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Abstract

Dynamic selection and endogeneous noncompliance hamper the evaluation of
treatment effects when the outcome of interest is a duration variable. Existing meth-
ods either restrict their analysis to settings where only one of those two problems
exists, or adopt parametric or semi-parametric structure. In this paper we develop
two completely nonparametric Instrumental Variable approaches for duration data
which enable us to identify treatment effects in the presence of both dynamic selec-
tion and endogeneous noncompliance. We suggest corresponding estimators. Our
approaches are revealed to have as special cases numerous existing models. We
suggest simple procedures to test for endogeneity.
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1 Introduction

Duration models play an important role for the evaluation of treatment effects in a dy-
namic context (see e.g. [Van den Berg, 2001] and [Abbring, 2003] for an overview).
A canonical example from labor economics is the assessment of the impact of job
training on the duration of subsequent employment and unemployment spells (see
[Heckman et al., ] for a study). Often the identification of treatment effects in dynamic
settings is hampered by two major problems. First, as the studies of [Meyer, 1996],
[Ham and LaLonde, 1996] and [Eberwein et al., 1997] reveal, dynamic selection contam-
inates the evaluation of outcomes of survivors at a point in time even if the treatment
was initially randomized. Second, if the assigned treatment status does not have to be
equal to the actual treatment received, then selection into treatment arms might addi-
tionally bias comparisons between groups with different actual treatment statuses. Both
problems arise when unobservable heterogeneity has an impact on the distribution of
the duration variable. A simple comparison of the outcomes in the various treatment
groups is likely to capture not only the treatment effect but also these differences in the
distributions of the unobserved heterogeneity. We will refer to these problems as to
dynamic and static endogeneity respectively.

In this paper we develop two very general instrumental variable (IV) approaches for
the identification and estimation of treatment effects in duration data which can handle
both dynamic and static endogeneity and also allow for censoring. We do not adopt
parametric or semi-parametric structure and do not impose independence of observed
and unobserved characteristics.

In our first model we demonstrate identification, estimation and testing of average
causal treatment effects on the conditional survival function in a regression discontinuity
setting. A single comprehensive treatment is assigned to start on a specific day and
noncompliance is possible. A well studied example is the welfare-to-work program
New Deal for the Young People in the UK, which was released nationwide on April 1,
1998. Cohorts of individuals in the state of interest, here unemployment, receive the
treatment at a different elapsed duration in this state. In this setting the distribution of
the unobserved heterogeneity changes over time, which causes dynamic endogeneity.
Moreover, the possibility to select out of treatment (even though perhaps costly) possibly
induces static endogeneity. We use the time variation in the elapsed duration at the
moment when treatment starts as an instrument (which can also be interpreted as an
intention to treat (ITT)) to achieve identification. We compare the outcomes of all
survived compliers who are assigned to receive the treatment at an elapsed duration
of say t time units with the outcomes of the survived compliers from an older cohort
at the same elapsed duration (and hence still without the treatment). We show that
dynamic selection for both cohorts proceeds in the same way given randomization at
the beginning, an idea first used in [Van den Berg et al., 2010]. Therefore the difference in
observed outcomes should be due only to the treatment. A major difficulty in this setting,
however, is that one cannot identify the compliers from the older cohort at t because they
reveal their preferences at a later point in time, provided they survive that long. Thus

1



some compliers will never be identified. We solve this problem by using in an elegant
way the information of the younger cohort on individuals who selected themselves
out of the treatment. We show that with this information we can split the observed
conditional distribution of the older cohort at t into the distributions of compliers and
noncompliers. Thus, we are able in the presence of unobserved heterogeneity and
without any (semi-)parametric assumptions to solve the problems of dynamic and static
selection and identify an average treatment effect on the conditional distribution of the
duration variable. This is a novel result. We show that if the set of all noncompliers is a
null set then our model reduces to the model of [Van den Berg et al., 2010] as a special
case. We also show that our model applies to a setting where the point in time of inflow
is common for all individuals but the assignment of treatment is random over time and
may differ across individuals. Similar results are obtained for treatment effects on the
hazard of the duration variable.

In our second approach we abandon the regression discontinuity design and adopt
a setting, in which randomization of the treatment assignment occurs at time 0, i. e. the
moment of inflow. Agents are subject to treatment at some later common for everybody
(random or deterministic) point in time. Unlike in our first model, we allow assignment
to the control group as well, and noncompliance is possible in both treatment and
control group. Thus we set a very general framework where both dynamic and static
endogeneity arise. Using noncompliance information and the assigned treatment status
as an instrument (ITT), we demonstrate identification of average treatment effects on the
conditional survival function of the duration variable. This is an important contribution
to the existing literature. If we restrict the actual treatment to occur at time 0, our
model is revealed to reduce to the second model of [Abbring and van den Berg, 2005]
as a special case. If we additionally rule out noncompliance, then we obtain as a special
case the first model of [Abbring and van den Berg, 2005]. It can be easily shown that our
results maintain their validity if we allow randomization of the assignment to treatment
to occur simultaneously with the actual treatment at some later point in time.

Thus our two IV approaches are shown 1) to cover an extensive taxonomy of exist-
ing models in the literature which deal with either dynamic or static endogeneity in
the context of duration data and 2) moreover, unlike existing methods, to handle both
endogeneity types simultaneously. All results are attained through intuitive, nonrestric-
tive assumptions and without imposing any parametric or semi-parametric structure.
Corresponding estimators have a natural interpretation and are closely related to the
Wald-type statistics. Our IV methods can be therefore easily used in applied work.

An interesting application arises in both models. Comparing noncompliers from the
younger cohort to a whole older cohort without the treatment in the first model, as well
as comparing noncompliers in both treatment groups with observed outcomes in the
second model, enables us to develop simple tests for static endogeneity. These tests
have important applications, e.g. in the evaluation of pilot projects, where it might be
of interest whether noncompliance is related to potential outcomes.

This paper is closely related to different branches of literature. First, literature on
regression discontinuity design is connected to our first model. Some recent develop-
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ments in this field were made by [Hahn et al., 2001], [Porter, 2003] and [Frlich, 2007].
Their approaches do not allow for censoring and are therefore of restricted applicabil-
ity in modelling duration data. [Van den Berg et al., 2010] demonstrate nonparametric
identification of treatment effects in a setting with policy discontinuity. Their approach
allows for censoring and dynamic selection. As a major difference to our work, however,
they assume that the actual treatment is exogeneous, which precludes static endogene-
ity. We allow for an endogeneous treatment. Their paper is revealed to be a special case
of our first model.

A second branch of literature related to our paper is the literature on Instrumen-
tal Variable analysis. IV methods in nonparametric settings have been developed by
[Imbens and Angrist, 1994], [Imbens and Rubin, 1997] and [Abadie, 2002]. They cannot
handle censoring and do not deal with dynamic endogeneity. IV methods for duration
data are considered in [Robins and Tsiatis, 1991], [Chesher, 2003], [Bijwaard and Ridder, 2005],
[Bijwaard, 2006] and [Abbring and van den Berg, 2005]. They all can handle censoring.
The methods of [Robins and Tsiatis, 1991], [Chesher, 2003], [Bijwaard and Ridder, 2005]
and [Bijwaard, 2006], however, adopt semi-parametric or even parametric structure. In
their first two settings, which are revealed to be special cases of our second model,
[Abbring and van den Berg, 2005] do not postulate (semi-)parametric assumptions, but
their analysis applies only to unconditional survival functions1, thus precluding dy-
namic selection. In their last setting they show identification in the presence of dynamic
endogeneity, however they adopt semi-parametric structure. We allow for dynamic
endogeneity and do not impose (semi-)parametric structure on the distribution of the
outcome variables.

The remainder of this paper is organized as follows. In section 2 we introduce our
first model and show identification and estimation of treatment effects. In section 3 we
discuss our second model. Section 4 concludes.

2 Instrumental variable approach in duration models with

policy discontinuity

2.1 Notation and treatment effects

Suppose we observe a set of individuals (or agents, or simply objects) in a state of in-
terest, for example hospital patients in a state of illness. Let T be a real nonnegative
Borel-measurable function which represents the time of staying in the condition of in-
terest. We call an object, whose elapsed time since inflow is k time units, a k-years-old
object, and k itself is its age. Its inflow will be called birth, its outflow - dead. The
point in time of inflow will be called its birthday, and of outflow simply day of death.

1Or to hazards at t when t converges to zero.
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With τ� we denote a calendar point in time, at which all objects in the state of interest
are supposed to be exposed to a permanent change in some binary external conditions,
and this change will be called treatment (a separate variable for these change or these
conditions is not necessary, we will define its impact implicitly). We refer to τ� as to
(global) treatment day. A treatment is possible only on that day. Let the discrete random
variable Zi represent the elapsed time from point in time of birth of an object i till the
treatment day τ�. One object can be born on countable many points in time. All indi-
viduals who are born z years before the treatment day are called a z-cohort. Suppose
objects can choose whether they get treated on τ� or not. Let the random variable Si

stands for the actual time from birth until treatment of an individual i. Si = s represents
a treatment after s time units, Si = ª represents the case of no treatment. Si will be
also discrete since it depends on the point in time of inflow (for simplicity we refer to
S as to th treatment itself). Let s, z > R+. Following the standard potential outcome
notation we denote T(s, z) as the duration of ”life” (= stay in the condition of interest)
that would occur if an individual i would belong to the cohort z and get the treatment s.
We will assume throughout this paper that an exclusion restriction holds: T(s, z) = T(s),
meaning that Z does not directly impact the potential duration. Let Si(z) represent the
potential choice of time from birth to treatment, given that the individual belongs to the
z-cohort. Stated later as an assumption, at each point in time t we will allow only two
types of individuals according to their treatment preferences: 1) Si(t) = t : compliers,
who would accept the treatment they are given t, and 2) Si(t) = +ª: noncompliers, who
would choose to be never treated, provided they were asked at t. This assumption about
S(t) is compatible with the case, where individuals know that they can be treated only
once, at treatment day.
Further, let all factors that have an influence on the potential duration T(s) be summa-
rized in the random variables (or vectors) X and V, where X is observed and V not,
and both are time-constant. One can think about V as about the error term in a linear
regression model. We assume that for a concrete value of X and V T(s) is a continuous
random variable, reflecting some intrinsic randomness. Further, let C be the random
censoring time, which we assume to be independent of T and S. We define ÇTi to be equal
to Ci if Ti A Ci and to Ti if Ti B Ci. Analogously, ÇS = min T,C,S. We observe the sample
consisting of the independent observations

(T̃1,S1,Z1,X1, I1), . . . , (T̃n,Sn,Zn,Xn, In),
drawn from the distribution of (T̃,S,Z,X, ITBC), where I indicates the order of T, C and
S.
Our research question is: what is the effect of the treatment on the duration variable
when getting the treatment at age t, (t > R+)? Denote with θT(s) the hazard of T(s). One
possible way to define a treatment effect for this research question is

(2.1) θT(s)(t S X,V) − θT(s′)(t S X,V),
which is the individual additive treatment effect on the hazard of T(s) at t, changing the
treatment from s′ to s. Two adjustments are necessary. First, we will be never able to
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learn from the data about the effect of the treatment on the noncompliers. Therefore it
makes sense to consider only compliers. With this first adjustment the treatment effect
would be

(2.2) θT(s)(t S X,V,S(s) = s) − θT(s′)(t S X,V,S(s′) = s′).

Second, since do not observe V, we would like to ”average it out” and concentrate on
an average treatment effect. The question arises over which population we have to
average 2.2. [Abbring and van den Berg, 2005] argue, that if V influences T(s), than its
distribution could be different at different points in time. Since the hazard of T(s) at t
conditions on T(s) C t, we have to average over all complying survivors at t. Now we
can define the Average Treatment Effect on the Treated Complying Survivors (ATETCS),
on the Nontreated Complying Survivors (ATENTCS), and on the Treated Survivors
(ATECS), respectively, as

ATETCS(s, s′, t) �= IE�θT(s)(t S X,V,S(t) = t) − θT(s′)(t S X,V,S(t) = t) S T(s) C t,X,S(t) = t�
ATENTCS(s, s′, t) �= IE�θT(s)(t S X,V,S(t) = t) − θT(s′)(t S X,V,S(t) = t) S T(s′) C t,X,S(t) = t�

ATECS(s, s′, t) �= IE�θT(s)(t S X,V,S(t) = t) −
− θT(s′)(t S X,V,S(t) = t) S T(s) C t,T(s′) C t,X,S(t) = t�.

More broadly, we define the General Average Treatment Effect on the Treated Complying
Survivors (GATETCS) as

GATETCS(s, s′, t) �= IE�P(T(s) > B S T(s) C t,X,V,S(t) = t) −
− P(T(s′) > B S T(s′) C t,X,V,S(t) = t) S T(s) C t,X,S(t) = t�,

where B is defined as B �= [t, t + a) with a C 0 and t + a < t′. Thus, B is an interval of
time, where the t cohort has received the treatment but the t′-cohort still not. Similarly
we define GATENTCS(s, s′, t) and GATECS(s, s′, t). We will show that under some
nonrestrictive and intuitive assumptions all of these treatment effects are identified at
(t, t′, t).

2.2 Identification of treatment effects without censoring

We will first concentrate on GATETCS(t, t′, t). We postulate the following assumptions:

A1 (Single treatment knowledge) : for any t and all i it holds either Si(t) = t or
Si(t) = +ª.
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A2 (No anticipation) : For each t′ C t C 0 and each X,V holds

ΘT(t′)(t S X,V,S(t) = t) = ΘT(ª)(t S X,V,S(t) = t),

where ΘT(s) is the integrated hazard of T(s). We also assume no anticipation
conditioning on the never-takers.

A3 (Randomization) : For the instrument Z it holds

i) Z y �T(s),S(t)� S X,V and ii) Z y V S X.

A4 : For all t and s 0 < P(S(t) = t S T(s) C t) < 1

A5 (Consistency restrictions) For all t, s > R+��+ª�
i) Z = t� S(t) = S

ii) S = s� T(s) = T

Furthermore, in line with A4, we assume that all further expressions exist and are well
defined. This will imply, among other things, that 0 < P(Z = t). We also restrict for now
our attention on the case, where T is observed (= no censoring). The generalization is
done in subsection 2.5. Before we proceed to our identification strategy, we first explain
intuitively the assumptions.

A1 Assumption 1 means that at a concrete point in time an individual is either a
complier or a nevertaker. It excludes the type of preferences S(t) = t′ for some
t′ x t, t′ < ª. This is compatible with the case, where individuals are informed
that they can take the treatment only at treatment day, and hence choose between
taking the treatment at treatment day or never. This information might be known
before the treatment or it might be told to the individuals on the treatment day.

A2 No anticipation means that individuals would always act until treatment in a way,
as if they wouldn’t know at which age their treatment is assigned. This is in line
with the case, at which agents come to know the assigned day of their treatment
directly on the treatment day. This will imply, as shown later, that individuals
from different cohorts but at the same age, who are still not treated, ”behave” in
the same way. Note that we only require this for compliers, since in a world, where
individuals are free to take or not to take the treatment at treatment day, this would
be an empty assumption for all individuals who choose not to take it.

A3 Randomization i) postulates that when controlled for X,V, the distributions of
T(s) and S(z) are the same for all values of Z. ii) postulates the same for V. This
would be compatible with the case, where individuals are randomly assigned to
the cohorts.
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A5 This assumption connects potential outcomes with observed variables (for a de-
tailed discussion see [Pearl, 2000]). i) for example states that if the actual value of
Z happens to be t, then S(t) and S will have the same values.

A further preliminary note should help understand the expressions below. One can read
P(T(s) A k S X,S(t) = t,Z = z) as the probability for a complier (S(t) = t) from a cohort
z (Z = z) with observed characteristics X to live longer than k years, had he have taken
the treatment at the age of s. Thus we can interpret GATETCS(t, t′, t) as the treatment
effect on the compliers if they would have taken the treatment at the age of t (if t′ A t lies
outside B than taking the treatment at t′ corresponds to the no treatment case).

We are going to use the time variation to treatment as an instrument to identify the
treatment effect. To motivate our identification strategy, consider first the following
expressions, which at first glance appear to be simple and intuitive candidates for a
treatment effect:

P(T > B S T C t,X,S = t,Z = t) − P(T > B S T C t,X,S =ª,Z = t)(2.3)
P(T > B S T C t,X,S = t,Z = t) − P(T > B S T C t,X,S = t,Z = t′)(2.4)
P(T > B S T C t,X,S = t,Z = t) − P(T > B S T C t,X,S = t′,Z = t′).(2.5)

2.3 compares outcomes of the compliers and never-takers from the same cohort. Writing
2.3 in the form

IE�P(T > B S T C t,X,S = t,Z = t,V) S T C t,X,S = t,Z = t� −
− IE�P(T > B S T C t,X,S =ª,Z = t,V) S T C t,X,S =ª,Z = t�

reveals that we compare averages over two different populations: the survived compliers
from cohort t, �i � Ti C t,Xi,Si = t,Zi = t�, and survived never-takers from cohort t, �i � Ti C

t,Xi,Si =ª,Zi = t�. These two populations will probably have different distributions of
V. The reason for this is that the treatment variable S is a choice variableand it will most
likely depend on some unobserved characteristics and hence on V. As a consequence
it would hold V á S S T C t,X,Z = t (this we will refer to as static endogeneity, or static
selection). Therefore part of the difference captured by 2.3 will be due to this difference
in the distributions of V and not entirely to the treatment effect. Hence we should not
use the never-takers as a control group. The question arises where to take a control
group from. One approach would be to compare the conditional distributions of T at
t on the survived compliers from two different cohorts, as 2.5 and 2.4 do. 2.5 is not
defined since P(S = t,Z = t′) = 0. In 2.4 we would encounter the following problem: for a
cohort Z = t′ we can identify the compliers not until age of t′, on the treatment day, where
they reveal their preferences. For reasons mentioned in the notation chapter untreated
survivor populations of age t and t′ will most likely have different distributions of V
(this we refer to as dynamic selection). Therefore again 2.4 will capture some of the
difference of the distributions of V and hence not reflect the correct treatment effect.
Previous studies in the literature of regression design either preclude static endogeneity,
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see e.g. [Van den Berg et al., 2010], or cannot handle censoring, as in [Hahn et al., 2001]
or [Frlich, 2007]. Our identification strategy has to account for both static and dynamic
selection and is thus of a more complex nature. A simple interpretation of it is that we
use Z as an instrument for the endogeneous S. As a treatment group we use the treated
compliers of the t-cohort. To define a correct control group we show in a first step that if
we take the t-years-old compliers from an older cohort t′ (note that we cannot observe
who are these compliers), they would have the same distribution of V as the t-years-old
compliers from the t-cohort. In other words, the distribution of V among nontreated
compliers develops over time in each cohort in the same way. This idea was first used in
[Van den Berg et al., 2010] in the case of an exogeneous treatment and we have to adopt
it for an endogeneous one. This is done in the following

Proposition 2.1. Let F be a cdf. Under Assumptions A2 to A5 it holds for allª C t′ C t C 0

FVST(t)Ct,X,S(t)=t = FVST(t′)Ct,X,S(t)=t = FVSTCt,X,S=t,Z=t.

The proof is provided in the appendix. Its first consequence is the following result:

GATETCS(t, t′, t) = IE�P(T(t) > B S T(t) C t,X,V,S(t) = t) −
− P(T(t′) > B S T(t′) C t,X,V,S(t) = t) S T(t) C t,X,S(t) = t� =
= IE�P(T(t) > B S T(t) C t,X,V,S(t) = t) S T(t) C t,X,S(t) = t� −
− IE�P(T(t′) > B S T(t′) C t,X,V,S(t) = t) S T(t) C t,X,S(t) = t� =

Proposition 2.1
= IE�P(T(t) > B S T(t) C t,X,V,S(t) = t) S T(t) C t,X,S(t) = t� −
− IE�P(T(t′) > B S T(t′) C t,X,V,S(t) = t) S T(t′) C t,X,S(t) = t� =
= P(T(t) > B S T(t) C t,X,S(t) = t) − P(T(t′) > B S T(t′) C t,X,S(t) = t) =(2.6)
=� p�1 − p�2 .

As we show in proposition 2.2, it is easy to show that p�1 = P(T > B S T C t,X,S = t,Z = t).
The identification of p�2 is more complex, since we do not observe at age t who is a
complier from the older t′-cohort. But we can estimate the (”average”) conditional prob-
ability distribution of T at t of the t-years-old noncompliers of the t-cohort (notice that
they are not treated at treatment day τ�). We show that this distribution is equal to the
distribution of the t-years-old noncompliers of the t′-cohort (which are also untreated).
We also show that the proportions of compliers and noncompliers at age t are the same
in both cohorts. Using this and also the fact, that at age t we can estimate the (”aver-
age”) conditional distribution of T for the whole t′-cohort (compliers and noncompliers
together), we can then split it using the known proportions into compliers and noncom-
pliers. To explain this in a better and more formal way, consider the following equalities
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:

P(T > B S T C t,X,Z = t′) = P(T > B,Complier S T C t,X,Z = t′) +
+ P(T > B,Noncomplier S T C t,X,Z = t′)
= P(T > B S T C t,X,Z = t′,Complier)P(Complier S T C t,X,Z = t′) +
+ P(T > B S T C t,X,Z = t′,Noncomplier)P(Noncomplier S T C t,X,Z = t′).

We observe P(T > B S T C t,X,Z = t′) and we show that

P(Complier S T C t,X,Z = t′) = P(Complier S T C t,X,Z = t)
P(Noncomplier S T C t,X,Z = t′) = P(Noncomplier S T C t,X,Z = t),

where the right-hand side of these two equalities can be identified: we show that it holds

P(Complier S T C t,X,Z = t) = P(S = t S T C t,X,Z = t)
P(Noncomplier S T C t,X,Z = t) = P(S =ª S T C t,X,Z = t).

With these equalities it is possible to identify P(T > B,Complier S T C t,X,Z = t′) and it
turns out that this probability is equal to p�2 .

In the following proposition we state the main result of our study:

Proposition 2.2. Under Assumptions A1-A5 GATETCS(t, t′, t) is nonparametrically identified

and it holds

(2.7)

GATETCS(t, t′, t) = P(T > B S T C t,X,Z = t) − P(T > B S T C t,X,Z = t′)
P(S = t S T C t,X,Z = t)

The proof is provided in the appendix. This treatment effect has a nice interpretation.
It adjusts the difference between the observed outcomes in the groups of compliers and
noncompliers by the probability to be a complier. Thus, this estimator accounts for
unobserved heterogeneity, captured by this difference. The identification strategy natu-
rally applies to hazards. This result is similar to the result of [Imbens and Angrist, 1994],
which turns to be its static special case.

Another interesting setting case arises if we restrict the model to full compliance.
Then P(S = t S T C t,X,Z = t) is equal to 1 and we obtain

GATETCS(t, t′, t) = P(T > B S T C t,X,Z = t) − P(T > B S T C t,X,Z = t′).
This is the result from [Van den Berg et al., 2010], where an exogeneous treatment is
assumed. Thus, their model is revealed to be a special case of our model.

One additional advantage of our approach is that the setting can be defined and
interpreted in an alternative way. All results apply to a case, where all individuals have
the same point in time of inflow but the assigned treatment time vary in a random way.
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2.3 Estimation of treatment effects and testing

To motivate our estimation strategy, we write first

(2.8) P(T > B S T C t,X = x,Z = t) = IE[I�T>B� S T C t,X = x,Z = t],
where I is an indicator function (we assume here for expositional reasons that X is
discrete and one-dimensional, this is however not a restriction for our further analysis).
We are using a local linear estimator to estimate this expression. In particular, define
g(t,x, t) as

g(t,x, t) =

S
+ª

t

1
nh

n

Q
i=1
(I�T>B�,i − β0 − β1(Ti − y) − β2(Xi − x) − β3(Zi − t))2K�Ti − y

h(n) �I(Xi = x,Zi = t)dy.

K is a kernel function and h is a bandwidth (technical details to come), and the expression
is minimized with respect to all β-s. We assume that all regularity conditions are
fulfilled. Analogously, we define g(t,x, t′) and k(t,x, t) to be the corresponding local
linear estimators of P(T > B S T C t,X = x,Z = t′) and P(S = t S T C t,X = x,Z = t),
respectively. Then, we define our estimator of GATETCS(t, t′, t), ˆGATETCS(t, t′, t), as

ˆGATETCS(t, t′, t) = g(t,x, t) − g(t,x, t′)
k(t,x, t) .

Proposition 2.3 (Consistency). Under standard regularity conditions,

ˆGATETCS(t, t′, t) p
� GATETCS(t, t′, t).

Proof. Follows directly from the properties of the local linear estimator and the fact, that

the function f (a, b, c) = a−b
c is a continuous function at all points where it is defined.

j

This estimator is a Wald-type statistics. Its limiting distribution is to be provided
soon.

2.4 A test for static endogeneity

In this subsection we suggest a simple procedure to test for static endogeneity, i.e. to
test whether noncompliance is related to potential outcomes. The idea is that if it is not,
then noncompliers and compliers, and hence noncompliers and a whole cohort, should
have the same distributions of the potential outcomes. In particular, they should have
the same distributions of the potential outcomes without the treatment. This argument
naturally leads to a comparison between the observed outcomes of the noncompliers
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from a t-cohort at elapsed duration t (and hence at the moment where they can be
identified as noncompliers) with the observed outcomes of a whole older cohort, say the
t′-cohort, at the same elapsed duration t.

To develop this idea in a formal framework, we adopt the following assumption:
A6 (No static endogeneity): S(t) y �T(s)� S X,

A direct implication of A6 is the following equality:

(2.9)
P(T(ª) > B S T(ª) C t,X,S(t) = t) = P(T(ª) > B S T(ª) C t,X,S(t) =ª)

We state the following

Proposition 2.4. Under assumptions A1-A6

P(T > B S T C t,X,Z = t′) = P(T(ª) > B S T(ª) C t,X,S(t) =ª).

for all t′ C t

Verbally stated, the average conditional distribution of the observed outcome at
elapsed duration t from a t′-cohort, t′ C t, is equal to the average conditional distribution
of the potential duration without the treatment on the set of all noncompliers at age t.

Proof. See appendix.

We already showed in a previous subsection that

P(T(ª) > B S T(ª) C t,X,S(t) =ª) = P(T > B S T C t,X,S =ª,Z = t),

so under no static endogeneity it must hold

P(T > B S T C t,X,Z = t′) = P(T > B S T C t,X,S =ª,Z = t).

Both probabilities can be estimated from the data. This naturally leads to the following
Null hypothesis:
H0 (no static endogeneity):

P(T > B S T C t,X,Z = t′) − P(T > B S T C t,X,S =ª,Z = t) = 0.

The derivation of a test statistic with a local linear technique, as well as its distribution
is still work in progress.
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2.5 Identification of treatment effects: the case with right censoring

So far we have assumed we can observe the whole lenght of spells in the state of
interest, T. A typical feature of duration data is that some observations are censored.
In this section we consider right censoring (it is straightforward to extend all results
to left censoring). In labor market studies right censoring typically arizes when at the
end of the study the individuals are still unemployed, so the unemployment spell has
an unknown length. The unemployed might also simply stop attending the training
and drop out of the study (sample attrition), or their job search might be interrupted
by a transition into the out of the labor force state because of maternity, invalidity or
other reasons. In biomedical studies, and particulary in clinical trials, spells might be
right-censored because patients withdraw from treatment or die from another cause
(competing risks). In telemetry studies the radio transmitter attached to the animal
might break down or get lost.
Right censoring can be introduced formally in the following way: let C be a real Borel
measurable fuction with nonnegative values. We observe (min�T,C�, I) and not directly
(T,C), where I indicates whether min�T,C� = T or min�T,C� = C or both. Unfortunately,
it is not possible to recover the joint distribution of T and C from the distribution of
the observables (min�T,C�, I) without imposing additional structure. To each pair of
dependend latent variables (Td,Cd) there exists an independent pair (Ti,Ci), which is
observationally equivalent, a result which goes back to [Cox, 1962] and [Tsiatis, 1975].
To achieve identification some structure has to be imposed. We prove identification of
treatment effects with two different types of right censoring.

2.5.1 Censoring with independence of T and I�CAT�

Suppose the following assumption holds:

A6)
I�CAT� y (T,S) S X,Z

where I is an indicator function.

It implies, that censored and uncensored observations have the same distributions con-
ditional on X and Z: FTSX,Z,I�CAT�=1 = FTSX,Z,I�CAT�=0. This is a strong assumption but is often
made in empirical studies (ZITAT?), since it allows easy implementation and intutitive
interpretation. To demonstrate these, set ÇT = min�T,C� and ÇS = min�T,C,S�. It holds
the following

Proposition 2.5. Under assumptions A1 - A6 GATETCS is identified and equal to

(2.10)
P(ÇT > B S ÇT C t, I�CAT� = 1,X,Z = t) − P(ÇT > B S ÇT C t, I�CAT� = 1,X,Z = t′)

P(ÇS = t S ÇT C t, I�CAT� = 1,X,Z = t) .
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Proof. It is straightforward to show that

P(ÇT > B S ÇT C t, I�CAT� = 1,X,Z = t) = P(T > B S T C t,X,Z = t)
P(ÇT > B S ÇT C t, I�CAT� = 1,X,Z = t′) = P(T > B S T C t,X,Z = t′) and

P(ÇS = t S ÇT C t, I�CAT� = 1,X,Z = t) = P(S = t S T C t,X,Z = t).

The lefthand sides of these equations contain only observables.

So to obtain GATETCS, it is enough to take the uncensored observations.

2.5.2 Random censoring

In this subsection we adopt the following assumption:

A7) (Random censoring)
C y (T,S) S X,Z.

A8) The random vector (T,C,S) S X,Z has an absolutely continuous distribution.

A9) T S X,Z, C S X,Z and S S X,Z have distributions with nonvanishing right tails,
FTSX,Z(t) < 1 for x <ª.

We can prove the following propostion:

Proposition 2.6. Under assumptions A1 - A5 and A7- A9 GATETCS is identified.

Proof. Let F be a simbol for p.d.f and f for a density. Following [Nadas, 1970], it holds

for the joint density of T and C given X,Z, fT,CSX,Z=k,

(2.11) P(T A t,C A T S X,Z = k) = S
ª

t
S
ª

y
fT,CSX,Z=t(y, s)dsdy.

Since C y (T,S) S X,Z, we have

S
ª

t
S
ª

y
fT,CSX,Z=t(y, s)dsdy = S

ª

t
S
ª

y
fTSX,Z=t(y) fCSX,Z=t(s)dsdy

= S
ª

t
fTSX,Z=t(y)�S

ª

y
fCSX,Z=t(s)ds�dy = S

ª

t
fTSX,Z=t(y)P(C A y S X,Z = k)dy =

= S
ª

t
fTSX,Z=t(y)(1 − P(C < y S X,Z = k))dy.

On the other hand, we have

P(T A t,C A T S X,Z = k) = P(C A T S X,Z = k)P(T A t S C A T,X,Z = k)
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so we obtain, after taking the derivatives w.r.t. t on both sides in 2.11,

P(C A T S X,Z = k) fTSCAT,X,Z=t(t) = fTSX,Z=t(t)(1 − P(C < t S X,Z = k)) and hence

P(C A T S X,Z = k) fTSCAT,X,Z=t(t) =
=

fTSX,Z=t

1 − P(T < t S X,Z = k)(t)(1 − P(C < t S X,Z = k))(1 − P(T < t S X,Z = k)) and therefore

P(C A T S X,Z = k) fTSCAT,X,Z=t(t) = −
∂ ln(1 − FTSX,Z=k(t))

∂t
(t)P(ÇT A t S X,Z = k) so finally

−

∂ ln(1 − FTSX,Z=k(t))
∂t

=
P(C A T S X,Z = k)
P(ÇT A t S X,Z = k) fTSCAT,X,Z=t(t).

The right hand side can be estimated from the data. j

3 Instrumental variable approach for a duration model

with noncompliance in the treatment and control groups

3.1 Notation and treatment effects

To motivate our second model, recall that in our first approach we used the different
timing of the assigned treatment to identify the treatment effect. We either postulated a
common for all individuals point in time for the assigned treatment but different points
in time of inflow, or a common point in time of inflow but a treatment assignment at
different elapsed durations across individuals. We allowed noncompliance as a selection
out of the treatment (see section 4 for a discussion.

In our second approach we abandon the regression discontinuity setting. Here we
are not going to use different timing as an instrument. We adopt rather a setting, where
all individuals are assigned in time 0, point in time of inflow, to a treatment or control
group. The actual treatment is obtained at some later (random or deterministic) point in
time Z = z, z > R+, which is common for everybody. We assume that Z can take countable
many values t1, t2, . . . 2. Let the random variable Wi have possible values 0 and 1 and
denote the assignment to the treatment or control group, respectively. We assume that
this assignment is randomized across individuals at time 0 conditional on observable
and unobservable characteristics, see next section for a formal statement of the assump-
tions. At point in time Z the individuals have to choose the actual treatment and then
immediately obtain their choice. Following the standard counterfactual notation, let
Si(w, z) denote the potential actual treatment chosen by individual i if he was assigned
to treatment w at day z, w = 0,1. The observed actual treatment is denoted as before with

2If Z is a random variable we assume that P(Z = tn) A 0 for all n >N.
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S. Thus, we adopt a setting, where 1) all individuals obtain an assignment (to a treatment
or control group) at the same elapsed duration and 2) a ”real” randomization occurs, in
the sense that there is some intermediate instance or layer which conducts the assign-
ment W. Our purpose is to introduce a less mechanical model than our first approach.
A typical example from labor economics is a social experiment, where a case worker
assigns at random individuals upon inflow into unemployment to receive (W = 1) or not
receive (W = 0) a job training after some, common for everybody unemployment dura-
tion. We allow for noncompliance in both treatment and control group, an assumption
which describes well examples from social experiments or pilot projects. Let Ti(s,w, z)
be the potential random duration, which the individual i would spend in the state of
interest if he was assigned to treatment w and received a treatment s at a point in time z.
Throughout this paper we adopt the standard exclusion restriction, T(s,w, z) = T(s, z).
This implies that the treatment assignment has no direct causal impact on the duration
variable. As before we denote with T the actual duration. The meaning of T̃,X and V
stays unchanged as well, with additional independence of C and W. To each realization
of Z we observe the sample consisting of the independent observations

(T̃1,S1,W1,X1, IT1BC1), . . . , (T̃n,Sn,Wn,Xn, ITnBCn),
drawn from the distribution of (T̃,S,W,X, ITBC). Define B as in our first model, B �=
[t, t + a], but here we are not going need restrictions on a. We define our treatment effects
in a similar way as in approach 1, here a definition only for GATETCS, here denote
simply with TE:

TE(t, z) �= IE�P(T(1, z) > B S T(1, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z,V)
− P(T(0, z) > B S T(0, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z,V) S

T(1, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z�.

3.2 Identification of treatment effects

In this subsection we are going to prove identification of TE(t, t). For expositional
reasons we are againg considering the case of no censoring. We impose assumptions
that are quite similar to these from our first model:

B0 (Exclusion restriction): T(s,w, z) = T(s, z)
B1 (Global monotonicity): for any z > R+ and all i > �1,2, . . . ,n�, w > �0,1� it holds ei-

ther Si(w, z) = w or Si(w, z) = 1 or Si(w, z) = 0. Following [Imbens and Rubin, 1997],
we refer to an individual in these three cases as to a complier, always-taker or
never-taker, respectively.

B2 (No anticipation): For all 0 B t B z < +ª and each X,V it holds

ΘT(1,z)(t S X,V,S(1, z) = 1,S(0, z) = 0,Z = z) =
= ΘT(0,z)(t S X,V,S(1, z) = 1,S(0, z) = 0,Z = z).
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This assumption is already discussed in section 1. Here we condition on the set of
all compliers. We assume further, that the above equality holds also for the sets of
always-takers and never-takers (these are in fact empty assumptions if we allow
for actual noncompliance. We adopt them for technical reasons).

B3 (Randomization): For the instrument W it holds for all z > R+

i) W y �T(s, z),S(w, z)� S X,V,Z and ii) W y V S X,Z.

B4 (Consistency): For all z > R+, w > �0,1� and s > �0,1�
i) W = w,Z = z� S(w, z) = S

ii) S = s,Z = z� T(s, z) = T.

Also we further assume, that all expressions below are well-defined, in particular that
the sets of all compliers, never-takers and always-takers at Z = z have a positive measure.

In line with our first model we state the following

Proposition 3.1. Let F be a cdf. Under assumptions B0-B4 it holds for all 0 B t B z < +ª

FVST(1,z)Ct,X,S(1,z)=1,S(0,z)=0,Z=z = FVST(0,z)Ct,X,S(1,z)=1,S(0,z)=0,Z=z.

Proof. See appendix.

An immediate consequence of this proposition, following the same steps as in model
1, is that we can rewrite TE(t, z) in the following way:

(3.1)
TE(t, z) = P(T(1, z) > B S T(1, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z) −

− P(T(0, z) > B S T(0, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z).
To prove identification of 3.1, we use the strategy of [Imbens and Rubin, 1997] adapted
to our dynamic case. We are going to 1) split observed distributions into their poten-
tial components and 2) then use the information on noncompliance to identify these
components. We now elaborate on these two points.

1) Consider first individuals with observed S = 1,W = 1. They can be either compliers
or always-takers. Similarly, individuals with S =,W = 0 are either compliers or never-
takers. The expression P(T > B S T C t,X,S = 1,W = 1,Z = t) contains only observables.
Using consistency and randomization, we have

P(T > B S X,S = 1,W = 1,Z = t) = P(T(1, t) > B S X,S = 1,W = 1,Z = t) =
=

P(T(1, t) > B,S = 1 S X,W = 1,Z = t)
P(S = 1 S X,W = 1,Z = t) =

P(T(1, t) > B,S(1, t) = 1 S X,W = 1,Z = t)
P(S(1, t) = 1 S X,W = 1,Z = t) =

=
P(T(1, t) > B,S(1, t) = 1 S X,Z = t)

P(S(1, t) = 1 S X,Z = t) = P(T(1, t) > B S X,S(1, t) = 1,Z = t),
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so finally we obtain

(3.2)
P(T > B S T C t,X,S = 1,W = 1,Z = t) = P(T(1, t) > B S T(1, t) C t,X,S(1, t) = 1,Z = t).

An intuitive interpretation is that the conditional distribution of the observed duration
on the group with observed S = 1,W = 1 is equal to its potential counterpart, given the
individual is either a complier or always-taker and has received the treatment. Denote
for simplicity

Q �= �S(0, z) = 0,S(1, z) = 1� ,
A �= �S(0, z) = 1,S(1, z) = 1� ,
N �= �S(0, z) = 0,S(1, z) = 0� .

Using simple rules for probabilities, we write

P(T(1, t) > B S T(1, t) C t,X,S(1, t) = 1,Z = t)
= P(T(1, t) > B S T(1, t) C t,X,Q,Z = t) P(Q S T(1, t) C t,X,Z = t)

P(Q�A S T(1, t) C t,X,Z = t) +

+ P(T(1, t) > B S T(1, t) C t,X,A,Z = t) P(A S T(1, t) C t,X,Z = t)
P(Q�A S T(1, t) C t,X,Z = t) ,

which leads to the result

P(T > B S T C t,X,S = 1,W = 1,Z = t) =(3.3)

= P(T(1, t) > B S T(1, t) C t,X,Q,Z = t) P(Q S T(1, t) C t,X,Z = t)
P(Q�A S T(1, t) C t,X,Z = t) +

+ P(T(1, t) > B S T(1, t) C t,X,A,Z = t) P(A S T(1, t) C t,X,Z = t)
P(Q�A S T(1, t) C t,X,Z = t) .

In other words, we splitted the observed distribution into the sum of the potential
outcomes of compliers and always-takers, weighted by their proportions. In order to
obtain the term P(T(1, t) > B S T(1, t) C t,X,Q,Z = t)we will identify all other components
on the right side.

2) This we are going to achieve using the information on noncompliance. We can
identify all individuals with observed S = 1,W = 0 as always-takers and all individuals
with S = 0,W = 1 as never-takers. We use this information (together with no anticipation)
to identify the potential distributions of T(1, t) S T(1, t) C t and T(0, t) S T(0, t) C t on
the sets of the always-takers and never-takers, respectively. Following the steps of
[Imbens and Rubin, 1997], it holds

P(T(1, t) > B S T(1, t) C t,X,S(0, z) = 1,S(1, z) = 1,Z = t) =(3.4)
= P(T > B S T C t,X,S = 1,W = 0,Z = t),
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P(T(0, t) > B S T(0, t) C t,X,S(0, z) = 0,S(1, z) = 0,Z = t) =(3.5)
= P(T > B S T C t,X,S = 0,W = 1,Z = t),

and for the proportions

P(S(0, z) = 1,S(1, z) = 1 > B S T(1, t) C t,X,Z = t) =(3.6)
= P(S = 1 S T C t,X,W = 0,Z = t),

and

P(S(0, z) = 0,S(1, z) = 0 > B S T(1, t) C t,X,Z = t) =(3.7)
= P(S = 0 S T C t,X,W = 1,Z = t).

Inserting 3.4, 3.5, 3.6, 3.7 and

P(Q > B S T(1, t) C t,X,Z = t) = 1−P(A > B S T(1, t) C t,X,Z = t)−P(N > B S T(1, t) C t,X,Z = t)
into equation 3.3, we finally obtain

(3.8)
P(T(1, t) > B S T(1, t) C t,X,S(0, z) = 0,S(1, z) = 1,Z = t) =

= �P(T > B,S = 1 S T C t,X,W = 1,Z = t) − P(T > B,S = 1 S T C t,X,W = 0,Z = t)�.

. �P(S = 1 S T C t,X,W = 1,Z = t) − P(S = 1 S T C t,X,W = 0,Z = t)�
−1

=� F1.

Analogously,

(3.9)
P(T(1,0) > B S T(1,0) C t,X,S(0, z) = 0,S(1, z) = 1,Z = t) =

= �P(T > B,S = 0 S T C t,X,W = 0,Z = t) − P(T > B,S = 0 S T C t,X,W = 1,Z = t)�.

. �P(S = 0 S T C t,X,W = 0,Z = t) − P(S = 0 S T C t,X,W = 1,Z = t)�
−1

=� F0.

With these steps we proved the following:

Proposition 3.2. Under assumptions B0-B4 TE(t, t) is identified and equal to F1 − F0.

This is the central result of this model. Again, an interesting case arises when
t = 0, namely TE(0,0) = ∆Q(a), where is the treatment effect defined (and identified) in
[Abbring and van den Berg, 2005], and t + a is the right boundary of B = [t, t + a] (here
t = 0).

The estimation and testing part of this model is still work in process.
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3.3 A test for static endogeneity

Results 3.4 and 3.5 give rise to an interesting application. We can use them to test for
endogeneous selection. The idea is that if noncompliance is not related to potential
outcomes, then the potential conditional distributions of the duration variable with and
without the treatment of the always-takers and never-takers, respectively, should be the
same as those of the compliers and hence equal to the observed distributions in both
treatment arms. This leads to the natural Null hypothesis

H0 (exogeneous selection) �
P(T > B S T C t,X,S = 1,W = 0,Z = t) = P(T > B S T C t,X,S = 1,Z = t),
P(T > B S T C t,X,S = 0,W = 1,Z = t) = P(T > B S T C t,X,S = 0,Z = t).

The deriving of a test-statistic and its distribution is to come.

4 Conclusion

In this paper we developed two very general IV approaches for duration data. We
proved identification without imposing parametric or semi-parametric structure and in
the presence of dynamic and static endogeneity. Our assumptions are not restrictive
and can be even further relaxed. As an example, in our first model always-takers can be
introduced without hampering the main identification strategy. All results apply also
for hazards. As a future work one could consider conditioning on the propensity score
instead on covariates. There is a lot of work to do in this fruitful research field.

5 Appendix

5.1 Proof of Proposition 2.1

1. First we show that from the no anticipation assumption the following result holds:

(5.1) P(T(t) C t S X,S(t) = t) = P(T(t′) C t S X,S(t) = t).

This is so because

P(T(t) C t S X,S(t) = t,V) = exp(−ΘT(t)(t S X,S(t) = t,V)) =
No anticipation

= exp(−ΘT(t′)(t S X,S(t) = t,V)) = P(T(t′) C t S X,S(t) = t,V)
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so that we obtain

P(T(t) C t S X,S(t) = t) = IE �I�T(t)Ct� S X,S(t) = t� =
= IE �IE �I�T(t)Ct� S X,S(t) = t,V� S X,S(t) = t� =

= IE [P(T(t) C t S X,S(t) = t,V) S X,S(t) = t] =
= IE [P(T(t′) C t S X,S(t) = t,V) S X,S(t) = t] =

= IE �IE �I�T(t′)Ct� S X,S(t) = t,V� S X,S(t) = t� = P(T(t′) C t S X,S(t) = t)

where I�T(s)>B� is an indicator function equal to 1 when T(s) > B (of course from
these steps we also see that P(T(t) C t S X,S(t) = t,V) = P(T(t′) C t S X,S(t) = t,V)).

2. Next, using this result, we show FVST(t)Ct,X,S(t)=t = FVST(t′)Ct,X,S(t)=t. Let B be an element
from the standard Borel sigma-algebra B. It holds

P(V > B S T(t′) C t,X,S(t) = t) = P(V > B,T(t′) C t S X,S(t) = t)
P(T(t′) C t S X,S(t) = t) =

result 5.1
=

P(V > B,T(t′) C t S X,S(t) = t)
P(T(t) C t S X,S(t) = t) =

=
P(V > B S X,S(t) = t)P(T(t′) C t S X,S(t) = t,V > B)

P(T(t) C t S X,S(t) = t) =

result 5.1
=

P(V > B S X,S(t) = t)P(T(t) C t S X,S(t) = t,V > B)
P(T(t) C t S X,S(t) = t) =

=
P(V > B,T(t) C t S X,S(t) = t)

P(T(t) C t S X,S(t) = t) = P(V > B S T(t) C t,X,S(t) = t).

3. Now we show FVST(t)Ct,X,S(t)=t = FVSTCt,X,S=t,Z=t. First we observe that Z y �T(s),S(z)� S
X,V and Z y V S X together imply Z y �T(s),S(z)� S X (ZITAT WEAK UNION;
PEARL 2000). Then, we have

P(V > B S T(t) C t,X,S(t) = t) = P(V > B S X,S(t) = t)P(T(t) C t S X,S(t) = t,V > B)
P(T(t) C t S X,S(t) = t) ,

so now we study the separate components of this expression.
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(a) It holds

P(V > B S X,S(t) = t) = P(V > B,S(t) = t S X)
P(S(t) = t S X)

ZyS(z)SX
=

P(V > B,S(t) = t S X)
P(S(t) = t S X,Z = t) =

Consistency
=

P(V > B,S(t) = t S X)
P(S = t S X,Z = t) =

P(V > B S X)P(S(t) = t S X,V > B)
P(S = t S X,Z = t) =

ZyVSX, ZyS(z)SX,V
=

P(V > B S X,Z = t)P(S(t) = t S X,V > B,Z = t)
P(S = t S X,Z = t) =

Consistency
=

P(V > B S X,Z = t)P(S = t S X,V > B,Z = t)
P(S = t S X,Z = t) =

= P(V > B S X,S = t,Z = t).

(b) Further,

P(T(t) C t S X,S(t) = t,V > B) =
=

P(T(t) C t,S(t) = t S X,V > B)
P(S(t) = t S X,V > B) =

Zy�T(s),S(z)�SX,V
=

P(T(t) C t,S(t) = t S X,V > B,Z = t)
P(S(t) = t S X,V > B,Z = t)

Consistency
=

P(T(t) C t,S = t S X,V > B,Z = t)
P(S = t S X,V > B,Z = t) =

= P(T(t) C t S X,S = t,V > B,Z = t) =
Consistency
= P(T C t S X,S = t,V > B,Z = t).

(c) Using Z y �T(s),S(z)� S X instead of Z y �T(s),S(z)� S X,V with else com-
pletely identical steps as in the last point, we obtain

P(T(t) C t S X,S(t) = t) = P(T C t S X,S = t,Z = t)

So finally we get the equality

P(V > B S T(t) C t,X,S(t) = t) =
=

P(V > B S X,S = t,Z = t)P(T C t S X,S = t,V > B,Z = t)
P(T C t S X,S = t,Z = t) =

= P(V > B S T C t,X,S = t,Z = t)

j
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5.2 Proof of proposition 2.2

First, consider the conditional distribution of the duration variable for the treatment
group, FT(t)ST(t)Ct,X,S(t)=t. Let B+ be the spur (?correct in english?) sigma field R+�B,
where B is the standard Borel sigma algebra. Set Bt �= B�[t,+ª) for B > B+. Then, for
each B > B+ it holds

P(T(t) > B S T(t) C t,X,S(t) = t) = P(T(t) > Bt S X,S(t) = t)
P(T(t) C t S X,S(t) = t)

and for P(T(t) > Bt S X,S(t) = t)
P(T(t) > Bt S X,S(t) = t) = P(T(t) > Bt,S(t) = t S X)

P(S(t) = t S X) =

A3,Randomization
=

P(T(t) > Bt,S(t) = t S X,Z = t)
P(S(t) = t S X,Z = t)

A5,Consistency
=

P(T(t) > Bt,S = t S X,Z = t)
P(S = t S X,Z = t) =

= P(T(t) > Bt S X,S = t,Z = t) Consistency
= P(T > Bt S X,S = t,Z = t)

Set B = R+ and one obtains

P(T(t) C t S X, ,S(t) = t) = P(T C t S X,V,S = t,Z = t),
so finally

P(T(t) > B S T(t) C t,X,S(t) = t) = P(T(t) > Bt S X,S(t) = t)
P(T(t) C t S X,S(t) = t) =

=
P(T > Bt S X,S = t,Z = t)
P(T C t S X,S = t,Z = t) = P(T > B S T C t,X,S = t,Z = t),

where the last expression consists only of observables. To procede in the same way for
the control group, there is one obstacle. To see this, let t′ A t. Then in a dynamic case
bothª and t′ mean at t: no treatment (unlike the binary case, where 0 is more concrete).
So the complyers of the control group (the Z = t′) cannot be identified at t. Another way
to state the problem is that P(T > B S T C t,S = t,Z = t′) is not defined. A starting point to
overcome this problem is the equality

P(T > B S T C t,X,Z = t′) = P(T > B S T C t,X,Z = t′,S(t) = t)P(S(t) = t S T C t,X,Z = t′) +
+ P(T > B S T C t,X,Z = t′,S(t) =ª)P(S(t) =ª S T C t,X,Z = t′),
where P(T > B S T C t,X,Z = t′) contains only observables. Our identification proof
contains the following steps:

1. Show that P(T > B S T C t,X,Z = t′,S(t) = t) is equal to P(T(t′) > B S T(t′) C t,X,S(t) =
t) and is therefore the expression we want to identify.

2. Show that

P(T > B S T C t,X,Z = t′,S(t) =ª) = P(T > B S T C t,X,Z = t,S(t) =ª),
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i.e. the noncompliers of the two cohorts have identical potential duration distri-
butions at t.

3. Show that P(S(t) = t S T C t,X,Z = t′) and P(S(t) =ª S T C t,X,Z = t′) are identified
(these are the proportions of compliers and noncompliers at t).

Let’s proof these 3 points:

1. It holds

P(T > B S X,Z = t′,S(t) = t) =
= P(T > B S X,Z = t′,S(t) = t,S = t′)P(S = t′ S X,Z = t′,S(t) = t) +
+ P(T > B S X,Z = t′,S(t) = t,S =ª)P(S =ª S X,Z = t′,S(t) = t) =

Consistency
= P(T(t′) > B S X,Z = t′,S(t) = t,S = t′)P(S = t′ S X,Z = t′,S(t) = t) +
+ P(T(ª) > B S X,Z = t′,S(t) = t,S =ª)P(S =ª S X,Z = t′,S(t) = t) =

Consistency
= P(T(t′) > B S X,Z = t′,S(t) = t,S(t′) = t′)P(S(t′) = t′ S X,Z = t′,S(t) = t) +
+ P(T(ª) > B S X,Z = t′,S(t) = t,S(t′) =ª)P(S(t′) =ª S X,Z = t′,S(t) = t) =

No anticipation
= P(T(t′) > B S X,Z = t′,S(t) = t,S(t′) = t′)P(S(t′) = t′ S X,Z = t′,S(t) = t) +
+ P(T(t′) > B S X,Z = t′,S(t) = t,S(t′) =ª)P(S(t′) =ª S X,Z = t′,S(t) = t) =
= P(T(t′) > B S X,Z = t′,S(t) = t) Randomization

= P(T(t′) > B S X,S(t) = t).

Hence, we proved

(5.2) P(T > B S T C t,X,Z = t′,S(t) = t) = P(T(t′) > B S T(t′) C t,X,S(t) = t)

2. Using exactly the same steps as in the previous point, we can show

P(T > B S X,S(t) =ª,Z = t′) = P(T(ª) > B S X,S(t) =ª)
P(T > B S X,S(t) =ª,Z = t′) = P(T(ª) > B S X,S(t) =ª).

Consequently, we showed that

P(T > B S T C t,X,Z = t′,S(t) =ª) = P(T > B S T C t,X,Z = t,S(t) =ª)(5.3)
= P(T > B S T C t,X,Z = t,S =ª)

and the last probability can be estimated nonparametrically.

3. First we prove the following implication from the no anticipation assumption:
P(T C t S X,Z = t′) = P(T C t S X,Z = t) for all t′ C t. This we will refer to as empirical

23



no anticipation relation. Its validity can be proved as follows:

P(T C t S X,Z = t′) = P(T C t S X,Z = t′,S = t′)P(S = t′ S X,Z = t′) +
+ P(T C t S X,Z = t′,S =ª)P(S =ª S X,Z = t′) =

Consistency
= P(T(t′) C t S X,Z = t′,S(t′) = t′)P(S(t′) = t′ S X,Z = t′) +
+ P(T(ª) C t S X,Z = t′,S(t′) =ª)P(S(t′) =ª S X,Z = t′) =

Randomization
= P(T(t′) C t S X,S(t′) = t′)P(S(t′) = t′ S X) +
+ P(T(ª) C t S X,S(t′) =ª)P(S(t′) =ª S X, ) =

No anticipation
= P(T(ª) C t S X,S(t′) = t′)P(S(t′) = t′ S X) +
+ P(T(ª) C t S X,S(t′) =ª)P(S(t′) =ª S X, ) =
= P(T(ª) C t S X)

If we set t′ = t and follow exactly the same lines we get

P(T C t S X,Z = t) = P(T(ª) C t S X)
which means P(T C t S X,Z = t′) = P(T C t S X,Z = t). Having shown this relation,
we now want to prove the following equality:

P(S(t) =ª S T C t,X,Z = t′) = P(S(t) =ª S T C t,X,Z = t).
We have

P(S(t) =ª S T C t,X,Z = t′) = P(S(t) =ª S X,Z = t′)P(T C t S S(t) =ª,X,Z = t′)
P(T C t S X,Z = t′) .

Because of randomization it holds

P(S(t) =ª S X,Z = t′) = P(S(t) =ª S X,Z = t).
Also, shown in point 2 of this proof, we have

P(T C t S S(t) =ª,X,Z = t′) = P(T C t S S(t) =ª,X,Z = t).
And last, stated above as empirical no anticipation, P(T C t S X,Z = t′) = P(T C t S
X,Z = t), so we get

P(S(t) =ª S T C t,X,Z = t′) = P(S(t) =ª S X,Z = t′)P(T C t S S(t) =ª,X,Z = t′)
P(T C t S X,Z = t′) =

=
P(S(t) =ª S X,Z = t)P(T C t S S(t) =ª,X,Z = t)

P(T C t S X,Z = t) = P(S(t) =ª S T C t,X,Z = t)

which we wanted to prove. Further, using consistency,

P(S(t) =ª S T C t,X,Z = t) = P(S =ª S T C t,X,Z = t),
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where the last expression can be estimated nonparametrically. Taking into account
that

P(S(t) = t S T C t,X,Z = t′) = 1 − P(S(t) =ª S T C t,X,Z = t′)
we finally obtain the equalities

P(S(t) =ª S T C t,X,Z = t′) = P(S =ª S T C t,X,Z = t),(5.4)
P(S(t) = t S T C t,X,Z = t′) = P(S = t S T C t,X,Z = t).(5.5)

Let’s turn now back to the relation we stated previous to the 3 points,

P(T > B S T C t,X,Z = t′) = P(T > B S T C t,X,Z = t′,S(t) = t)P(S(t) = t S T C t,X,Z = t′) +
+ P(T > B S T C t,X,Z = t′,S(t) =ª)P(S(t) =ª S T C t,X,Z = t′).

Taking into account 5.2, 5.3, 5.4, and 5.5, we can rewrite it as

P(T > B S T C t,X,Z = t′) = P(T(t′) > B S T(t′) C t,X,S(t) = t)P(S = t S T C t,X,Z = t) +
+ P(T > B S T C t,X,Z = t,S =ª)P(S =ª S T C t,X,Z = t),

or finally
P(T(t′) > B S T(t′) C t,X,S(t) = t) = P(T>BSTCt,X,Z=t′)−P(T>BSTCt,X,Z=t,S=ª)P(S=ªSTCt,X,Z=t)

P(S=tSTCt,X,Z=t) .
The right side contains only observables and can be estimated directly via standard
nonparametric techniques. The treatment effect GATETCS(t, t′, t), which was shown to
be equal to p�1 − p�2 , can be easily simplified to

P(T > B,S = t S T C t,X,Z = t) + P(T > B,S =ª S T C t,X,Z = t) − P(T > B S T C t,X,Z = t′)
P(S = t S T C t,X,Z = t) ,

which leads finally to

GATETCS(t, t′, t) = P(T > B S T C t,X,Z = t) − P(T > B S T C t,X,Z = t′)
P(S = t S T C t,X,Z = t) .

j

5.3 Proof of Proposition 2.4

Let t′ C t. From no anticipation it follows

P(T(t′) C t S X) = P(T(ª) C t S X),

and since B has the form B = [t, t + a), it follows

P(T(t′) > B S X) = P(T(ª) > B S X)
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and hence
P(T(t′) > B S T(t′) C t,X) = P(T(ª) > B S T(ª) C t,X).

Further, we have

P(T > B S T C t,X,Z = t′) =
= P(T > B S T C t,X,Z = t′,S(t) = t)P(S(t) = t S T C t,X,Z = t′) +
+ P(T > B S T C t,X,Z = t′,S(t) = +ª)P(S(t) = +ª S T C t,X,Z = t′) =

consistency
= P(T(t′) > B S T(t′) C t,X,Z = t′,S(t) = t)P(S(t) = t S T C t,X,Z = t′) +
+ P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = +ª)P(S(t) = +ª S T C t,X,Z = t′) =

no anticipation
= P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = t)P(S(t) = t S T C t,X,Z = t′) +
+ P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = +ª)P(S(t) = +ª S T C t,X,Z = t′) =
2.9
= P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = +ª)P(S(t) = t S T C t,X,Z = t′) +
+ P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = +ª)P(S(t) = +ª S T C t,X,Z = t′) =
= P(T(ª) > B S T(ª) C t,X,Z = t′,S(t) = +ª).

j

5.4 Proof of proposition 3.1

Let A be some borel set. Denote Q �= �S(0, z) = 0,S(1, z) = 1�. Then it holds

P(V > A S T(1, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z) =
= P(V > A S T(1, z) C t,X,Q,Z = z) =
=

P(T(1, z) C t S V > A,X,Q,Z = z)P(V > A S X,Q,Z = z)
P(T(1, z) C t S X,Q,Z = z) =

no anticipation
=

P(T(0, z) C t S V > A,X,Q,Z = z)P(V > A S X,Q,Z = z)
P(T(0, z) C t S X,Q,Z = z) =

= P(V > A S T(0, z) C t,X,S(0, z) = 0,S(1, z) = 1,Z = z).

j
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