraine. 

 



 
FIGURE 2. DISTRIBUTION OF RESIDUALS OF ARRIVALS BETWEEN JANUARY AND JUNE ON ROUTES ACROSS CITIES TAKING 

PART TO THE CHAMPIONS LEAGUE GROUP PHASE BETWEEN 1998 AND 2010 ON ROUTE FIXED EFFECTS 

Notes: There is one observation per route, number of arrivals is the average on the 2 directions. Treated routes have their 
team playing in the same group from September to December, control routes are routes across cities that could have met 
but eventually had their teams playing in different groups. The figure plots the distribution of residuals from a regression 
on route fixed effects. I exclude all routes that: (i) could not have been treated given the seeding structure of the random 
draw and (ii) connect cities in Israel, Russia, Serbia, Turkey or Ukraine. The figure excludes observations with absolute 
change greater than 1 (for aesthetic reasons). 
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FIGURE 3. THE EFFECT ON THE MONTH OF THE MATCH 

Notes: The figure plots estimates of γl from regression (2) (l = –6,–5,…,+12). These coefficients represent the proportional 
difference in arrivals from city  j to city i on treated routes relative to control routes. The coefficient in m (γ0)  is the effect 
on the month in which a group phase match is played. The figure also plots effects 6 months before the game (m–6) until 
12 months after it (m+12). 95 percent confidence intervals calculated using standard errors clustered at the route-month 
level are reported around the estimates. The number of observations is 17922: these are all routes across cities that had at 
least 1 team taking part in the Champions League group phase either in the current or in the previous year, but excludes 
routes that: (i) could not have been treated given the seeding structure of the random draw; (ii) connect cities in Israel, 
Russia, Serbia, Turkey or Ukraine and (iii) had their teams met in the later stages of the competition either in the current or 
in the previous edition of the Champions League. The dependent variable (log Pij,m) has the top and bottom 0.5 percent of 
observations winsorized. Additional controls are year fixed effects, and trends specific to every month and to every country 
of origin and of destination. See text for details. 

  

 



TABLE 1— BALANCE OF TREATED AND CONTROL ROUTES. 

    Observations  Mean     

Variable  Treated Control Treated Control 
p-value   
(T=C) 

PANEL A – Dependent variable (log P) 
Arrivals (January-June before group phase, logs)          

Average  162 1061  11.11 10.9   0.016** 
Absolute difference  162 1061  6.6 6.36   0.008*** 

         
Route FE regression residuals (January-June before group phase, logs) 

Average  162 1061  0.01 0.00   0.761 
Absolute difference  162 1061  0.01 0.00   0.696 

         
Change in arrivals (January-June before group phase, logs) 

Average  137 933  6.80% 4.40%   0.230 
Absolute difference   137 933  10.30% 2.50%   0.081* 

         
PANEL B – Selection 

Routes with non missing air-traffic (September-December)         
    3544 23312  15.60% 14.90%   0.248 

         
PANEL C - Tourism 

Touristic nights by residents (year of the match, logs)         
Average  112 720  15.73 15.66   0.286 

Absolute difference  112 720  1.26 1.29   0.746 
         
Touristic nights by residents (1 year before the match, logs)     

Average  109 703  15.7 15.63   0.351 
Absolute difference  109 703  1.28 1.3   0.809 

         
Change in touristic nights by residents (year of the match)     

Average  109 703  2.50% 2.20%   0.658 
Absolute difference  109 703  9.90% 10.00%   0.964 

         
Touristic nights by non residents (year of the match, logs)     

Average  112 720  15.89 15.85   0.621 
Absolute difference  112 720  1.44 1.52   0.465 

         
Touristic nights by non residents (1 year before the match, logs) 

Average  109 703  15.84 15.81   0.586 
Absolute difference  109 703  1.41 1.53   0.311 

         
Change in touristic nights by non residents (year of the match) 

Average  109 703  4.20% 3.70%   0.537 
Absolute difference   109 703  6.50% 7.60%   0.138 

Notes: The sample include all treated and control routes for which information on reported variable is available 
but excludes all routes to and from Israel, Russia, Serbia, Turkey and Ukraine. 

Source: Author calculations. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 



TABLE 1(CONTINUED) — BALANCE OF TREATED AND CONTROL ROUTES. 

    Observations  Mean      

Variable  Treated Control Treated Control  
p-value   
(T=C) 

PANEL D - Economy 
Income per capita (year of the match, logs)     

Average  8 49   9.8 9.77   0.577 
Absolute difference  8 49   0.28 0.28   0.887 

         
Income per capita (3 years before the match, logs)    

Average  17 105   9.81 9.78   0.630 
Absolute difference  17 105   0.36 0.41   0.454 

         
Income per capita growth (during the match)     

Average  5 33   1.80% 0.40%   0.548 
Absolute difference  5 33   10.20% 13.10%   0.436 

         
Unemployment rate (year of the match)      

Average  54 294   9.10% 8.90%   0.636 
Absolute difference  54 294   5.20% 4.30%   0.135 

         
Unemployment rate (3 years before the match)    

Average  69 387   8.60% 8.30%   0.485 
Absolute difference  69 387   4.80% 4.40%   0.434 

         
Change in unemployment rate (year of the match)    

Average  35 190   1.10% 0.60%   0.323 
Absolute difference   35 190   5.50% 4.20%   0.106 

         

PANEL E - Geography 
Distance (logs)   113 668   6.76 6.76   1.000 
         
Cities are capital        

Both  139 860   18.00% 17.20%   0.823 
Only 1  139 860   50.40% 46.50%   0.399 

         
Cities are on an island (e.g. Great Britain, Cyprus) 

Both  139 860   0.00% 0.50%   0.421 
Only 1  139 860   29.50% 31.40%   0.654 

         
Cities are in a landlocked country      

Both  139 860   0.00% 0.10%   0.688 
Only 1  139 860   10.10% 10.00%   0.979 

         
Cities are in a Mediterranean country      

Both  139 860   14.40% 11.30%   0.290 
Only 1   139 860   48.20% 47.60%   0.888 

Notes: The sample include all treated and control routes for which information on reported variable is available 
but excludes all routes to and from Israel, Russia, Serbia, Turkey and Ukraine. 

Source: Author calculations. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 



TABLE 1(CONTINUED) — BALANCE OF TREATED AND CONTROL ROUTES. 

    Observations  Mean    

Variable 
  

Treat. Control 
 

Treat. Control 
 

p-value   
(T=C) 

PANEL F – Demography 
Population (year of the game, logs)       

Average  95 525  14.11 14.07   0.546 
Absolute difference  95 525  1.33 1.33   0.993 

         
Population (3 year before the game, logs)      

Average  91 530  14.1 14.06   0.629 
Absolute difference  91 530  1.49 1.43   0.643 

         
Population growth (year of the match)      

Average  75 426  1.70% 2.00%   0.292 
Absolute difference  75 426  3.80% 3.50%   0.516 

         
Percent population aged 20 to 35 (year of the match)      

Average  81 475  23.40% 23.30%   0.706 
Absolute difference  81 475  4.10% 4.70%   0.116 

         
Percent population aged 20 to 35 (3 years before the match)     

Average  63 358  23.20% 23.30%   0.701 
Absolute difference  63 358  3.80% 4.00%   0.538 

         
Change in percent population aged 20 to 35 (year of the match)     

Average  46 269  -0.70% -0.70%   0.976 
Absolute difference  46 269  1.30% 1.40%   0.577 

         
Percent non national, EU residents (year of the match)      

Average  40 205  4.60% 4.40%   0.603 
Absolute difference  40 205  5.70% 5.30%   0.644 

         
Percent non national, EU residents (3 years before the match)     

Average  45 225  4.00% 3.60%   0.371 
Absolute difference  45 225  5.00% 4.60%   0.636 

         
Change in percent non national, EU residents (year of the match)     

Average  28 153  0.90% 0.70%   0.313 
Absolute difference  28 153  1.00% 0.70%   0.063* 

         
Cities speak a romance language (e.g. Italian, Spanish,...) 

Both  139 860  31.70% 26.20%   0.176 
Only 1  139 860  41.70% 41.50%   0.962 

         
Cities speak a germanic language (e.g. German, English,...) 

Both  139 860  11.50% 15.30%   0.237 
Only 1   139 860  51.80% 43.30%   0.060* 

Notes: The sample include all treated and control routes for which information on reported variable is available 
but excludes all routes to and from Israel, Russia, Serbia, Turkey and Ukraine. 

Source: Author calculations. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 



TABLE 2 — EFFECT OF PLAYING IN THE SAME GROUP OF THE CHAMPIONS LEAGUE DURING THE FOLLOWING MONTHS. 

 β s.e. Obs. Route 
FE 

Year FE & 
country trends 

Month FE & 
month trends 

Month of the match a 0.067*** (0.016) 6136 Yes Yes Yes 

       

January 0.084** (0.035) 1344 Yes Yes No 

February 0.064** (0.032) 1346 Yes Yes No 

March b 0.062** (0.028) 1340 Yes Yes No 

April b 0.045 (0.030) 1358 Yes Yes No 

May b 0.042 (0.030) 1354 Yes Yes No 

June 0.030 (0.023) 1584 Yes Yes No 

July 0.033 (0.024) 1584 Yes Yes No 

August 0.019 (0.025) 1584 Yes Yes No 

 Notes: The table reports estimates of β in equation (3). The sample includes all routes across cities that had at 
least 1 team taking part in the Champions League group phase during the current edition. I exclude all routes 
that: (i) could not have been treated given the seeding structure of the random draw; (ii) connect cities in Israel, 
Russia, Serbia, Turkey or Ukraine and (iii) had their teams met in the later stages of the competition either in 
the current or in the previous edition of the Champions League. The dependent variable (log Pij,m) has the top 
and bottom 0.5 percent of observations winsorized. Standard errors in parentheses are clustered at the route-
month level. See text for details.  

Source: Author calculations. 

a September through December. b Knock-out phase. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 



TABLE 3 — ROBUSTNESS FOR THE EFFECT OF PLAYING IN THE SAME GROUP OF THE CHAMPIONS LEAGUE. 

PANEL A – Data collapsed at route-month level 
  β s.e. Obs. Route 

FE 
Year FE & 

country trends 
Month FE & 
month trends 

Month of the matcha 
0.063*** (0.016) 3068  Yes Yes Yes 

 
       

January 
0.084** (0.041) 672  Yes Yes No 

February 
0.064* (0.038) 673  Yes Yes No 

March b 
0.063* (0.034) 670  Yes Yes No 

April b 
0.045 (0.035) 679  Yes Yes No 

May b 
0.042 (0.036) 677  Yes Yes No 

June 
0.03 (0.027) 792  Yes Yes No 

July 
0.033 (0.028) 792  Yes Yes No 

August 
0.019 (0.029) 792  Yes Yes No 

 

PANEL B – Dyadic standard errors 
 β s.e. Obs. Route 

FE 
Year FE & 

country trends 
Month FE & 
month trends 

Month of the matcha 
 0.067*** (0.016) 6136  Yes Yes Yes 

 
        

January 
 0.084*** (0.031) 1344  Yes Yes No 

February 
 0.064** (0.029) 1346  Yes Yes No 

March b 
 0.062** (0.025) 1340  Yes Yes No 

April b 
 0.045 (0.031) 1358  Yes Yes No 

May b 
 0.042 (0.030) 1354  Yes Yes No 

June 
 0.03 (0.022) 1584  Yes Yes No 

July 
 0.033 (0.023) 1584  Yes Yes No 

August 
 0.019 (0.024) 1584  Yes Yes No 

 Notes: The table reports estimates of β in equation (3). The sample includes all routes across cities that had at 
least 1 team taking part in the Champions League group phase during the current edition. I exclude all routes 
that: (i) could not have been treated given the seeding structure of the random draw; (ii) connect cities in Israel, 
Russia, Serbia, Turkey or Ukraine and (iii) had their teams met in the later stages of the competition either in 
the current or in the previous edition of the Champions League. Panel A reports estimates when observations 
are collapsed at the route-month level: standard error here are corrected for heteroschedasticity. Panel B reports 
the same estimates of table 2, but standard errors are dyadic. In both panels the dependent variable has the top 
and bottom 0.5 percent of observations winsorized. See text for details. 

Source: Author calculations. 

a September through December. b Knock-out phase. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 



TABLE 4 — RESULTS FROM 1000 PLACEBO SIMULATIONS OF THE TREATMENT. 

 Simulations with  

p-value smaller than  0.05

95th percentile of  

estimates in simulations 
β a 

Simulations with  

estimates larger than  β a 

 (1) (2) (3) (4) 

Month of the match b 8.6 % 0.038 0.067 0.1% 

     

January 5.2 % 0.068 0.084 1.5% 

February 6.2 % 0.067 0.064 5.7% 

March c 6.3 % 0.061 0.062 4.6% 

April c 6.2 % 0.051 0.045 6.9% 

May c 5.5 % 0.048 0.042 8.4% 

June 4.9 % 0.039 0.030 10.3% 

July 4.1 % 0.037 0.033 6.7% 

August 4.4 % 0.039 0.019 22.5% 

 Notes: Column (1) reports the percentage of simulations in which the effect of a placebo treatment was 
estimated to be different from 0 at the 5 percent confidence level. The placebo treatment is assigned according 
to the same rules used to form the Champions League groups; in each simulation I ran a regression identical to 
(3) substituting the true treatment Gij with this placebo treatment randomly assigned. The number of simulations 
on which these statistics are computed is 1000. Column (2) reports the 95th percentile of the β estimated on the 
1000 simulations of the placebo treatment. Column (3) reports the estimates of β from table 2. Column (4) 
reports the percentage of simulation with an estimated β larger than the one reported in column 2. See text for 
details. 

Source: Author calculations. 

 a From table 2. b September through December. c Knock-out phase. 
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