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1 Introduction

In a series of papers, Heckman and Vytlacil (1999, 2005a) use the marginal benefit of treatment

BMTE introduced in Björklund and Moffitt (1987) to unify the benefit of treatment parameters

and to consider their identification. These correspond to average changes in the outcome due

to treatment, and do not reflect the cost of the treatment as viewed by the agents. We extend

their work by imposing more structure, the nonparametric generalized Roy model, and exploit the

additional structure to consider the subjective cost and surplus, or net benefit, from the program.

We define parameters for the generalized Roy model corresponding to the average cost and surplus

of participating in a program; these parameters are parallel to the treatment effect parameters

considered by Heckman and Vytlacil (1999, 2005a). The central feature of the generalized Roy

model is that the agent chooses treatment if the benefit exceeds the subjective cost as perceived

by the agent. This creates a simple relationship between the cost and benefit parameters that we

exploit for identifying the cost and surplus parameters. Our main result is that cost parameters

and surplus parameters in the generalized Roy model can be identified without direct information

on the costs of treatment. Our analysis complements and extends the analysis of Björklund and

Moffitt (1987) who first noted the duality between cost and benefit parameters in the generalized

Roy model.

Our identification analysis highlights the role of having regressors that shift both, the cost and

benefit from the program. The greater the variation in costs induced by variation in the observed

cost shifters, the richer the information on the benefits of the program that is identified. The

greater the variation in benefits induced by variation in the regressors that enter the outcome

equation, the richer the information on the costs of the program that is identified. Both forms of

variation play a central role in identification of the surplus from the program.

The plan of this paper is as follows. Section 2 introduces our generalized Roy model in which

agents select into treatment if the surplus from doing so is positive. Section 3 reviews the aver-

age benefit of treatment parameters from Heckman and Vytlacil (1999, 2005a), and develops and

analyzes the dual cost parameters to match the benefit parameters. Section 4 presents an identi-

fication analysis of the cost and surplus parameters, based on first identifying the corresponding

marginal benefits of treatment through local instrumental variables and then integrating them ap-

propriately. To illustrate the empirical content of our approach, we apply the results to a example

from educational choice in Section 5. Section 6 concludes.

1



2 The Nonparametric Generalized Roy Model

Suppose there are two potential outcomes (Y0, Y1), and a choice indicator D with D = 1 if the

agent selects into treatment so that Y1 is observed and D = 0 if the agent does not select into

treatment so that Y0 is observed. The observed outcome Y can be written in switching regression

form (Quandt, 1958, 1973)

Y = DY1 + (1−D)Y0, (2.1)

where we impose

Yj = µj(X) + Uj (2.2)

for j = 0, 1. X is a vector of regressors observed by the econometrician while (U1, U0) are not.

Combining equations (2.1) and (2.2),

Y = µ0(X) + {[µ1(X)− µ0(X)] + U1 − U0}D + U0. (2.3)

The individual benefit of treatment associated with moving an otherwise identical person from

“0” to “1” is B = Y1 − Y0 and is defined as the causal effect on Y of a ceteris paribus move from

“0” to “1”. We denote the subjective cost of choosing treatment as perceived by the agent as C,

determined by

C = µC(Z) + UC , (2.4)

where Z is an observed random vector of cost shifters and UC is an unobserved random variable.

The decision rule for program participation is determined according to the generalized Roy model,

i.e. individuals choose treatment if the benefit from treatment is greater than the subjective cost:

D = 1 if S ≥ 0 ; D = 0 otherwise, (2.5)

where S is the surplus, i.e. net gain, from treatment,

S = (Y1 − Y0)− C

= {[µ1(X)− µ0(X)]− µC(Z)} − [UC − (U1 − U0)]

= µS(X,Z)− V

with µS(X,Z) = [µ1(X)−µ0(X)]−µC(Z) and V = UC− (U1−U0). We do not assume any partic-

ular functional form for the functions µ0, µ1 and µC , and we do not assume that the distribution

of U0, U1, or UC is known. We maintain equations (2.1) – (2.5) throughout this paper.
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The original Roy (1951) model assumes that there are no observed X regressors, that the cost

of treatment is identically zero (i.e. µC = 0, UC = 0), and that (U0, U1) ∼ N(0,Σ). Heckman

and Honoré (1990) develop a nonparametric version of the Roy model with X regressors and no

parametric assumption on the distribution of (U0, U1). Their version of the Roy model also imposes

that the cost of treatment is identically zero. In contrast, we allow non-zero cost of treatment, and

for our identification analysis we require nondegenerate cost of treatment and observed cost-shifters.

From the point of view of the econometrician (X,Z) is observed and (U1, U0, UC) is unobserved.

This model supposes that agents know the true benefit, B = Y1 − Y0, of the treatment. As shown

in Appendix (A), our results extend to a broader class of models in which the agents participate

in the program if the expected benefits given the information available to them is greater than

their cost of treatment. This model also supposes that there is no other aspect of the benefit of

the treatment other than Y1 − Y0. Implicitly, any subjective benefits of the program are being

incorporated into the costs of treatment, i.e. the cost function includes the subjective benefits

of the treatment. For example, if training allows the individual to work in a job with preferred

amenities, this is being modeled as a (negative) contribution to the subjective cost of treatment.

We will suppose that Z and X do not contain any common elements. This supposition is purely

for ease of exposition, all of the analysis of this paper can be seen as implicitly conditioning on all

common elements of X and Z.

We invoke the following assumptions:

(A-1) (U0, U1, UC) are independent of (X,Z).

(A-2) The distribution of µC(Z) conditional on X is absolutely continuous with respect to Lebesgue

measure.

(A-3) The distribution of V = UC − (U1 − U0) is absolutely continuous with respect to Lebesgue

measure and has a cumulative distribution function that is strictly increasing.

(A-4) The values of E|Y1|, E|Y0| and E|C| are finite.

(A-5) 0 < Pr(D = 1 | X,Z) < 1 w.p. 1.

(A-1) assumes that (U0, U1, UC) is independent of (X,Z). Thus, D is endogenous but other

regressors in both the treatment equation and the outcome equation are exogenous. Recall that

we are implicitly conditioning on any regressors that enter both the outcome equations and the
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cost equation, so that this condition should be interpreted as an independence assumption of the

error terms from the unique elements of X and Z conditional on the regressors that enter both

equations. (A-2) requires that there exist at least one continuous component of Z conditional on

X. This assumption will only be required for our identification analysis, and is not needed for our

definitions or analysis of the cost and surplus parameters. (A-3) is a regularity condition. It allows

for the possibility that UC is degenerate (costs don’t vary conditional on Z) or that U1 − U0 is

degenerate (treatment effects don’t vary conditional on X), though not both. Assumption (A-4)

is needed to satisfy standard integration conditions. It also guarantees that the mean benefit and

cost parameters are well defined. Assumption (A-5) is the assumption in the population of both a

treatment and a control group for (a.e.) (X,Z). Note that this assumption still allows the support

of Pr(D = 1|X,Z) to be the full unit interval.

Let P (X,Z) denote the probability of selecting treatment given (X,Z), or the “propensity score”

P (X,Z) ≡ Pr(D = 1 | X,Z) = FV (µS(X,Z)), where FV (·) denotes the distribution of V .1 We

sometimes denote P (X,Z) by P , suppressing the (X,Z) argument. We also work with US, a

uniform random variable (US ∼ Unif[0, 1]) defined by US = FV (V ). Thus different values of uS

denote different quantiles of V . Given our previous assumptions, FV is strictly increasing, and

P (X,Z) is continuous random variable conditional on X.

The generalized Roy model of this paper is a special case of the model of Heckman and Vyt-

lacil (1999, 2005a). Our model of equations (2.1) – (2.5) and our assumptions (A-1) – (A-5) imply

the model and assumptions of Heckman and Vytlacil (1999, 2005a), and thus, by the result of

Vytlacil (2002), imply the Local Average Treatment Effect (LATE) model of Imbens and Angrist

(1994). We are imposing more restrictions here. In particular, we are imposing the generalized

Roy model and the corresponding assumptions that will allow us to exploit the generalized Roy

model for identification of subjective cost parameters. As is conventional for the Roy model, we

are imposing additive separability in the outcome equations (2.2). This additive separability is not

imposed in Heckman and Vytlacil (1999, 2005a), but is required by our analysis to make additive

separability in the latent index equation (2.5) consistent with the generalized Roy model. Recall

again that we are implicitly conditioning on all common elements of (X,Z), so that these need

not be additively separable from the error term. We are imposing conditions on X that are not

1We will refer to the cumulative distribution function of a random vector A by FA(·) and to the cumulative
distribution function of a random vector A conditional on random vector B by FA|B(·). We will write the cumulative
distribution function of A conditional on B = b by FA|B(· | b).
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required by Heckman and Vytlacil (1999, 2005a). In their analysis, they fully condition on X,

and thus do not need to assume that X is independent of the error vector. In contrast, to exploit

the generalized Roy model to recover subjective cost parameters, we require that the unique ele-

ments X are independent of the error vector.2 We are implicitly fully conditioning on any common

elements of X and Z, and no independence condition is required on the common elements.

2In this respect, our analysis is broadly analogous to the identification strategies and conditions of Vytlacil and
Yildiz (2007) and Shaikh and Vytlacil (2005), who also require that there be exogenous regressors in the outcome
equation and exploit variation in such regressors for identification .
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3 Benefit, Cost, and Surplus Parameters

In this section, we define and analyze the benefit, cost, and surplus parameters. We maintain

the model of equations (2.1) – (2.5), and impose assumptions (A-1) and (A-3) – (A-5). We do

not require assumption (A-2) for the definition or analysis of the parameters, but will use this

assumption in the next section for the identification analysis.

Standard treatment effect analysis seeks averaged parameters of the benefit of treatment, B =

Y1 − Y0. The most commonly invoked treatment effect parameter is the average benefit of treat-

ment BATE(x) ≡ E(Y1 − Y0 | X = x) = µ1(x) − µ0(x). This is the effect of assigning treatment

randomly to everyone of type X = x assuming full compliance, and ignoring general equilib-

rium effects. Another commonly invoked parameter is the average benefit of treatment on per-

sons who actually take the treatment, referred to as the benefit of treatment on the treated

BTT (x) ≡ E(Y1 − Y0 | X = x,D = 1) = µ1(x)− µ0(x) +E(U1 − U0|X = x,D = 1). Heckman and

Vytlacil (1999, 2005a) unify a broad class of treatment effect parameters including the BATE(x)

and BTT (x) through the marginal benefit of treatment, defined as BMTE(x, uS) ≡ E(Y1− Y0|X =

x, US = uS) = µ1(x) − µ0(x) + E(U1 − U0|US = uS). BMTE is the treatment effect parameter

that conditions on the first stage error term, i.e. conditions on the unobserved desire to select into

treatment.

The conventional treatment analysis does not define, seek to identify, or estimate any aspect

of the cost of the treatment. We define a set of cost parameters parallel to the benefit of treat-

ment parameters, where cost is the subjective cost as perceived by the agent. Thus, we define the

average cost of treatment, the average cost of treatment on those treated, and the marginal cost

of treatment:

CATE(z) = E(C|Z = z) = µC(z)

CTT (z) = E(C|Z = z,D = 1) = µC(z) + E(UC |Z = z,D = 1)

CMTE(z, uS) = E(C|Z = z, US = uS) = µC(z) + E(UC |US = uS).

Recalling that S = B − C = µS(X,Z) − V , where µS(X,Z) = [µ1(X)− µ0(X)] − µC(Z) and

V = UC − (U1 − U0), we now define the corresponding surplus parameters,

SATE(x, z) = E(S|X = x, Z = z) = µS(x, z)

STT (x, z) = E(S|X = x, Z = z,D = 1) = µS(x, z)− E(V |X = x, Z = z,D = 1)

SMTE(x, z, uS) = E(S|X = x, Z = z, US = uS) = µS(x, z)− E(V |US = uS).
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With these parameters, we can now ask questions not only about the outcome change from the

treatment but also the subjective cost of the treatment and the net surplus as well.

Following Heckman and Vytlacil (1999, 2005a), we can represent the average treatment effects

and treatment on the treated as averaged versions of the marginal effects of treatment:

BATE(x) =
∫ 1

0
BMTE(x, uS)duS

BTT (x) =
∫ 1

0
BMTE(x, uS)

1−FP |X(uS |x)∫ 1
0 (1−FP |X(t|x))dt

duS.
(3.1)

Following the same arguments as Heckman and Vytlacil (1999, 2005a), we have

CATE(z) =
∫ 1

0
CMTE(z, uS)duS

CTT (z) =
∫ 1

0
CMTE(z, uS)

1−FP |Z(uS |z)∫ 1
0 (1−FP |Z(t|z))dt

duS,
(3.2)

and

SATE(x, z) =
∫ 1

0
SMTE(x, z, uS)duS

STT (x, z) = 1
P (x,z)

∫ P (x,z)

0
SMTE(x, z, uS)duS.

(3.3)

Next we point to some relationships between the marginal effects of treatment. At first, consider

the marginal surplus parameter. Using that US = FV (V ) with FV strictly increasing, we have that

US = uS is equivalent to V = F−1V (uS), and thus

SMTE(x, z, uS) = µS(x, z)− E
(
V |V = F−1V (uS)

)
= µS(x, z)− F−1V (uS).

F−1V is strictly increasing, and thus SMTE(x, z, uS) is strictly decreasing in uS. Individuals with

low US most want to enter the program and are those with the highest surplus from the program,

while individuals with high US least want to enter the program and have the smallest surplus from

the program. Again using that FV is strictly increasing and that P (X,Z) = FV (µS(X,Z)), we

have that conditioning on US = P (x, z) is equivalent to conditioning on V = µS(x, z), and thus

SMTE(x, z, P (x, z)) = µS(x, z)− E (V |V = µS(x, z)) = 0.

An individual with uS = P (x, z) is an individual who is indifferent between treatment or not

if they are assigned X = x, Z = z. Since SMTE(x, z, uS) is strictly decreasing in uS, we have

SMTE(x, z, uS) is positive for uS < P (x, z), = 0 at u = P (x, z), and is negative for uS > P (x, z). If

we instead consider holding the uS evaluation point fixed and consider how SMTE(x, z, uS) varies
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with (x, z), we have that SMTE(x, z, uS) will be positive for all (x, z) such that P (x, z) > uS and

will be negative for all (x, z) such that P (x, z) < uS.

We have thus far discussed only the marginal surplus function. Using that SMTE(x, z, uS) =

BMTE(x, u) − CMTE(z, uS), we can translate these statements into relative statements about the

marginal benefit and marginal cost functions. We thus have that

BMTE(x, uS) > CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) < uS

BMTE(x, uS) = CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) = uS

BMTE(x, uS) < CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) > uS

The two parameters coincide when evaluated at uS = P (x, z), because at this margin marginal cost

equal the marginal benefit. The equality between marginal benefit and marginal cost for people

at the margin will be used in the next session to allow identification of cost parameters.

To fix ideas, we show the full set of marginal effects of treatment for a numerical example in

Figure (1).3 Evaluated at fixed values of the observables (X,Z), agents select their treatment

status based on gains unobservable by the econometrican. The marginal benefit of treatment

BMTE(x, uS) decreases when moving along the quantiles of the first-stage unobservable V . Agents

with high values of uS are unlikely to take up treatment. The opposite is true for the marginal

cost of treatment CMTE(z, uS). Agents wich are likely to select treatment not only have higher

benefits, but also lower cost. For very low values of uS, the cost of treatment is actually nega-

tive. Individuals just indifferent to treatment, P (x, z) = 0.55, the marginal surplus of treatment

SMTE(x, z, uS) is zero. The benefit of treatment are still positive, but so are cost. For the marginal

agent, the benefits of treatment are just offset by the subjective cost.

Remark 3.1. Consider some special cases of the analysis. If benefits do not vary across individuals

conditional on X, i.e. if U1 − U0 is degenerate, than BMTE(x, uS) = BATE(x) = BTT (x). In

3More details on the example are provided in the Web Appendix.
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Figure 1: Marginal Effects of Treatment
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addition, U1 − U0 degenerate implies that V = UC and US = FUC
(UC) so that

CMTE(z, uS) = µC(z) + E(UC |US = uS)

= µC(z) + E(UC |UC = F−1UC
(uS)) = µC(z) + F−1UC

(uS)

which is increasing in uS. In this case, variation in unobserved costs drives selection conditional

on (X,Z) and those who most want to enter the program (have lowest US) have the least costs of

treatment. Using equation (3.2) and that CMTE(z, uS) is increasing in uS, we also have CTT (z) <

CATE(z) so that, conditional on Z, those who chose treatment have lower cost of treatment than

those who did not select into treatment. Symmetrically, if costs do not vary across individuals

conditional on Z, i.e. if UC is degenerate, then heterogeneity in the benefits of treatment drive

selection and (1) CMTE(x, uS) = CATE(x) = CTT (x); (2) BMTE(x, uS) is decreasing in uS; and (3)

BTT (x) > BATE(x).

We have shown that the marginal surplus parameter is highest for those who most want to

participate in the program. Adding equation (3.3) we thus have that the average surplus among

the treated is higher than the unconditional average surplus of treatment. As discussed in Remark

(3.1), degeneracy of either U1−U0 or of UC implies that treatment parameters and cost parameters

will have intuitive properties, such as highest benefit or lowest cost for those who most want to
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participate in the program. We now show a more general set of conditions under which these

properties of the treatment effect parameters and cost parameters will hold.

Theorem 1. Assume that equations (2.1) – (2.5) and (2.5) and our assumptions (A-1) – (A-5)

hold.

1. STT (x) > SATE(x), and SMTE(x, uS) is monotonically decreasing in uS.

2. Suppose UC ⊥⊥ U1 − U0. Then CTT (z) ≤ CATE(z), BTT (x) ≥ BATE(x).

3. Suppose UC ⊥⊥ U1 − U0, and that UC and U1 − U0 have log concave densities. Then

CMTE(z, uS) is monotonically increasing in uS and BMTE(x, uS) is monotonically decreasing

in uS.

Proof. Assertion (1) was proven in the preceding text. For assertion (2), first consider the cost

parameters. CATE(z) − CTT (z) = E(UC) − E(UC |Z = z,D = 1), and E(UC |Z = z,D =

1) =
∫
E(UC |Z = z,X = x, US ≤ P (x, z))dFX|Z(x|z) =

∫
E(UC |US ≤ P (x, z))dFX|Z(x|z) us-

ing (X,Z) ⊥⊥ (UC , US). Thus, using that US = FV (V ), it will be sufficient to show that E(UC |V ≤
t) ≤ E(UC) for all t, and thus sufficient to show that Pr[UC ≤ s|UC−(U1−U0) ≤ t] ≥ Pr[(UC ≤ s].

Using Bayes’ rule, this is equivalent to Pr[UC − (U1 − U0) ≤ t|UC ≤ s] ≥ Pr[UC − (U1 − U0) ≤ t],

and this last assertion can now easily be shown using UC ⊥⊥ (U1−U0). We can thus conclude that

CATE(z)−CTT (z) ≥ 0. The same argument mutatis mutandis shows that BATE(x)−BTT (x) ≤ 0.

Now consider assertion (3). The densities of UC and U1 − U0 being log concave is equivalent to

their densities being Polya frequency functions of order 2 (PF2) (Klein (1968)). Using that U1−U0

⊥⊥ UC , one can now easily verify that (UC , UC − (U1 − U0)) and (−(U1 − U0), UC − (U1 − U0))

have joint densities that are totally positive of order 2 (TP2). By Joe (1968) (Theorems 2.2, 2.3),

(UC , UC − (U1−U0)) and (−(U1−U0), UC − (U1−U0)) having TP2 densities implies that UC and

−(U1 − U0) are stochastically increasing in UC − (U1 − U0) and thus stochastically increasing in

US using that US is a strictly monotonic function of UC − (U1 − U0). Thus E(UC |US = uS) is

increasing in uS while E(U1 − U0|US = uS) is decreasing in u, establishing the assertion.

The theorem provides intuitive results. If the unobservables related to the cost and benefit are

independent, then the average benefit among those who select into treatment is larger than the

unconditional average benefit. At the same time, the average cost among those who select into

treatment is lower than the unconditional average cost. In other words, under the independence of

the unobservables related to benefits and costs, it is the high benefit and low cost individuals who

select into treatment in the generalized Roy model. Part (2) and (3) of the theorem state that,

under a regularity condition, the expected gain is decreasing while the expected cost is increasing
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in US. Note that the normal density as well as many other standard densities are log concave.4

As the numerical example previously introduced in Figure (1) is based on unobservables drawn

from a normal distribution with uobservable benefits (U1 − U0) independent of the uobservable

component UC of cost, the marginal effects of treatment exhibit the shape predicted by Theorem

(1), Assertion (3). The BMTE(x, uS) is decreasing in US, while the opposite is true for CMTE(z, uS).

4Heckman and Honoré (1990) exploit the restriction of log-concave density functions for the disturbance terms in
a Roy model with zero costs. See Bagnoli and Bergstrom (2005) for a review of log concave densities and economic
applications.
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4 Identification Analysis

Following Heckman and Vytlacil (1999, 2005a), we have that local instrumental variables (LIV)

identifies the marginal benefit of treatment:

∂

∂p
E(Y |X = x, P = p) = BMTE(x, p). (4.1)

We identify E(Y |X = x, P = p) and its derivative for all (x, p) ∈ Supp(X,P ), where Supp(X,P )

denotes the support of (X,P (X,Z)).5 We thus have identification of BMTE(x, uS) for all values

of (x, uS) ∈ Supp(X,P ). For a fixed x, we identify BMTE(x, uS) for uS ∈ Supp(P |X = x). The

more variation in propensity scores conditional on X = x, the larger the set of evaluation points

uS for which we identify BMTE(x, uS). Variation in propensity scores conditional on X is driven

by variation in Z, the cost shifters. Thus, if we observe regressors that cause large variations in

costs, we will be able to identify BMTE(x, uS) at a larger set.

We can identify BATE(x) and BTT (x) by identifying BMTE(x, uS) over the appropriate support and

then integrating the latter with the appropriate weights. By equation (3.1), we identify BATE(x)

if Supp(P |X = x) = [0, 1]. This requires, for fixed X = x, there to be enough variation in the

cost shifters Z to drive the probabilities P (x, Z) all the way to zero and to one. In other words,

holding fixed the regressors that enter the outcome equation, we must observe costs shifters such

that conditional on some values of those cost shifters, the cost to the agent is so low that the

agent will select into treatment with probability one; and conditional on other values of the cost

shifters, the cost to the agent is so high that the agent will select into treatment with probability

zero. Likewise, we identify BTT (x) if Supp(P |X = x) = [0, pmax
x ] where pmax

x is the supremum of

Supp(P |X = x). This support requirement in turn requires that, for fixed X = x, for there to be

enough variation in the cost shifters Z to drive the selection probability to zero.6

Using equation (4.1) and that BMTE(x, P (x, z)) = CMTE(z, P (x, z)), we have

∂

∂p
E(Y |X = x, P = p)

∣∣
p=P (x,z)

= CMTE(z, P (x, z)).

5For any random vectors A and B, we will write the support of the distribution of A as Supp(A), and the support
of distribution of A conditional on B = b as Supp(A|B = b).

6As shown by Heckman and Vytlacil (2001), we can identify BATE(x) and BTT (x) under weaker conditions
than those required to follow this strategy of first identifying BMTE(x, u) over the appropriate support.
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We thus identify CMTE(z, uS) for all values of (z, uS) ∈ Supp(Z, P ). One can thus identify the

marginal cost parameter without direct information on the cost of treatment by using the struc-

ture of the Roy model and by identifying the marginal benefit of treatment for individuals at the

margin of participation. For a fixed z, we identify CMTE(z, uS) for uS ∈ Supp(P |Z = z). The

more variation in propensity scores conditional on Z = z, the larger the set of evaluation points

for which we identify CMTE(z, uS). Variation in propensity scores conditional on Z = z is driven

by variation in X, the regressors that drive the outcome. Thus, if we observe regressors that cause

large variations in benefits, we will be able to identify CMTE(z, uS) at a larger set of uS evaluation

points. In contrast, if there are no X regressors, then P only depends on Z and we can only

identify CMTE(z, uS) for uS = P (z).

By equation (3.2), we thus identify CATE(x) if Supp(P |Z = z) = [0, 1]. This requires, for fixed

Z = z, for there to be enough variation in the outcome shifters X to drive the probabilities

P (X,Z) all the way to zero and to one. In other words, holding fixed the regressors that enter

the cost equation, we must observe outcome shifters such that conditional on some values of those

outcome shifters, the benefit to the agent is so high that the agent will select into treatment with

probability one; and conditional on other values of the outcome shifters, the benefit to the agent is

so high that the agent will select into treatment with probability zero. Likewise, we thus identify

CTT (x) if Supp(P |Z = z) = [0, pmax
z ] where pmax

z is the supremum of Supp(P |Z = z). This support

requirement in turn requires that, for fixed Z = z, for there to be enough variation in the outcome

shifters X to drive the probabilities to zero.

Finally, consider identification of the surplus parameters. Using that SMTE(x, z, uS) = BMTE(x, uS)−
CMTE(z, uS), we identify the marginal surplus parameter at (x, z, uS) such that (x, uS) ∈ Supp(X,P )

and (z, uS) ∈ Supp(Z, P ). By equation (3.3), we can now integrate SMTE(x, z, uS) using the ap-

propriate weights to identify SATE(x, z) and STT (x, z) under the appropriate support conditions.

For example, we identify SATE(x, z) if Supp(P |X = x) = [0, 1] and Supp(P |Z = z) = [0, 1].

Thus, for identification of the treatment parameters we need sufficient variation in cost shifters

conditional on the outcome shifters; for identification of the cost parameters we need sufficient

variation in the outcome shifters conditional on the cost shifters; and for identification of the

surplus parameters we need sufficient variation in both sets of regressors. We can thus identify

the marginal cost, the average cost, and the cost of treatment on the treated parameters and the

corresponding surplus parameters without direct information on the cost of treatment. Our ability
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to do so is directly related to the extend of variation in observed regressors that shift the benefit

of the treatment.

We summarize this discussion in the form of a theorem:

Theorem 2. Assume that equations (2.1) – (2.5) and (2.5) and our assumptions (A-1) – (A-5)

hold.

1. BMTE(x, uS) is identified for (x, uS) ∈ Supp(X,P ); CMTE(z, uS) is identified for (z, uS) ∈
Supp(Z, P ); and SMTE(x, z, uS) is identified for (x, z, uS) such that (x, uS) ∈ Supp(X,P )

and (z, uS) ∈ Supp(Z, P ).

2. BATE(x) is identified if Supp(P |X = x) = [0, 1]; CATE(z) is identified if Supp(P |Z = z) =

[0, 1]; SATE(x, z) is identified if Supp(P |X = x) = [0, 1] and Supp(P |Z = z) = [0, 1].

3. BTT (x) is identified if Supp(P |X = x) = [0, pmax
x ]; CTT (z) is identified if if Supp(P |Z = z) =

[0, pmax
z ]; STT(x, z) is identified if Supp(P |X = x) = [0, pmax

x ] and Supp(P |Z = z) = [0, pmax
z ].

Remark 4.1. As discussed in Remark (3.1), if there is no unobserved heterogeneity in costs of

treatment, UC = 0, then CMTE(z, uS) = CTT (z) = CATE(z). Thus, in the case of no unobserved

heterogeneity in costs of treatment, we immediately identify the cost of treatment on the treated

and average cost parameters without the additional support conditions. Likewise, if there is

no unobserved heterogeneity in the treatment effects, U1 − U0 = 0, we have BMTE(z, uS) =

BTT (z) = BATE(z) and thus identify all of the treatment effect parameters without additional

support conditions.

We have thus far considered identification of BATE(x) = µ1(X) − µ0(X), and of CATE(z) =

µC(z). We can identify µ1(X) − µ0(X) and µC(z) up to a location shift under weaker conditions

than those required to full identify the functions. From the analysis of the previous section, we

identify BMTE(x, p) = µ1(x) − µ0(x) + E(U1 − U0|US = p). By varying x holding p constant,

we trace out µ1(x)− µ0(x) up to an additive constant. Likewise, consider CMTE(z, p) = µC(z) +

E(UC |US = p). Varying z holding p fixed for the marginal cost parameter, we identify µC(z) up

to an additive constant. Given our previous identification analysis, we can identify BMTE(x, p)

over x ∈ Supp(X|P = p) and CMTE(z, p) over z ∈ Supp(Z|P = p), but not over the unconditional

supports of X and Z. Thus, we immediately have identification of shifts in µ1(x)− µ0(x) for x ∈
Supp(X|P = p) and of µC(z) for z ∈ Supp(Z|P = p) for some p ∈ Supp(P ), but not immediately,

e.g., of µC(z0) − µC(z1) if there does not exist a p such that z0, z1 ∈ Supp(Z|P = p). However,
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given a rank condition, we can combine information across different values of p to identify µC(z)

and µ1(x) − µ0(x) up to an additive constant for all z and x in their unconditional supports. In

particular, consider the following rank assumption.

(A-6) X and P (X,Z) are measurably separated, i.e., any function of X that almost surely equals

a function of P (X,Z) must be almost surely equal to a constant.

Theorem 3. Assume that equations (2.1) – (2.5) and our assumptions (A-1) – (A-5) hold. Ad-

ditionally, suppose (A-6) holds. Then µC(·) is identified over the support of Z up to an additive

constant, and µ1(·)− µ0(·) is identified over the support of X up to an additive constant.

Proof. Let µ10(·) = µ1(·)− µ0(·). From our previous analysis, we have

∂

∂p
E(Y |X = x, P = p) = µ10(x) + Υ(p) a.e. (x, p) (4.2)

where Υ(p) = E(U1 − U0 | US = p). Let µ1
10,Υ

1 and µ0
10,Υ

0 denote two candidate functions that

both satisfy equation (4.2) for a.e. (x, p). We then have µ1
10(x) − µ0

10(x) = Υ0(p) − Υ1(p) for

a.e. (x, p). By the rank condition (A-6), we have µ1
10(x) − µ0

10(x) equals a constant for a.e. x,

so that µ10 is identified up to an additive constant. The same argument mutatis mutandis shows

identification of µC up to an additive constant.

Measurable separability between X and P is a rank condition. As discussed by Florens et al.

(2006), measurable separability is a relatively weak regularity condition in this context. See their

paper for more discussion of this condition, including sufficient conditions for measurable separa-

bility.

Finally, consider testable restrictions on E(Y |X = x, P = p) as a function of p that result from

additional restrictions including those considered in Theorem (1).

Theorem 4. Assume that equations (2.1) – (2.5) and (2.5) and our assumptions (A-1)–(A-5)

hold.

1. Suppose that U1 − U0 is degenerate. Then E(Y |X = x, P = p) is linear in p.

2. Suppose U1 − U0 ⊥⊥ UC. For a fixed x, consider a line a + bp, where a = E(Y |X =

x, P (X,Z) = 0) and b = E(Y |X = x, P (X,Z) = 1) − E(Y |X = x, P (X,Z) = 0). Then

E(Y |X = x, P (X,Z) = p) ≥ a+ bp for all p ∈Supp(P |X = x).

3. Suppose U1 − U0 ⊥⊥ UC, and suppose U1 − U0 and UC have log concave densities. Then

E(Y |X = x, P (X,Z) = p) is a concave function of p.
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Proof. Assertion (1) follows from equation (4.1) and BMTE(x, uS) = µ1(x) − µ0(x) if U1 − U0 is

degenerate. Assertion (2) follows from E(Y |X = x, P (X,Z) = 1) − E(Y |X = x, P (X,Z) = 0) =

BATE(x), [E(Y |X = x, P (X,Z) = p)− E(Y |X = x, P (X,Z) = 0)] /p = E(B|X = x, P (X,Z) =

p,D = 1), and that BATE(x) ≤ E(B|X = x, P (X,Z) = p,D = 1) by the arguments used to

prove assertion (2) of Theorem (1). Assertion (3) follows from equation (4.1) and Assertion (3) of

Theorem (1).

Recalling, that the unobservables in the numerical example are all normal, but independently,

distributed, Figure (2) depicts the corresponding E (Y1 − Y0 |X = x, P (X,Z) = p ). As perdicted

by Theorem (4), it is concave. This is a direct consequence of the fact that those agents with

Figure 2: Testable Implication
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a high propensity of treatment (low values of uS) have the highest gains even after conditioning

on observables. As the p increases, the share of inviduals participating increases constantly, but

at the same time the gain for agents at the margin decreases. Individuals with high values of V ,

which enter treatment only for high values of p, have the least to gain from treatment.
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5 Application

Following Carneiro et al. (2011), we estimate the marginal effects of treatment for a sample of

white males from the National Longitudinal Survey of Youth of 1979 (NLSY) imposing full inde-

pendence between the observables (X,Z) and unobservables (U1, U0, UC) of the model. We group

individuals in two groups: persons with a high school education or below who do not go to college

(D = 0) and persons with some college or above (D = 1). The outcome variable is the log of the

average of non-missing values of the hourly wage between 1989 and 1993, which we interpret as

an estimate of the log hourly wage in 1991. Schooling is measured in 1991 when individuals are

between 28 and 34 years of age. As described in Heckman et al. (2006), we estimate the BMTE

using a semiparametric version of local instrumental variables relying on a probit estimate for the

selection probability. We present annualized returns, obtained my dividing the marginal effects

of treatment by four (corresponding to four years of college) and assume a linear-in-parameter

version of the generalized Roy model presented, thus Y1 = Xβ1 + U1 and Y0 = Xβ0 + U0.

In our specification, we include regressors that affect benefits as well as cost. Thus, X denotes all

variables in the outcome equation, whereas Z indicates all variables that affect choice. The central

requirement to be able to identify the full set of marginal effects of treatment is the availability

of two types of exclusion restrictions. First, to identify the BMTE we require cost-shifters in Z,

that do not affect the benefits of treatment. While conditioning on permanent local labor market

conditions, we use short-run fluctuations at the time of the treatment decision in labor market

conditions that only affect the cost of treatment, but leave benefits unchanged. Second, for iden-

tification of CMTE, we require in addition, access to benefit-shifters in X, that do not affect the

cost of treatment. For this, we use long-run labor market conditions in adolescence.7

An additional complication arises, as some determinants of benefits are unknown to agent at

the time when making their treatment decision. In our application, this refers to the local labor

market environment in 1991. However, as shown in Appendix (A), the analysis extends easily to

this case if agents form rational expectations based only on observables known to them at time of

treatment. A central aspect of this type of analysis is the fact that LIV identifies ex-post benefits,

not the benefits as perceived by the agent at time of treatment. In an intermediate step, the

BMTE needs to be projected on the information set available at that time. The resulting perceived

benefits are then used to identify perceived cost and surplus. To contrast these to the ex-post

7See our Web Appendix for more details on the dataset and exact specification.
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realized counterparts, we add the subscript I.

The perceived marginal effects of treatment are depicted in Figure (3) evaluated at the mean

of the observable characteristics (XI , ZI). Agents select their treatment based on gains unobserv-

Figure 3: Marginal Effects of Treatment
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able to the econometrician. Individuals with a high propensity for treatment have higher gains.

These range from 40% for individuals with very low values of uS to −20% at the upper tail of

the distribution of V . The opposite shape is true for cost, these are initially negative for a small

subset of agents, but strictly increasing when moving along the quantiles of V . Given the point

of evaluation, the individuals at the margin are uS = P (x̄, z̄) = 0.45. Individuals at this quantile

are just indifferent towards treatment. Their surplus is zero as their benefit are just offset by their

cost from participation.

Assuming independence between all observables and unobservables of the model is stronger as-

sumption than required for identification. The identification analysis in Section (4) was performed

conditioning implicitly on all common elements that affect benefits as well as cost of treatment.

Independence from the unobservable V was only crucial for the exclusions for those observables

that shift cost independent of benefits and those that shift benefits independent of cost. When

imposing full independence, it is the unconditional support of P that determines the range of
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identification for the marginal effects of treatment. However, if this is not the case, the range

over which we can identify the marginal effects of treatment is stated in Theorem (2). It is the

variation in P conditional on the X (and all common elements) that matters for the BMTE and

the variation in P conditional on Z (and all common elements) for the CMTE

To emphasize this issue, we graph the area of local identification for the marginal effects of treat-

ment in Figure (4). In each figure, we plot the marginal benefit or marginal cost of treatment

evaluated at the 25th and 75th percentile of their index functions (µ1(X) − µ0(X)) and µC(Z).

Then we show, which part of the marginal effect is identified by what instrument. We do so,

by fixing all instruments at their mean value at the analyzed quantile of the index functions and

then allowing each one to vary separately.8 The continuously plotted part of the marginal cost and

benefits of treatment that can be identified if all the relevant exclusions are allowed to vary. Figure

Figure 4: Local Identification
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(4) makes clear, which exclusions aid in the identification of the marginal effects of treatment and

for which portion. Using multiple instruments at once allows to increases the area of identifica-

tion. Concerning marginal cost, the variation in long-run wages aids most in the identification.

Recalling, that marginal surplus of treatment is identified only in the area of overlap of the local

benefits and cost function, this highlights the importance of having both strong cost shifters and

powerful regressors that shift the benefit of the program for a comprehensive policy analysis.

8See our Web Appendix for details on the implementation.
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6 Conclusion

This pape extends the analysis of Heckman and Vytlacil (1999, 2005b, 2007) by using the marginal

benefit of treatment BMTE to identify the subjective cost and surplus of treatment. An empirical

application from educational choice illustrates the empirical feasability of this analysis.
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A Extension to Limited Information by Agent

Our analysis thus far has imposed equation (2.5), that is D = 1[S ≥ 0] where S = (Y1 − Y0)− C.

Hence assumed that agents have perfect foresight of their individual benefit of treatment B =

Y1 − Y0 as well as cost C. We now relax the model of equation (2.5) to allow limited information

on the part of the agents, while maintaining the model on latent outcomes Y0, Y1 and cost C of

equations (2.2) and (2.4). We impose that agents form valid expectations of their outcomes and

costs given the information that they have at the time of treatment choice and that they select

into treatment if the expected surplus is positive. We allow agents to know only some elements of

(X,Z), and to possibly have incomplete knowledge of (U0, U1, UC) and thus of their own idiosyn-

cratic benefit and cost of treatment. We now show that the analysis essentially goes through with

minor modifications, though it is now important to distinguish conditioning sets that condition on

what is known to the agent at the time of treatment choice (which might include some information

not known to the econometrician), what is known to the econometrician (which might include some

information not known to the agent at the time of treatment choice), and what is realized ex post.

The essential change in the procedure under incomplete information is that the marginal benefit of

treatment identified by LIV must be projected onto the information set when selecting treatment

to form the expected marginal benefit of treatment conditional on the information available to

the agent. It is this coarsened version of BMTE used to identify the marginal cost parameter. In

addition, only components of X which are known to the agent at the time of treatment choice can

aid in identification of the cost parameters, so that the exclusion restriction for identification of

the cost parameter are variables in X that are not in Z and which were known to the agent at the

time of treatment selection.

Let (XI , ZI) denote components of (X,Z) that are observed by the agent when choosing whether

to select into treatment. Suppose that the agent’s information set equals (XI , ZI , UI).
9 UI is the

private information of the agent relevant to their own benefits and cost of treatment, and is not

observed by the econometrician.

Restate assumption (A-1) as

(U0, U1, UC , UI) ⊥⊥ (X,Z),

9In other words, the information set of the agent equals σ(X,Z,UI), the sigma-algebra generated by (X,Z,UI).
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so that the private information of the agent is independent of the observed regressors. Note that,

under this independence assumption,

E(V |X,Z, UI) = E(V |XI , ZI , UI) = E(V |UI)

using that V = UC − (U1 − U0). Furthermore, given this assumption, (X,Z) ⊥⊥ UI |(XI , ZI), so

that UI does not help the agent predict elements of (X,Z) that are not contained in (XI , ZI).

Thus, we are allowing the agents to have private information about their own idiosyncratic bene-

fits (U1 − U0) and costs UC , though we are imposing the restriction that the agent’s information

relevant to (X,Z) is only that they know some components (XI , ZI).

Restate assumption (A-3) as the distribution of Ṽ = E(V |UI) is absolutely continuous with respect

to Lebesgue measure, and the cumulative distribution function of Ṽ is strictly increasing. We are

thus requiring that the agent has some nontrivial information on their own cost or benefit from

treatment, we are not allowing E(V |UI) to be a degenerate random variable. Maintain assump-

tions (A-2), (A-4), and (A-5) as before.

Define µI
j (XI) = E(Yj|XI) for j = 0, 1, and µI

C(ZI) = E(C|ZI), and note that given our in-

dependence assumptions and the law of iterated expectations we have µI
j (XI) = E(µj(X)|XI),

µI
C(ZI) = E(µC(Z)|ZI). Define µI

S(XI , ZI) = E(S|XI , ZI). Given these assumptions we have

E(S|XI , ZI , UI) = µI
S(XI , ZI)− Ṽ = µI

1(XI)− µI
0(XI)− µI

C(ZI)− Ṽ .

The previous decision rule, equation (2.5), under perfect certainty is now replaced with

D = 1 if E(S|XI , ZI , UI) ≥ 0 ; D = 0 otherwise, (A.1)

where E(S|XI , ZI , UI) is the expected surplus, i.e. net gain, from treatment, with the expectation

conditional on the agents information set. We thus have

D = 1[µI
S(XI , ZI)− Ṽ ≥ 0]

where our independence assumptions imply Ṽ ⊥⊥ (XI , ZI), and thus the selection model is of the

same form as Heckman and Vytlacil (1999), which allows to use LIV to identify BMTE. Redefining
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US = FṼ (Ṽ ) and P (XI , ZI) = Pr[D = 1|XI , ZI ] = FṼ (µI
S(XI , ZI)), we have

D = 1[P (XI , ZI)− US ≥ 0]

with US distributed unit uniform and independent of (X,Z) and thus independent of (XI , ZI).

Define BMTE
I (xI , uS) ≡ E(Y1 − U0|XI = xI , US = uS), CMTE

I (zI , uS) ≡ E(C|ZI = zI , US = uS),

and SMTE
I (xI , zI , uS) ≡ BMTE

I (xI , uS) − CMTE
I (zI , uS), the marginal benefit, cost, and net sur-

plus of treatment conditional on the agent’s information set, where again by the law of iterated

expectations and our independence assumptions

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI , US = uS) = E(BMTE(X, uS)|XI = xI)

CMTE
I (zI , uS) = E(CMTE(Z, uS)|ZI = zI , US = uS) = E(CMTE(Z, uS)|ZI = zI)

Evaluating SMTE
I (xI , zI , uS) at uS = P (xI , zI), we have

SMTE
I (xI , zI , P (xI , zI)) = µI

S(xI , zI)− E(V |US = P (xI , zI))

= µI
S(xI , zI)− E(V |Ṽ = µI

S(xI , zI))

= µI
S(xI , zI)− E(V |E(V |UI) = µI

S(xI , zI))

= µI
S(xI , zI)− E(E(V |UI)|E(V |UI) = µI

S(xI , zI))

= µI
S(xI , zI)− µI

S(xI , zI)

= 0

where the second equality is plugging in the definition of US, the third equality is plugging in the

definition of Ṽ , and the fourth equality is using law of iterated expectations and that E(V |UI) is

degenerate given UI . Since SMTE
I (xI , zI , uS) = BMTE

I (xI , uS)− CMTE
I (zI , uS), we have

BMTE
I (xI , uS) = CMTE

I (zI , uS) for uS such that uS = P (xI , zI)

thus, identification of BMTE
I (xI , P (xI , zI)) provides identification of CMTE

I (zI , P (xI , zI)).

Since our model is a special case of Heckman and Vytlacil (1999) and we can follow them in using

LIV to identify BMTE(x, uS) for (x, US) in the support of (X,P (XI , ZI)). It is important to note

that LIV does not identify the BMTE that is relevant to the agent’s decision problem, LIV identifies

BMTE(x, uS) = E(Y1 − Y0|X = x, US = uS), not BMTE
I (xI , uS) = E(Y1 − Y0|XI = xI , US = uS).
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However, we can project the BMTE identified by LIV on the information known to the agent at the

time of treatment selection, coarsen BMTE, to identify the BMTE
I relevant to the agent’s decision

problem. It is the latter, that is relevant for identifying cost. By the law of iterated expectations

(and using that XI is degenerate given X and that UI is independent of X), we have

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI)

for (xI , US) in the support of (XI , P (XI , ZI)). Using thatBMTE
I (xI , P (xI , zI)) = CMTE

I (zI , P (xI , zI)),

we identify CMTE
I (zI , uS) for (zI , u) in the support of (ZI , P (XI , ZI)). We have thus identified the

marginal cost parameter, and can integrate it to obtain other cost parameters, and combine it with

the benefit parameters to identify net surplus parameters as before. The only additional change

is that the only elements of X that are useful to identification of the cost parameter are those

elements that are in X, not in Z, and which are known to the agent at the time of selection into

treatment (are in XI).
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