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1. Introduction 

Despite being an important first step in implementing propensity score methods, 

the effect of misspecification of the propensity score model has not been subject to 

much scrutiny by researchers. In general, if the propensity score model is misspecified, 

the estimator of the propensity score will be inconsistent for the true propensity score 

and the resulting propensity score matching estimator may be inconsistent for 

estimating the average treatment effect. Recent papers that discuss the issue of the 

misspecification of propensity scores include Millimet and Tchernis (2007), whose 

Monte Carlo findings suggest that over-specifying the propensity score model might be 

beneficial, and Shaikh et al. (2006), who propose a specification test based on a certain 

restriction between the estimated densities of the treatment and comparison groups. In 

current practice, a heuristic approach used by some applied researchers to check the 

specification of the propensity score is the propensity score specification test first 

suggested by Rosenbaum and Rubin (1984) and elaborated in more detail by Dehejia 

and Wahba (1999, 2002) (henceforth referred to as the DW algorithm). However, with 

the possible exception of Lee (2006), the properties of the DW algorithm have to date 

not been subject to much investigation and its use as a specification test is by no means 

universally accepted.1   

This paper discusses a graphical method and a closely related regression test for 

assessing the specification of the propensity score, an area which the literature currently 

offers little guidance. The graphical method is an original proposal that integrates a 

suggestion of Rubin (1984) with the ideas of regression graphics for binary responses in 

Cook (1996), Cook (1998) and Cook and Weisburg (1999). It is based on using two-

dimensional scatter plots and is useful for visualising balance in continuous covariates. 

                                                 
1 For example, many papers in the published literature that use propensity score methods do not use the 
DW algorithm as a specification test. 
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In addition, a more general regression interpretation of the graphical method is made. 

Based on a Monte Carlo study, it is found that the regression test has power to detect a 

misspecified propensity score in the case when the propensity score model is under-

specified (i.e., needs higher order terms or interactions) as well as in the case when a 

relevant covariate is inadvertently excluded. However, the test has low power to detect a 

misspecified propensity score in the case when an irrelevant covariate is included in the 

propensity score model. Despite this shortcoming of the regression test, as findings in 

the recent literature by Millimet and Tchernis (2007) suggest that there appears to be 

little penalty to over-specifying the propensity score, a possible strategy for applied 

researchers would be to use the proposed tests in this paper as a guard against under-

specification of the propensity score. 

The layout of the paper is as follows. In section 2, some background information 

is provided on diagnostics for propensity score methods to set the context for 

understanding where the graphical diagnostics fit in. In section 3, we introduce the use 

of two-dimensional scatter plots to guide in the specification of the propensity score. In 

section 4, we use simulated data to illustrate the graphical test. Section 5 discusses a 

regression interpretation of the graphical test for dimension reduction and performs a 

Monte Carlo study. Finally, section 6 concludes.  

 

2. Propensity Score Diagnostics 

One advantage of matching over regression based methods for estimating 

average treatment effects is that diagnostics are available for the former that do not 

involve use of the outcome variable. Only information on the observable covariates are 

needed for such a diagnostic so there is no way that performing these diagnostics can 

systematically influence estimates of the average causal effect. In the case of propensity 
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score matching, balancing tests that do not involve the outcome variable are often 

performed to check if the comparison group can be considered to be an adequate 

counterfactual representation of the treatment group. The idea behind balancing tests is 

to verify if X has the same distribution for the treatment and comparison groups 

conditional on the propensity score: 

| ( )D X p X⊥  

where D is the binary treatment group indicator, X is a set of covariates that are chosen 

to fulfil the conditional independence assumption (CIA) and p(X) is the propensity 

score. The basic intuition is that after conditioning on p(X), additional conditioning on X 

should not provide new information on D. 

 

2.1 Precision in Estimating the Propensity Score 

In general, the literature has placed much less attention on the specification of 

the propensity score (both the choice of variables and functional form), compared with 

the issues regarding how the propensity score is to be used (choice of matching 

algorithm and matching structure).2 In part, this could be because the results of Drake 

(1993) suggest that misspecification of the propensity score model does not lead to large 

biases relative to misspecification of the response model. In addition, Rubin and 

Thomas (1992a, 1996) and Gu and Rosenbaum (1993) show that much of the balance 

resulting from matching on p(X) alone can be achieved with relatively coarse matching. 

For example, when stratification (or blocking) on the propensity score is done, the 

intuition is that there is less reliance on correct specification of the model used to 

estimate the propensity score since the probabilities are used only to partially order the 

sample.  

                                                 
2 See, for example, Augurzky and Kluve (2007), Frölich (2004), and Zhao (2004) who all emphasize the 
latter. 
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 However, precision in the estimated propensity score can be important in some 

cases. For example, in the case when the propensity score is used as a Horvitz-

Thompson type estimator based on weighting by the inverse of the estimated propensity 

scores (e.g., Hirano and Imbens 2001, Hirano, Imbens and Ridder 2003), the propensity 

score is used directly in the process for estimating treatment effects. Rubin (2004) notes 

that “[i]n such cases, the estimated probabilities can be very influential on the estimated 

effects of treatment versus control, and so the probabilities themselves must be very 

well-estimated.” In this case, specification tests that can check the precision of the 

estimated propensity score would clearly be important. The graphical method discussed 

in this paper attempts to measure precision in the estimate of the propensity score by 

checking if there are regions of the propensity score where X is unbalanced. 

 

2.2 Model Checking Diagnostics versus Propensity Score Model Diagnostics 

Little advice is currently available regarding which model or functional form 

(e.g., logistic models, probit models, semi-parametric models etc.) is best for estimating 

the propensity score, although slightly more advice is available regarding the inclusion 

(or exclusion) of covariates in the propensity score model (see Caliendo and Kopeinig 

2006, section 3). Regardless of the method used to estimate the propensity score, as 

propensity scores serve only as devices to balance the observed distribution of 

covariates between the treated and comparison groups, many model checking 

diagnostics that pertain to specific model classes are arguably irrelevant. For example, 

in the case of logistic models, these would be tests like the Pearson 2χ  goodness-of-fit 

test and the ROC curve. Instead, the success of propensity score estimation should be 

assessed by the resultant balance rather than by the fit of the models used to create the 

estimated propensity scores. Rubin (2004) distinguishes between: (a) diagnostics for the 
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successful prediction of probabilities and parameter estimates underlying those 

probabilities, possibly estimated using logistic regression; and (b) diagnostics for the 

successful design of observational studies based on estimated propensity scores, 

possibly estimated using logistic regression. He states that “there is no doubt in my 

mind that (b) is a critically important activity in most observational studies, whereas I 

am doubtful about the importance of (a) in these.” Rubin further notes that many 

applications of propensity score methods have not appreciated this subtle point and 

continue to use (a) for propensity score diagnostics. The graphical methods discussed in 

this paper add to the toolbox available for task (b). 

 

2.3 Before-matching versus After-matching Balancing Tests 

In order to understand the context in which the graphical methods discussed in 

this paper are relevant, it is important to make a distinction between “before-matching” 

and “after-matching” balancing tests. Although Caliendo and Kopeinig (2006) classify 

the DW algorithm as part of their step (iv) (see their Figure 1), we prefer to classify it as 

part of their step (i) and would only classify the other balancing tests they mention in 

their step (iv). This is because the DW algorithm is implemented for the full sample that 

is used to estimate the propensity score model before any matching is done (and hence 

is more like a specification test of the propensity score model) while other balancing 

tests like two sample t-tests and the Hotelling test are done after matching and use a 

smaller subsample of the original data.3  

 

 

                                                 
3 For example, when matching is only done over the region of common support, units outside the 
common support are discarded. Similarly, in one-to-one nearest neighbor matching, all non-matched units 
are dropped. Lee (2006) provides a more detailed discussion regarding the difference between before-
matching and after-matching diagnostics. 
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2.4 Choosing the Relevant Diagnostic 

Combining the three concepts discussed above – the relative importance of 

precision in the estimated propensity score, the difference between model checking 

diagnostics and propensity score model diagnostics, and the difference between before-

matching and after-matching tests – this suggests that diagnostic tests for propensity 

score methods likely work best when closely aligned with how the estimated propensity 

scores are to be used.  

Before-matching balance diagnostics like the DW algorithm are more relevant if 

the full sample that is used to estimate the propensity score is to be used for estimating 

average causal effects. In the case of stratification on the propensity score, as the 

probabilities are used only to partially order the sample, less precise estimates of the 

propensity score might be sufficient. However, in the case of weighting on the 

propensity score, since small changes in estimated probabilities can have large effects 

on the estimated average causal effects, more precision would be needed. Here, tests 

that can check for the precision of the estimated propensity score would be very useful. 

On the other hand, after-matching balance diagnostics such as the test of 

standardized differences (Rosenbaum and Rubin 1985) or two sample t-tests would 

appear to be more relevant if a smaller matched sample is used for estimating average 

causal effects. In this case, the estimated average causal effects could be less sensitive to 

the estimated probabilities if relative coarse matching is done (e.g., one-to-one nearest 

neighbor matching). However, precision of the estimated propensity score could once 

again be more important if the estimated probabilities are used to create weights. For 

example, in kernel matching, the weight that is given to a comparison group unit is 

proportionate to the closeness of its characteristics to a treated unit (i.e., the further 

away the comparison unit is from the treated unit in terms of the estimated propensity 
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score, the lower the weight). It would therefore appear that tests that can check for the 

precision of the estimated propensity score would again be helpful in this context. 

In the remainder of this paper, two before-matching diagnostics are discussed: a 

graphical approach (sections 3 and 4) and a closely related regression test (section 5). 

 

3. Dimension Reduction and Regression Graphics 

Propensity score matching is a dimension reduction technique that attempts to 

avoid the problem of the curse of dimensionality when the number of covariates is 

large. There simultaneously exists a large literature on dimension reduction in statistics. 

But thus far, there has been little or no connection made between the two parallel 

literatures of dimension reduction. As we show below, the idea of a dimension 

reduction subspace for the regression of Y on X (Li 1991), which represents a sufficient 

reduction in the dimension of the set of covariates X, is closely related to the balancing 

hypothesis of propensity scores given in Theorem 2 of Rosenbaum and Rubin (1983). 

 

3.1 Overview of Dimension Reduction Regression 

In the general regression problem, letting n be the number of observations, we 

have a k n×  response Y (usually k =1) and a p n×  predictor X, and the goal is to learn 

about how the conditional distribution ( | )F Y X  varies as X varies through its sample 

space. In parametric regression, we specify a functional form for the conditional 

distribution. In non-parametric regression, no functional form assumptions are made 

about ( | )F Y X , but progress is really only possible if the dimensions p and k are small. 

Dimension reduction regression is one intermediate possibility between the parametric 

and non-parametric extremes. Dimension reduction without loss of information is a 

dominant theme of regression graphics. An attempt is made to reduce the dimension of 
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X without losing information on Y | X. Although the idea of dimension reduction 

regression was originally introduced for continuous response variables (Cook 1994), 

extensions have been made for the case of binary response variables (Cook 1996, Cook 

and Lee 1999). These extensions are important as it is through these extensions that the 

ideas from regression graphics can then be related to the propensity score framework in 

which there is a binary treatment indicator.  

In dimension reduction regression (see, for example, Cook 1998 and Cook and 

Weisburg 1999), it is assumed without loss of information that the conditional 

distribution ( | )F Y X  can be indexed by d linear combinations of X, or for some 

unknown p d×  matrix B, with d p≤  

( | ) ( | ' )F Y X F Y B X=  (1) 

This statement is equivalent to saying that the distribution of |Y X  is the same as that 

of | 'Y B X for all values of X.  It implies that the p n×  matrix of covariates X can be 

replaced by the d n×  predictor matrix 'B X  that contains d linear combinations without 

loss of regression information. In other words, using the conditional independence 

notation introduced by Dawid (1979), we can write: 

| 'Y X B X⊥   (2) 

This represents a potentially useful reduction in the row dimension of the matrix of 

covariates X from p to d. Such a B always exists because (2) is trivially true when 

PB I= , the p p×  identity matrix. The relation in (2) can be viewed as a statement 

about a dimension reduction subspace for the regression of Y on X (see, for example, 

Cook 1996 and Cook and Lee 1999). The d linear combinations 

1 2' ( ' , ' ,..., ' )dB X b X b X b X=  are referred to as sufficient predictors in the regression 

graphics literature because together they contain all the regression information that X 

has about Y.  
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In the case when d = 1, replacing Y with D in (2) (where D is a binary indicator 

denoting treatment group membership) and the 1 n×  predictor vector 'B X  with the 

1 n×  vector p(X), it is immediately obvious that (1) is the balancing hypothesis of 

propensity scores. Having PB I=  corresponds to the propensity score being equal to the 

“most trivial balancing score”, which is when the balancing score is X (see Rosenbaum 

and Rubin 1983, p. 42). 

In the case when d > 1, then p(X) is only one of the sufficient predictors. In other 

words, conditioning only on p(X) will lead to missing relevant information and 

complete dimension reduction cannot be achieved. Matching on this value of p(X) 

would not be expected to lead to unbiased average causal effects. One way forward in 

this situation would be to add higher-order or interaction terms in X to remove the 

necessity for the  d > 1 structure. This echoes the ad hoc procedure used in the DW 

algorithm of fine-tuning the specification of p(X). 

 

3.2 Binary Response Plots 

For the purposes of this paper, we are interested in using a particular 

interpretation of an auxiliary plot used in regression graphics for binary variables.4 In 

particular, these auxiliary plots are the binary response plots in Cook (1996, Figure 1), 

Cook (1998, Figure 5.3) and Cook and Weisburg (1999, Figure 22.6). Here, we 

integrate the interpretation of binary response plots with a suggested graphical 

diagnostic of Rubin (1984) for logistic regression models in order to create a diagnostic 

for the specification of the propensity score. By viewing Rubin’s diagnostic using 

Cook’s insights, a graphical method can be used as a diagnostic to check balance for 

any continuous X variable, regardless of the method used to estimate p(X). Rather than 

                                                 
4 The regression graphics literature focuses on estimating d and the subspace 'B X . An overview of 
regression graphics is given in the appendix. 
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trying to estimate 'B X  and the dimension d in a data set, the graphical diagnostic 

proposed in this section assumes that the structure of the data can be represented by a 

1D model (i.e., d = 1) like a logistic model and that 'B X  is exogenously given. By 

focusing on the d = 1 case, we are attempting to verify if the p-dimensional vector X can 

be replaced by an exogenously given 1-dimensional vector p(X) without loss of 

regression information. In other words, the dimension reduction hypothesis is that when 

the regression vector X is augmented by the propensity score, the (p+1)-dimensional 

vector (X, p(X)) can be reduced to p(X) for the conditioning set. Assuming that 

propensity score matching is feasible and that complete dimension reduction is feasible 

using a single scalar, the focus is on using binary response plots to check if 

| 'Y X B X⊥  holds for each X in the data set.5  

The exposition of how binary response plots can be used to assess balance in the 

context of propensity score matching is best developed using an example that appears in 

the literature. Although the context of the original discussion of the example in 

Landwehr, Pregibon, and Shoemaker (1984) is the specification of the fit of a logistic 

model or what Rubin (2004) terms “diagnostics for the successful prediction of 

probabilities and parameter estimates,” we illustrate how a slight change in interpreting 

a graph that arose from the discussion of the paper allows for an assessment of balance 

to be made or what Rubin (2004) refers to as “diagnostics for the successful design of 

observational studies based on estimated propensity scores.” 

 

3.3 Example from Landwehr, Pregibon, and Shoemaker (1984) 

This section continues a discussion between Landwehr, Pregibon, and 

Shoemaker (1984) and Rubin (1984). In Example 4 of Landwehr, Pregibon, and 
                                                 
5 If d > 1 and p(X) is only one of the sufficient predictors, then conditional independence would not be 
obtained as complete dimension reduction is not possible. The failure to find conditional independence in 
this case could be because d > 1 or that d = 1 but that p(X) is specified incorrectly. 
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Shoemaker (1984, p. 67), one hundred observations are generated according to the 

model: 2
5 6 6logit( ) 1 2D X X X= − + + +  (with 5X  distributed -1(0.02)1 and 

6X distributed U(-1, 1)). Presuming that the particular functional form or nature of the 

dependence on 5X  and 6X  is unknown, they start by fitting a model linear in 5X  and 

6X  and calculate their suggested partial residual plots (which is discussed in more 

detail in their paper but not relevant to the present discussion) for 6X . They find that 

dependence on 6X  is non-linear and that an additional term such as 2
6X  or 6| |X  should 

be included in the model. 

In commenting on Landwehr, Pregibon, and Shoemaker (1984), Rubin (1984) 

suggested that one alternative way of assessing the fit of the logistic regression model is 

to plot X versus the predicted values of the dependent variable (i.e., the propensity 

score) using different symbols for the D = 1 and D = 0 points  (see Rubin 1984, example 

1).6 But in his written comments, Rubin (1984) did not further discuss how the plot 

should be interpreted. He also did not make the distinction between diagnostics for the 

successful prediction of probabilities and parameter estimates underlying those 

probabilities, and diagnostics for the successful design of observational studies based on 

estimated propensity scores, which he does more recently in Rubin (2004). 

The discussion continued with Landwehr, Pregibon, and Shoemaker (1984a) 

responding to Rubin (1984). They used the generated data from the model described 

above, created the plot Rubin suggested based on estimating the misspecified model that 

is linear in 5X  and 6X  but found that “[this] plot does not reveal to us anything about 

                                                 
6 Incidentally, another suggestion of Rubin for assessing the fit of a logistic regression model (Rubin 
1984,  example 3), where he suggested categorising the fitted probabilities and comparing the 
distributions of X for the D = 1 and D = 0 units within categories of the fitted probabilities, is a precursor 
and an informal version of the specification test described in more detail in Dehejia and Wahba (1999, 
2002). 
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the inadequate fit of the model nor the need to transform 6X .” Moreover, they state that 

the standard test for comparing two regression lines (the conditional distribution of 6X  

given the fitted probabilities for D = 1 and D = 0) is not significant whereas their partial 

residual plot clearly demonstrates the basic model inadequacy.  

Figure 1 below reproduces Figure 1 from Landwehr, Pregibon, and Shoemaker 

(1984a). Their focus is on the two regression lines which they highlight are not 

significantly different.  

 
Figure 1: From Landwehr, Pregibon, and Shoemaker (1984a, Figure 1). The plot is a scatter plot of 6X  
against the fitted probabilities. Plotted characters show the values of D. The solid diagonal line is the least 
squares regression of 6X  on the fitted probabilities for D = 0, the dashed diagonal line for D = 1. The 
meaning of the rectangular window (or vertical slice) is discussed in the text. 
 

However, Rubin’s suggestion of plotting X versus the fitted probabilities using 

different symbols for the D = 1 and D = 0 points has a subtle interpretation that was not 

noted by Landwehr, Pregibon, and Shoemaker (1984a). This interpretation is similar to 

how binary response plots are interpreted in Cook (1996, Figure 1), Cook (1998, Figure 

5.3) and Cook and Weisburg (1999, Figure 22.6).  
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Instead of focusing on the two regression lines, imagine viewing Figure 1 as a 

small rectangular window is moved horizontally across the plot (like the one over the 

value of PHAT = 0.4). To assess whether 6D X⊥  given the fitted probabilities (i.e., 

whether there is balance in 6X ), Cook suggests looking for non-uniform intraslice 

densities within slices of the fitted probabilities, which effectively holds the fitted 

probabilities constant. Slices with only one type of symbol are consistent with the 

conditional independence statement, and so are any slices that have a roughly constant 

fraction of each type of symbol as one moves from the bottom to the top of the slice. 

Symbol density does not need to be similar from slice to slice, as long as it is constant 

within each slice. However, conditional independence (i.e., balance) is violated if in any 

slice, there is non-random variation in symbol density as one moves from the bottom to 

the top of the slice.  

More formally, following Cook (1996), let the small rectangular window Δ  for 

the jth predictor be: 

{ | ,  1,..., }j j jX a X b j pΔ = ≤ ≤ =  

where ja  and jb  are the left and right boundaries of the window. The ratio of the counts 

in each window can be expressed in terms of the fraction of one symbol in Δ : 

Pr( , 1) ( | ' )
Pr( ) B
X D E D B X

X
∈Δ =

= ∈Δ
∈Δ

 

where { ' | }B B X XΔ = ∈Δ . This expression states that if | 'D X B X⊥  then the fraction 

of each symbol should be roughly constant within each Δ . Although one could 

technically count the ratio of one symbol relative to the total, Cook suggests that “[w]ith 

a little practice, it seems possible to assess relative symbol density visually without 

actually counting” (Cook 1996, p. 985).  
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The rectangular window depicted in Figure 1 (over the value of PHAT = 0.4) 

shows that within that slice, it is more likely for group ‘1’ to have lower values of 6X  

than group ‘0’. In other words, if we were assessing whether 6 | ( )D X p X⊥ for this 

chosen model specification, it would be possible to conclude that the conditional 

independence relation is not supported by the data. Contrary to the conclusion reached 

by Landwehr, Pregibon, and Shoemaker (1984a), by focusing on rectangular windows 

instead of the two regression lines in Figure 1, it would therefore be possible to 

conclude that the model specification that is linear in 5X  and 6X  is inappropriate.  

For the remainder of this paper, we refer to this plot as the Rubin-Cook plot, as 

Rubin had first suggested it as a possible diagnostic for fitting logistic regression 

models while Cook’s interpretation of such binary response plots is what makes it 

useful as a propensity score model diagnostic. Recall that the intuitive idea behind 

propensity score matching is that there are many miniature experiments at each value of 

the propensity score (see Zhao 2004). In other words, holding the propensity score 

constant, there should be no relationship between each covariate and the treatment 

indicator. The graphical diagnostic described in this section essentially puts into practice 

this intuitive idea. It is useful as a visual method for checking for balance and precision 

in the estimated propensity score and can be viewed as a substitute or complement to 

the DW algorithm.7  

Although graphical tests like the Rubin-Cook plot that depend on eyeballing the 

data might be considered subjective and not have the rigorous flavor that statistical tests 

that involve the use of non-subjective and easy to interpret p-values might have, 

                                                 
7 From the practical perspective, Rubin-Cook plots can be created by any standard statistical software 
packages that can create scatter plots. Specialized software like Arc that are necessary for regression 
graphics are not needed in order for the plots to be created. 
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complements to statistical tests can be useful if they help researchers see different 

aspects of their data more clearly.  

 

4. Simulated Data Example 

In this section, we generate 200 observations according to the model: 

1 2 1 2logit( ) 1 3D X X X X= − + + + , where 1X  and 2X  are drawn from N(0, 1)  

distributions.8 As we draw error terms such that they are independent of X, the 

generated data set is balanced by construction.9 We estimate the propensity score using 

two specifications. In the first specification (S1), we do not correctly model the 

interaction term in a logistic model and instead specify a model linear in 1X  and 2X  

while in the second specification (S2), we correctly include 1X , 2X  and the interaction 

term 1 2X X  in our logistic model. The question examined in this section is how well 

diagnostics for assessing the specification of p(X) work under S1 and S2. Will a 

researcher correctly choose S2 over S1 based on diagnostics performed on the estimated 

propensity score? As the data generated under S1 are unbalanced by construction while 

the data under S2 are balanced by construction, we can evaluate the ability of 

“diagnostics for the successful design of observational studies based on estimated 

                                                 
8 We draw values from N(0, 1) instead of U(-1, 1) distributions like in Landwehr, Pregibon, and 
Shoemaker (1984) because matching theory is more developed under the assumption of X having an 
ellipsoidal distribution (e.g., distributions such as the normal or t). For example, Rubin and Thomas 
(1992b) show that affinely invariant matching methods, such as Mahalanobis metric matching and 
propensity score matching (if the propensity score is estimated by logistic regression), are equal percent 
bias reducing if all of the covariates used have ellipsoidal distributions. The seed number used in the 
simulations in Stata /SE 9.2 is 55623. 
9 Generating a balanced data set under the null in order to perform the simulations was done as follows. In 
the binary choice selection equation, because we assume that the error term in the selection equation is 
independent of the Xs, when we use the error term, arbitrary values of β and X to generate D, it is true 
that: 

|  D X X β⊥  
As only monotonic transformations are performed, it therefore follows that 

| logit( )   or   | ( )D X X D X p Xβ⊥ ⊥  
Therefore by construction, these data sets satisfy the balancing property of propensity scores: 

| ( )D X p X⊥ . 
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propensity scores” to uncover the truth. The issue of which variables to include in X is 

not examined here as it is assumed that the researcher knows that 1X  and 2X  both need 

to be included in the model in order to fulfil the conditional independence assumption 

underlying matching estimators, but does not know the functional form they take. 

 

4.1 Rubin-Cook Plots for Simulated Data  

The Rubin-Cook plots for both covariates 1X  and 2X are constructed in this 

section. Figure 2 plots the Rubin-Cook plots under the incorrect specification of the 

propensity score while Figure 4 does the same using the correct specification of the 

propensity score. 

In the top panel of Figure 3, when assessing balance for 1X , checking for 

constant symbol density within vertical slices shows that in at least three intervals of the 

propensity score, there is non-constant symbol density. The findings are similar when 

checking for balance in 2X  in the bottom panel of Figure 2, where four occasions of 

non-constant symbol density are highlighted using rectangular windows. As the Rubin-

Cook plots in Figure 2 depict that it is not the case that 1 | ( )X D p X⊥  and 

2 | ( )X D p X⊥ , this suggests that S1 is not a useful balancing score. A parallel and 

equivalent interpretation is that using S1 as the estimated propensity score does not lead 

to sufficient dimension reduction so it cannot be concluded that information in p(X) can 

be used to replace information in X. It is also worth noting that if the data set contains 

many more observations (e.g., n = 10,000), the Rubin-Cook plot can still be used. The 

only adjustment that needs to be made is to zoom in on smaller regions of the propensity 

score. For example, each graph in Figure 3 could be replaced by 10 separate graphs 

plotting the intervals p(x) = 0 to 0.1, 0.1-0.2 etc.  
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Figure 3 repeats the same exercise for the correct specification of the propensity 

score. Relative to Figure 2, one immediate obvious finding from the figures is that there 

is more separation between the D = 1 and D = 0 observations, with more of the former 

clustered around high values of p(X) and more of the latter clustered around low values 

of p(X). Recall that each slice where there are only D = 1 or D = 0 observations can be 

ignored when assessing balance. Assessing balance in Figure 3 therefore involves 

focusing on rectangular windows that start from approximately p(X) = 0.2 and end with 

p(X)  = 0.7 where there are both  D = 1 or D = 0 observations. Compared to Figure 2, it 

is clear that the symbols are distributed much more randomly within each vertical slice, 

reflecting the intuition of miniaturized experiments at each value of p(X). Compare, for 

example, the highlighted rectangular windows in Figure 3 with the windows in Figure 2. 

Based on the Rubin-Cook plot for S2, a researcher would be much more likely to 

conclude that S2 serves as a useful balancing score. 
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Figure 2: Rubin-Cook Plots for X1 versus the Incorrect Propensity Score (top panel) and X2 versus the 
Incorrect Propensity Score (bottom panel) 
 
Notes: The ‘+’ symbol denotes treatment group members while the ‘o’ symbol denotes comparison group 
members. 
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Figure 3: Rubin-Cook Plots for X1 versus the Correct Propensity Score (top panel) and X2 versus the 
Correct Propensity Score (bottom panel) 
 
Notes: The ‘+’ symbol denotes treatment group members while the ‘o’ symbol denotes comparison group 
members. 
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5. A Regression Test Interpretation of the Rubin-Cook Plot 

Although Rubin-Cook plots can be informative, their use is rather limited when 

the number of covariates in X is large (as there is one plot per regressor and it is not 

clear what the implications are if conflicting results for different regressors show up) or 

when there are categorical variables. For example, in the simulated example in section 

4, if 1X  were binary instead of continuous, then a Rubin-Cook plot of 1X  versus  p(X) 

would have values of 1X  lined up along 1 1X =  and 1 0X = , making any kind of 

graphical interpretation impossible, even if the points are jittered. One possible way 

around this would be to have different Rubin-Cook plots for each value of the 

categorical variable. For example, in a model with 1X  binary and 2X  continuous, 

instead of plotting the two graphs of 1X  versus  p(X) and 2X  versus  p(X), one could 

plot two graphs of 2X  versus p(X), one each for 1 1X =  and 1 0X = . However, if there 

are many categorical variables in the data set, it is not difficult to see that such an 

approach can quickly become impractical. 

In addition, it is difficult to generalize the results in section 4 from a single 

simulated data set. Although one might consider performing a Monte Carlo study of 

Rubin-Cook plots, that would require a method of summarising the information in the 

plots obtained from the different replications. Unfortunately, it does not appear that 

there is a simple automated method of summarising information from the plots. We 

therefore turn to a regression test interpretation of the Rubin-Cook plot that is more 

amenable to a Monte Carlo study.    

Recall the dimension reduction hypothesis which contends that when the 

regression vector X is augmented by the propensity score, the (p+1)-dimensional vector 

(X, p(X)) can be reduced to p(X) for the conditioning set. This hypothesis suggests a 
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natural regression test. After p(X) is estimated, one can estimate the following 

regression: 

( )D X p Xα β= + +∑  (3) 

An F-test can then be conducted to test that all the β  coefficients are jointly equal to 

zero. In other words, under the null, if  p(X) is sufficient for dimension reduction, after it 

is conditioned on, information from the vector X would no longer provide useful 

information on D. Note that although bearing some similarities in spirit, this regression 

test is different from the one described in Smith and Todd (2005) who suggest 

estimating regressions for each variable included in estimating p(X) (i.e., if there are 8 

covariates there will be 8 regressions estimated), with each X in turn as the dependent 

variable and D, p(X) and interactions between D and p(X) as the right-hand-side 

variables (and possibly higher orders of p(X) and interactions between D and higher 

orders of p(X)). The regression test described in this paper is a more literal translation of 

the dimension reduction hypothesis.10 A Monte Carlo simulation is conducted in the 

next section in order to better understand its statistical properties. 

 

5.1 Monte Carlo Simulation 

 The setup in the Monte Carlo simulation in this section builds on the setup used 

in section 3.2.2 of Millimet and Tchernis (2007). They assume that the data generating 

process for the outcome involves the same set of X variables used to generate the 

propensity score, and their emphasis in their Monte Carlo simulations is on estimating 

the bias and mean squared error of the estimated average treatment effect. In contrast, 

the emphasis of the simulations done in this paper is on the performance of a 

specification test for the propensity score. Therefore, information on outcomes is not 

                                                 
10 It is also possible to add higher order terms of p(X) to the regression, but doing so would make it less 
closely related to the Rubin-Cook plot. 
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required and not used in our simulations. The focus is solely on how often the 

regression test is able to correctly identify the true specification of p(X) (size of the test) 

and how often it correctly rejects incorrect specifications of p(X) (power of the test).  

Several different setups are considered in the simulations that differ in terms of 

the number of covariates (two or three) in the true propensity score and the functional 

form of the true propensity score (linear, quadratic, cubic, pairwise interactions). For 

each of the setups, we simulate 1000 data sets. Each data set contains four variables for 

each of the n observations (n = 1000 or 20000): D and the covariates 1 2 3,  and X X X . 

Following the data generating process in Millimet and Tchernis (2007), the three 

covariates are independently drawn from a U[0,1] distribution. To simulate treatment 

assignment, we first simulate the true propensity score P* for each observation and 

draw a random number u from U[0,1] distribution. We then assign D = 0 if P* < u and 

D = 1 otherwise. The propensity scores are simulated from two logit specifications, 

where: 

exp( )
1 exp( )

AP
A

=
+

 

and A takes the following forms:11 

 

I. True specification of p(X) includes three variables ( 1 2 3,   and X X X ) 

(a) Linear: 1 2 30.33[( 3 6 ) ( 3 6 ) ( 3 6 )]A X X X= − + + − + + − +  

(b) Quadratic: 

 2 2 2
1 2 30.33[ {2.5 [2.5(1 1.5 )] } {2.5 [2.5(1 1.5 )] } {2.5 [2.5(1 1.5 )] } ]A X X X= − − + − − + − −  

(c) Cubic:  

                                                 
11 Specifications I(a), I(b), II(a) and II(b) are exactly the same specifications used in Millimet and 
Tchernis (2007), who perform 1000 Monte Carlo simulations on simulated data sets with 1000 
observations. See their Table 3, panels III, IV, VII and VIII, and their Table 4, panels III and IV.  
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3 3 3
1 2 30.33[ {10 [2.5(1 1.5 )] } {10 [2.5(1 1.5 )] } {10 [2.5(1 1.5 )] } ]A X X X= − − + − − + − −  

(d) Linear and Pairwise interactions:  

1 2 3 1 2 1 3 2 30.33[( 3 6 ) ( 3 6 ) ( 3 6 )] 8 8 8A X X X X X X X X X= − + + − + + − + + + +  

  

II. True specification of p(X) includes two variables ( 1 2and X X ) 

(a) Linear: 1 20.33[( 3 6 ) ( 3 6 )]A X X= − + + − +  

(b) Quadratic: 

 2 2
1 20.33[ {2.5 [2.5(1 1.5 )] } {2.5 [2.5(1 1.5 )] } ]A X X= − − + − −  

(c) Cubic:  

3 3
1 20.33[ {2.5 [2.5(1 1.5 )] } {2.5 [2.5(1 1.5 )] } ]A X X= − − + − −  

(d) Linear and Pairwise interactions:  

1 2 1 20.33[( 3 6 ) ( 3 6 )] 8A X X X X= − + + − + +  

 

Based on the above parameters, the treatment-control group ratios in each simulated 

data set is approximately between 10-90 and 20-80. 

 Under the true logit specifications I(a) to I(d), the true propensity score model 

includes the variables 1 2 3,   and X X X  in various alternative specifications. In the 

simulations, the propensity score is estimated using a logit model with 6 different 

specifications involving the variables 1 2 3,   and X X X . These 6 specifications constitute 

a researcher’s guess as to what the true functional form of p(X) might be. Specification 

1 adds linear terms for 1 2 3,   and X X X  (first-order linear approximation). Specification 2 

adds quadratic terms for each X to specification 1. Specification 3 adds interaction terms 

between each of the Xs to specification 1. Specification 4 adds both quadratic terms for 

each X and interaction terms between each of the Xs to specification 1 (second-order 
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linear approximation). Specification 5 adds interactions between first and second order 

terms to specification 4. Specification 6 adds cubic terms for each X to specification 5 

(third-order linear approximation). When the true propensity score is linear, 

specification 1 is the correct model. When the true propensity score has linear terms and 

quadratic terms, specification 2 is the correct model.  When the true propensity score 

has linear terms and pairwise interaction terms but no higher order terms, specification 3 

is the correct model. For the case when the true propensity score has linear terms and 

cubic terms, none of the 6 specifications is the correct model. This particular setup 

sheds light on the scenario where the researcher correctly guesses the set of variables to 

include in the propensity score ( 1 2 3,   and X X X ) but might not correctly guess their 

functional form. 

In the estimated models where a relevant regressor is excluded (to determine 

properties of the test when a relevant variable is incorrectly excluded in the estimated 

propensity score model), all terms involving 3X  are excluded in specifications 1 to 6. 

The true logit specifications II(a) to II(d) are similar to specifications I(a) to I(d) 

except that 3X  is excluded from the true propensity score model. The purpose of 

specifications II(a) to II(d) is to determine what happens when an additional variable is 

incorrectly included in the estimated propensity score model. 

 

5.2 Monte Carlo Simulation Results 

The results of the Monte Carlo simulations are given in Tables 1 to 4. Tables 1 

and 2 are based on  n = 1000 and 1000 replications (as in Millimet and Tchernis 2007) 

while Tables 3 and 4 are based on n = 20000 and 1000 replications. The latter is an 

attempt to obtain some large sample properties of the regression test. 
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In the top panel of Table 1, based on n = 1000, results are shown for the case 

when both the true model and the estimated model include the variables 1 2 3,   and X X X . 

Four alternative specifications (a) to (d) for the true model are given in the first four 

rows, while 6 alternative specifications for the estimated model are given in columns 1 

to 6. Shaded cells denote an exact match between the true model and the estimated 

model. Based on this small sample, it does not appear that the regression test has much 

power to detect misspecification. A possible exception is when the true model is I(d). It 

is clear, however, that in general the test does not distinguish between the correct 

specification and over-specification. 

In the bottom panel of Table 1, based on n = 1000, results are shown for the case 

when the true model includes the variables 1 2 3,   and X X X  but the estimated model only 

includes the variables 1 2 and X X . In other words, this is the case of having an omitted 

variable. The regression test in this case has some power to detect misspecification if 

the researcher guesses that the true model is linear (specification 1) when it is not, and 

when the researcher guesses that the true model is linear with pairwise interaction terms 

(specification 3) when it is not. However, it does not appear that the test has much 

power to detect that the estimated p(X) is misspecified in the other scenarios considered. 

In other words, the regression test does not appear to be powerful when it comes to 

detecting omitted variables in small samples. 

In Table 2, again based on n = 1000, results are shown for the case when the true 

model includes only the variables 1 2and X X  but the estimated model includes the 

variables 1 2 3,   and X X X . With p-values of the F-test > 0.10 in almost all simulations, 

the regression test appears to have little power to detect misspecification when we 

include an irrelevant variable in estimating p(X). 
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We now turn to a similar set of simulations based on n = 20000 instead of n = 

1000. In the top panel of Table 3, based on n = 20000, the results for this larger sample 

are more pronounced and suggest that the test is more powerful in larger samples for 

detecting misspecification. In the bottom panel of Table 3, the companion results (based 

on n = 20000) to the bottom panel of Table 1 (based on n = 1000) are shown, suggesting 

that the test appears to have more power in detecting a misspecification of p(X) due to 

an omitted variable in larger samples. Finally, in Table 4 which is again based on n = 

20000, relative to the test based on n = 1000 in Table 2, the larger sample increases the 

power of the test to detect misspecification in two scenarios (when the true model is 

II(d) and when the researcher estimates specification 1 or 2). In general, however, the 

regression test still does not do a very good job of detecting the fact that an irrelevant 

variable has been included. 

Summarising the results of the Monte Carlo study in Tables 1 to 4: 

• When the correct set of Xs are chosen to estimate p(X), the regression test has 

some power to identify under-specification but cannot distinguish between the 

correct specification and over-specification. 

• When we exclude a relevant X variable in estimating p(X), except for the case 

when the true p(X) model is linear, the regression test has some power to detect 

that the estimated p(X) is misspecified. 

• When we include an irrelevant X variable in estimating p(X), the test has little 

power to detect misspecification. 
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Table 1: True specification of p(X) includes 3 variables 1 2 3,  and X X X  (n = 1000, 1000 
replications) 
 Specification of estimated p(X) 
 1 2 3 4 5 6 
Include correctly x1, x2 and x3 in estimated p(X)       
Linear true p(X) 0% 0% 0.1% 0% 0% 0% 
Quadratic true p(X) 0% 0% 6.4% 0% 0% 0% 
Cubic true p(X) 0% 0% 0% 0% 0% 0.4% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

27.3% 15.0% 0% 0% 0% 0% 

       
Exclude incorrectly x3 in estimated p(X)       
Linear true p(X) 0.5% 0.1% 0.6% 0.5% 0.2% 0.1% 
Quadratic true p(X) 58.9% 0% 100% 0% 0% 0% 
Cubic true p(X) 69.4% 0% 100% 0% 0% 0% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

0.1% 0% 5.5% 0.6% 0% 0% 

 
 
Table 2: True specification of p(X) includes 2 variables 1 2and X X  (n = 1000, 1000 
replications) 
 Specification of estimated p(X) 
 1 2 3 4 5 6 
Include incorrectly irrelevant variable x3 in 
estimated p(X) 

      

Linear true p(X) 0% 0% 0% 0% 0% 0% 
Quadratic true p(X) 0% 0% 0% 0% 0% 0% 
Cubic true p(X) 0% 0% 0% 0% 0% 0% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

0.2% 0% 0% 0% 0% 0% 

 
 
 
Table 3: True specification of p(X) includes 3 variables 1 2 3,  and X X X  (n = 20000, 1000 
replications) 
 Specification of estimated p(X) 
 1 2 3 4 5 6 
Include correctly x1, x2 and x3 in estimated p(X)       
Linear true p(X) 0% 0% 0% 0% 0% 0% 
Quadratic true p(X) 21.9% 0% 100% 0% 0% 0% 
Cubic true p(X) 73.4% 0% 100% 0% 0% 0% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

100% 100% 0% 0% 0% 0% 

       
Exclude incorrectly x3 in estimated p(X)       
Linear true p(X) 18.9% 2.3% 8.2% 0% 0.1% 0% 
Quadratic true p(X) 100% 7.2% 100% 92.5% 67.6% 0% 
Cubic true p(X) 100% 100% 100% 100% 100% 100% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

19.7% 99.9% 100% 98.7% 33.7% 25.4% 
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Table 4: True specification of p(X) includes 2 variables 1 2and X X  (n = 20000, 1000 
replications) 
 Specification of estimated p(X) 
 1 2 3 4 5 6 
Include incorrectly irrelevant variable x3 in 
estimated p(X) 

      

Linear true p(X) 0% 0% 0% 0% 0% 0% 
Quadratic true p(X) 0% 0% 5.6% 0% 0% 0% 
Cubic true p(X) 0% 0% 0% 0% 0% 0% 
True p(X) includes pairwise interaction terms but 
no higher order terms 

100% 100% 0.1% 0% 0% 0% 

 
Notes: Tables 1 to 4 are simulation results of F-tests conducted on equation (3) that all estimated 
coefficients for X are jointly zero after conditioning on p(X). Figures reported in the tables are the 
percentage of times the p-value of the F-test is < 0.10. A high percentage of p-values < 0.10 implies 
frequent rejection of the null hypothesis (i.e., estimated p(X) is insufficient for dimension reduction). A 
low percentage of p-values < 0.10 implies non-rejection of the null hypothesis (i.e., estimated p(X) is 
sufficient for dimension reduction, information on X is not needed). Shaded areas depict the 
corresponding correct specification and give an indication of the size of this test. Non-shaded areas depict 
incorrect specifications and give an indication of the power of this test. The treatment-control ratio is 
between 10-90 and 20-80 in the simulations. All specifications satisfy the common support condition. 
 
Specifications 1 to 6 increase in the degree of overfitting p(X): 
1 = 1 in Millimet and Tchernis (2007). Linear model. 
2 is not in Millimet and Tchernis (2007). Includes specification 1 and quadratic terms. 
3 = 2 in Millimet and Tchernis (2007). Includes specification 1 and interaction terms. 
4 = 3 in Millimet and Tchernis (2007). Includes specification 1 and quadratic terms and interaction terms. 
5 = 4 in Millimet and Tchernis (2007). Includes specification 4 and pairwise interactions between first 
and second order terms. 
6 = 5 in Millimet and Tchernis (2007). Includes specification 5 and cubic terms. 
 

6. Conclusion 

There is an unambiguous need for more options for assessing the specification of 

the propensity score, in particular if the propensity score is to be used for weighting. 

Rubin (2004) highlights the importance of distinguishing between regression model 

diagnostics like goodness-of-fit tests and tests for the design of observational studies. 

According to a recent survey by Caliendo and Kopeinig (2006), this is an area which the 

literature currently offers little guidance. The main contributions of this paper are that it 

proposes a new graphical approach for propensity score model diagnostics based on 

two-dimensional scatter plots which we term Rubin-Cook plots, and a closely related 

and more general regression test interpretation of it.  
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The DW algorithm when used as a before-matching specification test relies on 

dividing the data into ‘optimal’ intervals of p(X) and are heavily dependent on how the 

interval is chosen. In contrast, the flexibility the researcher has in being able to choose 

meaningful intervals of the propensity score is an advantage of the Rubin-Cook plot. 

Rubin-Cook plots can help the researcher visualize clearly where regions of thin and 

thick support for each continuous covariate are and make it easy to assess the quality of 

randomisation at each small moving window of p(X). Although Rubin-Cook plots can 

be helpful for making assessments regarding whether the estimated propensity score is a 

useful balancing score and is precisely estimated, they are not complete tests as they do 

not allow checks on balance to be made for categorical covariates. In such instances, 

statistical tests like the chi-square test would still have to be relied on to check for 

balance in covariates conditional on the propensity score.12 Here, the problem of how 

best to condition on the propensity score (e.g., what interval widths to use) remains an 

open problem.13 

 For applied researchers, a possible simple to implement strategy involves 

routinely applying a more general regression based test that attempts to literally 

translate the dimension reduction hypothesis underlying Rubin-Cook plots, and using 

Rubin-Cook plots as a complementary diagnostic. Monte Carlo simulations suggest that 

the regression test has power to detect under-specification of the propensity score as 

well as misspecifications due to an omitted variable. The regression test, however, has 

little power to detect over-specification and the inclusion of irrelevant variables. As a 

companion diagnostic, Rubin-Cook plots can be used for verifying the results of the 

regression test for the continuous X variables. 

                                                 
12 In practice, the t-test is often used to test for group mean differences for categorical covariates (as in the 
DW algorithm) even though it is not specifically designed to do so. 
13 See, for example, a related discussion in Dahiya and Gurland (1973). 
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Biases in the estimation of average treatment effects using propensity score 

methods could arise from several avenues. They could arise, for example, from a poor 

specification of the propensity score, not fulfilling the conditional independence 

assumption, little overlap in the common support region, imbalance in covariates, or the 

use of an inappropriate matching algorithm. The emphasis in this paper has been on 

finding a diagnostic for identifying the true specification of the propensity score, the 

first stage in the propensity score method. So far, no discussion of the effect of bias in 

outcomes has been made. A useful set of complementary findings to the simulation 

results in this paper is provided by Millimet and Tchernis (2007) who focus on how 

misspecification in the propensity score model can bias estimated average treatment 

effects. They find little penalty in terms of bias to estimated average treatment effects to 

over-specification of the propensity score and the inclusion of irrelevant variables in the 

propensity score model. However, they do not discuss how in practice one decides if a 

chosen model specification is under-specified or over-specified. 

When the insights from this paper are combined with the results from Millimet 

and Tchernis (2007), a natural implication for applied researchers arises.14 In order to 

determine if the estimated propensity score model is under-specified or excludes 

relevant variables, the regression test described in this paper can first be conducted. 

After fitting a model (that might include higher order terms and/or interactions) that 

passes this regression test, Rubin-Cook plots can be used (for continuous X variables) as 

a complementary diagnostic to further assess relative symbol density at small 

rectangular windows of the propensity score and verify the results of the regression test. 
                                                 
14 Recall that the setup of the Monte Carlo simulations and data generating processes in this paper build 
on the setup used in Millimet and Tchernis (2007). Their results on bias (which assume that the same set 
of X variables are related to both the probability of treatment and the outcome) can therefore be viewed as 
results that could have been performed by this author and included in this paper in order to derive 
implications regarding bias for estimated average treatment effects. While it would be interesting to 
determine if the same implication arises in scenarios where there are separate sets of variables that are 
related to the probability of treatment and the outcome (e.g., Brookhart et al. 2006), such work is beyond 
the scope of the current paper. 
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Once both these tests are passed, suggesting that the propensity score model is not 

under-specified, the estimated propensity score can be used as an input for estimating 

average treatment effects. The results from Millimet and Tchernis (2007) then can be 

used to argue that even if the researcher guessed incorrectly and over-specified the 

propensity score model or included irrelevant variables in the propensity score model 

(both which the regression test has low power to detect), there should be little penalty in 

terms of bias in estimates of the average treatment effects. This strategy of erring on the 

side of over-specification also finds support in Rubin and Thomas (1996) who argue 

that a variable should only be excluded from analysis if there is consensus that the 

variable is either unrelated to the outcome or not a proper covariate. If there are doubts 

about these two points, they explicitly advise to include the relevant variables in the 

propensity score estimation. 
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Appendix: Structural Dimension in Graphical Regression 

The minimal number d of sufficient predictors is called the structural dimension 

of the regression. A model where (2) holds for dimension d is referred to as having dD 

structure. If d p< , then a sufficient reduction in the regression is achieved which in 

turn leads to sufficient summary plots of Y versus 'B X  as graphical displays of all the 

necessary modelling information for the regression of Y on X. As discussed by Cook 

(1996) and Cook and Lee (1999), having binary response variables instead of 

continuous response variables cause no conceptual complications, but construction and 

interpretation of summary plots must recognize the nature of the response. 

Suppose that X comprises of two variables. Dimension reduction to 1d =  would 

mean reducing two covariates to the single linear combination 1' 'B X b X=  without any 

evidence in the data that this reduction would result in loss of information on |Y X . An 

example of a 1D model is the single index model:  

1

( ' )
( ' )

Y m B X
m b X
α ε
α ε

= + +
= + +

 

where Xε ⊥ and m is a link function (e.g., the link function is the identity function in 

the case of multiple linear regression). Alternatively, a regression has 2D structure if 

two linear combinations 1 2' ( ' , ' )B X b X b X=  are needed to characterize the regression, 

so that Y is independent of X given 1 'b X and 2 'b X . An example of a 2D model is: 

1 2( ' , ' )Y m b X b X ε= +  

where 1b  and 2b  are not collinear. More generally, in a dD model, 

1 2' ( ' , ' ,..., ' )dB X b X b X b X=  and all the regression information is contained in the d 

linear combinations 1 2( ' , ' ,..., ' )db X b X b X . 
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 Related to the idea that there exist many balancing scores for propensity score 

matching (and that controlling for any balancing score is sufficient for the theory of 

propensity score matching to be valid), sufficient predictors are not unique. If 'B X is a 

vector of d sufficient predictors and A  is any d d× full rank matrix then 'AB X is 

another set of sufficient predictors. In practice, however, this non-uniqueness of 

sufficient predictors is not an important issue in regression graphics as the distribution 

of | 'Y B X and | 'Y AB X contain the same statistical information so sufficient summary 

plots of Y versus 'B X  and Y versus 'AB X  would be identical. 

An emphasis of the literature on regression graphics has been to find the B of 

lowest possible dimension d for which the representation in (2) holds and to use 

sufficient summary plots as a guide to formulate appropriate models for ( | )F Y X .15 For 

example, if d = 2 and B is known, then a three-dimensional plot of Y versus 

1 2( ' , ' )b X b X  can be used as a sufficient summary plot for the regression. In general, 

both d and B are usually unknown and need to be estimated. In general, if non-

linearities are present and not represented by the predictor variables, then the dimension 

of the regression cannot be 1D. Cook (1996) discusses in more detail in the context of a 

logistic model how a specially written Xlisp-Stat program Arc for regression graphics 

can be used to check the structural dimension of the regression and help assess 

candidate models.16 This graphical assessment involves rotating graphical displays 

based on lower dimensional projections of the data in Arc to get the “best” visual fits. 

See, for example, Figure 2 in Cook (1996) where it is illustrated how the goal of the 

visual fit is to stop rotation at a point where the relative intraslice density is constant in 

any slice parallel to the stationary vertical axis. The horizontal axis in such a plot 

                                                 
15 Techniques for estimating the dimension of a regression include sliced inverse regression, sliced 
average variance estimation and principal Hessian directions. See Cook (1998) and Cook and Weisburg 
(1999) for more discussion. 
16 This software is available at no cost at: http://www.stat.umn.edu/arc. 
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corresponds to a particular combination of the predictors 'B X  that Arc can provide 

estimates of.  

An estimate of the subspace spanned by B is obtained once the dimension and 

directions have been estimated. Given the estimate of the subspace, the next phase 

involves recovering information about F  and identifying the best model for the reduced 

data, where both parametric and non-parametric models can be used. Cook (1998) and 

Cook and Weisburg (1999) provide more details on how graphical regression can be 

implemented in practice. 


