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Abstract

We present evidence showing that more expensive cities – measured by rental costs

– have not only invested proportionately more in automation (measured by investment

in Enterprise Resource Planning software) but also have seen a higher decrease in the

share of routine abstract jobs (clerical workers and low-level white collar workers). We

propose an equilibrium model of location choice by heterogeneously skilled workers where

each location is a small open economy in the market for computers and software. We

show that if computers are substitutes to middle skill workers – commonly known as the

automation hypothesis – in equilibrium large and expensive cities invest more in computers

and software, substituting middle skill workers with computers. Intuitively, in expensive

cities, the relative benefit of substituting computers for routine abstract workers is higher,

since workers must be compensated for the high local housing prices. Moreover, if the

curvature of the production function is the same across skills, the model also delivers the

thick tails in large cities’ skill distributions presented by Eeckhout et al. (2014).
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1 Introduction

The disappearance of mid-skill high-paying jobs has dominated the academic and policy discus-

sions. The pay gap between highly educated workers and low and middle-education workers,

represented by the college wage premium, increased steadily from the early 1980s until the late

2000s, exceeding 97 % (Acemoglu and Autor (2011)). Moreover, according to Goldin and Katz

(2009), this is the highest level since 1915, the earliest year for which representative data are

available. In many cases, the process of automation and job polarization has been pointed out

as the underlying reason for the increasing inequality and “disappearing middle” of the income

distribution.

The rapid diffusion of new technologies has directly substituted capital for labor in tasks

previously performed by moderately skilled workers. In particular, the automation hypothesis

formulates that machines are most likely to displace jobs that are intensive in routine tasks, both

manual and abstract. Hence, automation reduces job opportunities in the middle of the skill

distribution, including clerical, administrative, production, and operative occupations. Jobs less

affected by automation would demand either non-routine abstract tasks – requiring high levels

of education and commanding high compensation – or non-routine manual tasks – which tend

to be low-paying manual jobs. Consequently, we have a “hollowing out” of the compensation

distribution, in line with the results obtained in empirical work.

In this paper, we show that the substitution of routine jobs and tasks with machines, com-

puters, and software has not happened evenly in space. In fact, the relative benefit of replacing

routine-task jobs by computers and software depend on the cost of hiring a worker in a particular

location. Consequently, living costs – in particular housing costs – play a key role. For example,

let’s consider two offices that are demanding for some standard accounting services that can be

performed either by an accounting assistant or by an accounting software. One of these offices is

located in New York city, the other in Akron - OH. In order to hire a new accounting assistant,

the New York office must pay a wage that allows the new employee to live in an area close

enough to the company’s office in order to go to work every day. Since housing costs in the New

York area are significantly higher than in Akron - OH, the New York-based firm must pay more

to hire the same accounting assistant. In comparison, accounting softwares are the same price

in both cities. Consequently, automation is a more attractive option to the New York firm. In

equilibrium, it is more likely that the New York firm will introduce the new software, while the

Akron office hires an additional accounting assistant.

Our empirical results show that large and more expensive cities – measured by population size

in the Metropolitan Statistical Area (henceforth MSA) as well as rental price index – not only
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have invested more in Enterprise Resource Planning softwares (henceforth ERPs), but have also

experienced the largest decrease in the fraction of routine abstract workers in the population of

employed workers. As pointed out by Bloom et al. (2014), ERP is the generic name for software

systems that integrate several data sources and processes of an organization into a unified system.

These applications are used to store, retrieve, and share information on any aspect of the sales

and firm organizational processes in real time.1 Consequently, the introduction of ERPs reduces

the need for clerical and low-level white collar workers. Moreover, in contrast with Personal

Computers (henceforth PCs), which are general purpose technologies (Jovanovic and Rousseau

(2005)), the introduction of ERPs have as its main goal the replacement of clerical work.

We propose an equilibrium model of heterogeneous workers’ locations across cities that illus-

trate this intuition. In our model, prices play a key role in our equilibrium model of city choice.

Heterogeneously skilled citizens earn a living based on a competitive wage and choose housing

in a competitive housing market. Under perfect mobility, their location choice make them in-

different between consumption-housing bundles, and therefore between different wage-housing

price pairs across cities. Wages are generated by firms that compete for labor and that have

access to a city-specific technology summarized by that city’s total factor productivity (TFP).

This naturally gives rise to a price-theoretic measure of skills. Larger cities pay higher wages,

and are more expensive to live in. Under worker mobility, revealed preference location choices

imply that wages adjusted for housing prices are a measure of skills.

Within this framework, we introduce capital in a simple way. First, we consider that capital

is produced globally and all cities are small open economies in the market for capital. Therefore,

firms in all cities can rent any quantity of capital and take capital’s rental rate as given. Second,

we test two competing hypothesis that have been championed by the previous literature. The

automation hypothesis, which consider that mid-skill workers and capital are substitutes, and

the Skill Biased Technological Change hypothesis (henceforth SBTC) which consider that capital

and high-skill workers are complements. While we believe that these hypothesis are not mutually

exclusive, this simplification allows us to draw some stark comparisons in order to identify the

driving forces behind the changes in the employment and wage distributions across cities.

We show that the automation hypothesis is able to match the empirical patterns that we

find in the data,i.e, we observe an increasing substitution of routine abstract jobs with ERP

and computers as the latter became more affordable. Moreover, our model shows that the

automation hypothesis is also able to deliver the thick tails distribution in the skill distribution,

documented by Eeckhout et al. (2014), in one of its sub-cases. In contrast, in the same set-up,

1This information includes not only standard metrics like production, deliveries, machine failures, orders and
stocks, but also broader metrics on human resources and finance.
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the SBTC hypothesis would deliver first order stochastic dominance (henceforth FOSD) in the

skill distribution. In this sense, while we do not discard the possibility of SBTC, our results

point to the importance of including the automation hypothesis in order to match some key

patterns presented by the empirical evidence.

Our paper is closest to Autor and Dorn (2013). In their paper, they show that areas in

which we have a high concentration of workers performing routine tasks, there is a push towards

automation. In this sense, we could imagine an initial large sunk cost of implementing automa-

tion – particularly true for routine manual workers – which would be more profitable the more

workers the new machines would substitute. Our results point towards a different dynamics, that

hinges on the differences of local prices. Through our results, even though clerical workers may

be a somewhat smaller fraction of the labor force in New York City than in Akron - OH, the fact

that hiring a new accounting assistant is significantly more expensive in New York City makes

it more attractive to New York-based firms to introduce the new software. Consequently, it is

not necessarily the absolute fraction of the work force in routine tasks that induce automation,

but the relative cost of introducing the new technology vs. routine task workers. Our results

suit quite well the introduction of technologies that do not demand large initial sunk costs – as

the introduction of ERP softwares.

Moreover, we are the first to document the effects of introducing new technologies while

looking at technology investments that are not only tied to geographical locations, but also to a

particular use. In this sense, we focus on softwares whose use is clearly related to the activities

performed by routine abstract workers, instead of general purpose technologies, such as PCs.

Our paper is divided into 6 sections. Sections 2 and 3 present our model and theoretical

results, as well as some simple numerical exercises. Section 4 and 5 describe the data and

empirical results, respectively. Finally, section 6 concludes the paper. All proofs are presented

in the Appendix.

2 Model

Population. Consider an economy with heterogeneously skilled workers. Workers are indexed by

a skill type i. For now, let the types be discrete: i ∈ I = {1, ..., I}. Associated with this skill

order is a level of productivity xi. Denote the country-wide measure of skills of type i by Mi.

Let there be J locations (cities) j ∈ J = {1, ..., J}. The amount of land in a city is fixed and

denoted by Hj. Land is a scarce resource.

Preferences. Citizens of skill type i who live in city j have preferences over consumption cij, and
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the amount of land (or housing) hij. The consumption good is a tradable numeraire good with

price equal to one. The price per unit of land is denoted by pj. We think of the expenditure

on housing as the flow value that compensates for the depreciation, interest on capital, etc.

In a competitive rental market, the flow payment will equal the rental price.2 A worker has

consumer preferences over the quantities of goods and housing c and h that are represented

by: u(c, h) = c1−αhα, where α ∈ [0, 1]. Workers are perfectly mobile, so they can relocate

instantaneously and at no cost to another city. Because workers with the same skill are identical,

in equilibrium each of them should obtain the same utility level wherever they choose to locate.

Therefore for any two cities j, j′ it must be the case that the respective consumption bundles

satisfy u(cij, hij) = u(cij′ , hij′), for all skill types ∀i ∈ {1, ..., I}.

Technology. Cities differ in their total factor productivity (TFP) which is denoted by Aj. For

now, we assume that TFP is exogenous. We think of it as representing a city’s productive

amenities, infrastructure, historical industries, persistence of investments, etc.

In each city, there is a technology operated by a representative firm that has access to a

city-specific TFP Aj. Output is produced by choosing the right mix of differently skilled workers

i as well as the amount of capital k. While labor markets are local and workers must live in

the city in which they are employed, capital markets are global and even large cities are small

open economies in the capital markets. We also consider that firms rent capital that is owned

by a zero measure of absentee capitalists. For each skill i, a firm in city j chooses a level of

employment mij and produces output: AjF (m1j, ...,mIj, kj). Firms pay wages wij for workers

of type i. It is important to note that wages depend on the city j because citizens freely locate

between cities not based on the highest wage, but, given housing price differences, based on the

highest utility. Like land and capital, firms are owned by absentee capitalists (or equivalently,

all citizens own an equal share in the mutual fund that owns all the land and all the firms).

Finally, we consider that the rental price for capital is given by r > 0 which is determined in the

global market and taken as given by firms in the different cities.

Market Clearing. In the country-wide market for skilled labor, markets for skills clear market

by market, and for housing, there is market clearing within each city:

J∑
j=1

Cjmij = Mi, ∀i
I∑
i=1

hijmij = Hj, ∀j. (1)

where Cj denotes the number of cities with TFP Aj.

2We will abstract from the housing production technology; for example, we can assume that the entire housing
stock is held by a zero measure of absentee landlords.
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3 The Equilibrium Allocation

The Citizen’s Problem. Within a given city j and given a wage schedule wij, a citizen chooses

consumption bundles {cij, hij} to maximize utility subject to the budget constraint (where the

tradable consumption good is the numeraire, i.e. with price unity)

max
{cij ,hij}

u(cij, hij) = c1−αij hαij (2)

s.t. cij + pjhij ≤ wij

for all i, j. Solving for the competitive equilibrium allocation for this problem we obtain c?ij =

(1 − α)wij and h?ij = α
wij
pj

. Substituting the equilibrium values in the utility function, we can

write the indirect utility for a type i as:

Ui = αα (1− α)1−α
wij
pαj

=⇒ wij = Uip
α
j

1

αα (1− α)1−α
, (3)

where Ui is constant across cities from labor mobility. This allows us to link the wage distribution

across different cities j, j′. Wages across cities relate as:

wij
wij′

=

(
pj
pj′

)α
. (4)

The Firm’s Problem. All firms are price-takers and do not affect wages. Wages are determined

simultaneously in each submarket i, j while capital rent is determined in the global market.

Given the city production technology, a firm’s problem is given by:

max
mij ,∀i

AjF (m1j, ...,mIj, kj)−
I∑
i=1

wijmij − rkj, (5)

subject to the constraint thatmij ≥ 0 and k ≥ 0. The first-order conditions are: AjFmij (mij, kj) =

wij,∀i and AjFkj (mij, kj) = r.3

Because there is no general solution for the equilibrium allocation in the presence of an

unrestricted technology, we focus on variations of the Constant Elasticity of Substitution (CES)

technology, where the elasticity is allowed to vary across skill types. As a benchmark therefore,

3In what follows, the non-negativity constraint on mij and kj are dropped. This is justified whenever the
technology satisfies the Inada condition that marginal product at zero tends to infinity whenever Aj is positive.
This will be the case since we focus on variations of the CES technology.
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we consider the following separable technology:

AjF (m1j, ...,mIj, kj) = Aj

(
I∑
i=1

mγi
ijxi + kjxk

)
(6)

with γi < 1, ∀i ∈ {1, ..., I}. In this case the first-order conditions are Ajγim
γi−1
ij xi = wij, ∀i and

Ajγik
γi−1
j xk = r. Notice that if γi ≡ γ, ∀i ∈ {1, ..., I} we have a CES production function.

In an on line appendix, we solve the allocation under separable technology as a special

case of the more general technologies presented in the paper. Even without fully solving the

system of equations for the equilibrium wages, observation of the first-order condition reveals

that productivity between different skills i in a given city is governed by three components: (1)

the productivity xi of the skilled labor and how fast it increases in i; (2) the measure of skills

mij employed (wages decrease in the measure employed from the concavity of the technology);

and (3) the degree of concavity γi, indicating how fast congestion builds up in a particular skill.

Without loss of generality, we assume that wages are monotonic in the order i.4 This is consistent

with our price-theoretic measure of skill.

We now proceed by introducing varying degrees of complementarity/substitutability between

different skills and capital, starting from the separable technology. In this way, we are able to

address different theories in terms of the impact of technology in either boosting the productivity

of some types, as presented by the literature on Skill Bias Technological Change (henceforth

SBTC) or replacing workers, as in the literature about automation. For tractability, let there

be two cities, j ∈ {1, 2} and three skill levels i ∈ {1, 2, 3}. We will also consider the degree

of complementarity/substitutability by nesting a CES production function within the overall

production function. Consequently, if we assume that there is a degree of complementarity

between skill i and capital, while none between the remaining skills, then we consider that the

technology can be written as
(
mθ
ijxi + kθxk

) γi
θ +

∑
l=−im

γj
lj xl. Notice that if γi > θ, skill i and

capital are gross complements, while if γi < θ, capital and skill i are gross substitutes.

Definition 1 Consider the following technologies:

4For a given order i, wages may not be monotonic as they depend on the relative supply of skills as well as on
xi. If they are not, we can relabel skills such that the order i corresponds to the order of wages. Alternatively,
we can allow for the possibility that higher skilled workers can perform lower skilled jobs. Workers will drop job
type until wages are non-decreasing. Then the distribution of workers is endogenous, and given this endogenous
distribution, all our results go through. For clarity of the exposition, we will assume that the distribution of skills
ensures that wages are monotonic.
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I. Automation. Capital and middle skill workers are substitutes.

AjF (m1j,m2j,m3j, k) = Aj

{
mγ1

1jx1 +
(
mθ

2jx2 + kθjxk
) γ2
θ +mγ3

3jx3

}
where γ2 < θ (7)

II. Skill-Bias Technological Change. Capital and high skill workers are complements.

AjF (m1j,m2j,m3j, k) = Aj

{
mγ1

1jx1 +
(
mθ

3jx3 + kθjxk
) γ3
θ +mγ2

2jx2

}
where γ3 > θ (8)

3.1 Automation

We first derive the equilibrium conditions for case I, Automation. The first-order conditions

(henceforth FOCs) are for each j and all skill types i and capital, respectively:

(m1j) : Ajγ1m
γ1−1
1j x1 = w1j, ∀j ∈ J ;

(m2j) : Aj
γ2
θ

(
mθ

2jx2 + kθjxk
) γ
θ
−1
θmθ−1

2j x2 = w2j, ∀j ∈ J ;

(kj) : Aj
γ2
θ

(
mθ

2jx2 + kθjxk
) γ2
θ
−1
θkθ−1j xk = r, ∀j ∈ J ;

(m3j) : Ajγ3m
γ3−1
3j x3 = w3j, ∀j ∈ J ;

(9)

Using labor mobility, we can write the wage ratio in terms of the house price ratio for all

i, wi2
wi1

=
(
p2
p1

)α
and equate the first-order condition in both cities for a given skill. If we then

compare the results for low- and high skill workers and use both the utility equalization condition,

due to labor mobility, and the housing market clearing conditions for cities 1 and 2 we have:

m11 =

[(
p1
p2

)α
A2

A1

] 1
γ1−1

M1{
1 +

[(
p1
p2

)α
A2

A1

] 1
γ1−1

} and m31 =

[(
p1
p2

)α
A2

A1

] 1
γ3−1

M3{
1 +

[(
p1
p2

)α
A2

A1

] 1
γ3−1

} (10)

and likewise for city 2. Finally, using the FOCs for skill 2 and capital, jointly with utility

equalization and labor market condition for skill 2 in city 1, we have:

m21 =

(
p1
p2

) α
θ−1 k1

k2[
1 +

(
p1
p2

) α
θ−1 k1

k2

]M2 and k2 =

M2x
1
θ
2 −

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(11)

and likewise for city 2.

So far we have consumer optimization for consumption and housing, the location choice by
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the worker, and firm optimization given wages. The next step is to allow for market clearing in

the housing market given land prices. The system is static and solved simultaneously, which is

reported in the Appendix. In what follows, we assume Hj = H for all cities j. Below, we will

discuss the implications where this simplifying assumption has bite.

The Main Theoretical Results. First we establish the relationship between TFP and house prices.

When cities have the same amount of land, we can establish the following result.

Proposition 1 (Automation, TFP, and Housing Prices) Assume γ2 < θ. Ai > Aj ⇒
pi > pj,∀j ∈ {1, 2}

Consequently, the city with the highest TFP is also the one with the highest housing prices.

We establish this result for cities with an identical supply of land. Clearly, the supply of land is

important in our model since in a city with an extremely small geographical area, labor demand

would drive up housing prices all else equal. This may therefore make it more expensive to

live in even if the productivity is lower. Because in our empirical application we consider large

metropolitan areas (NY city for example includes large parts of New Jersey and Connecticut),

we believe that this assumption does not lead to much loss of generality.5

We now focus on the demand for capital and TFP. As proposition 2 shows, the city with

higher TFP also demands more capital. The intuition is straightforward. In cities with higher

TFP, housing prices are higher and workers must be compensated in order to afford living in

a more expensive place. Furthermore, since firms with higher TFP hire more of all skill levels,

the decreasing marginal returns are also more strong, pushing towards the increase in the use

of capital in order to replace middle skills in this case. Hence, high-TFP cities demand more

capital.

Proposition 2 (Automation, TFP and capital demand) Assume γ2 < θ. Ai > Aj ⇒
ki > kj.

Then, in theorem 1 we show that the city with the high TFP is also larger. In fact, we are

able to show that, in equilibrium, the high-TFP city has more workers at all skill levels.

Theorem 1 (Automation and City Size) Assume γ2 < θ and A1 > A2. We have that

S1 > S2.

5In fact, the equal supply of housing condition is only sufficient for the proof, but not necessary. However, our
model does not address the important issue of within-city geographical heterogeneity, as analyzed for example
in Lucas and Rossi-Hansberg (2002). In our application, all heterogeneity is absorbed in the pricing index by
means of the hedonic regression.
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Finally, theorem 2 shows that, in the case in which γi ≡ γ for all skills and γ < θ, high-TFP

city has proportionately more of high and low skill workers than low-TFP cities. This is true

even though high-TFP cities have more of all types. Consequently, the high-TFP city is more

unequal in terms of its skill distribution.

Theorem 2 (Automation and Spatial Sorting) Assume γi ≡ γ, ∀i ∈ {1, 2, 3} and γ < θ.

If A1 > A2 we have that city 1 has thick tails in the skill distribution.

3.2 Skill Biased Technological Change

We now consider the case of Skill-Bias Technological Change (henceforth SBTC) in which capital

and high-skill workers are complements. In this case, the FOCs for each city j, skill type i, and

capital, respectively are:

(m1j) : Ajγ1m
γ1−1
1j x1 = w1j

(m2j) : Ajγ2m
γ2−1
2j x2 = w2j

(m3j) : Ajγ3
(
mθ

3jx3 + kθjxk
) γ3
θ
−1
mθ−1

3j x3 = w3j

(kj) : Ajγ3
(
mθ

3jx3 + kθjxk
) γ3
θ
−1
kθ−1j xk = r

(12)

Using labor mobility, we can write the wage ratio in terms of the house price ratio for

all i, wi2
wi1

=
(
p2
p1

)α
and equate the first-order condition in both cities for a given skill. If we

then compare the results for low- and middle-skill workers and use both the utility equalization

condition, due to labor mobility, and the housing market clearing conditions for cities 1 and 2

we have:

m11 =

[(
p1
p2

)α
A2

A1

] 1
γ1−1

M1{
1 +

[(
p1
p2

)α
A2

A1

] 1
γ1−1

} and m21 =

[(
p1
p2

)α
A2

A1

] 1
γ2−1

M2{
1 +

[(
p1
p2

)α
A2

A1

] 1
γ2−1

} (13)

and likewise for city 2. Finally, using the FOCs for skill 3 and capital, jointly with utility

equalization and labor market condition for skill 2 in city 1, we have:

m31 =

(
p1
p2

) α
θ−1 k1

k2[
1 +

(
p1
p2

) α
θ−1 k1

k2

]M3 and k2 =

M3x
1
θ
3 −

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

k1(
p1
p2

) α
1−θ
[(

r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

(14)

and likewise for city 2.
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So far we have consumer optimization for consumption and housing, the location choice by

the worker, and firm optimization given wages. The next step is to allow for market clearing in

the housing market given land prices. The system is static and solved simultaneously, which is

reported in the Appendix. In what follows, we assume Hj = H for all cities j. Below, we will

discuss the implications where this simplifying assumption has bite.

The Main Theoretical Results. First we establish the relationship between TFP and house prices.

When cities have the same amount of land, we can establish the following result.

Proposition 3 (SBTC, TFP, and Housing Prices) Assume γ3 > θ. Ai > Aj ⇒ pi > pj,

∀j ∈ {1, 2}

Consequently, the city with the highest TFP is also the one with the highest housing prices.

We establish this result for cities with an identical supply of land. Clearly, the supply of land is

important in our model since in a city with an extremely small geographical area, labor demand

would drive up housing prices all else equal. This may therefore make it more expensive to

live in even if the productivity is lower. Because in our empirical application we consider large

metropolitan areas (NY city for example includes large parts of New Jersey and Connecticut),

we believe that this assumption does not lead to much loss of generality.

We now focus on the demand for capital and TFP. As proposition 4 shows, the city with

higher TFP also demands more capital.

Proposition 4 (SBTC, TFP, and capital demand) Assume γ3 > θ. Ai > Aj ⇒ ki > kj.

Corollary 1 shows that the high TFP city also attracts more high-skill workers.

Corollary 1 (SBTC and demand for high skill) Assume γ3 > θ. Ai > Aj ⇒ m3i > m3j.

Finally, theorem 3 shows that in the case in which γi ≡ γ for all skills and γ > θ, high-

TFP city attracts proportionately more skilled workers. In particular, we show that the skill

distribution in the high-TFP city stochastically dominates in first order the skill distribution in

the low-TFP city.

Theorem 3 Assume γi ≡ γ, ∀i ∈ {1, 2, 3} and γ > θ. If A1 > A2, we have that city 1’s skill

distribution F.O.S.D. city 2’s skill distribution.

Differently from the case of Automation, SBTC does not imply that the high-TFP city

is larger. In the appendix, we present two examples that illustrate that results can go either
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way, i.e., depending on the parameters we may have the high-TFP city to be either larger or

smaller than the low-TFP city.

In the next section, we simulate the model in order to get a better understanding of the

model’s mechanisms and how changes in the parameters may affect the two regions’ labor mar-

kets. We focus on two parameter changes that are related to the observed evolution of computing

power prices over the last twenty years. First, the price of PCs and software went down signif-

icantly over this time period. Second, personal computers became significantly more powerful,

being able to do operations that needed servers or computer networks previously. While this

distinction seems subtle at first sight, it is an important difference for the model. Reductions in

price, while increasing the benefit of renting more capital, do nothing to counteract the decreas-

ing marginal contribution of capital. Differently, increases in computer power per machine, by

increasing xk, avoids the decreasing forces of marginal productivity. Moreover, we also believe it

is an important distinction in reality. Increasing computer power through the use of servers or

connected networks, while possible, demands a lot of coordination and knowledge by its users.

These additional user costs reduce the widespread implementation of internal networks and lo-

cal servers. Moreover, while prices for information technology have gone down, the wide decline

in the price indexes for technology, presented in figures (a) and (c) in figure 1 are mostly due

to the increase in the processing power which is factored in by the Bureau of Labor Statistics

(BLS). Furthermore, even though there is some evidence that the gross investment in personal

computers and peripherals has stalled in the latter period, once we control for processing power,

the investment in computers has continued to go up, as we present in figures (b) and (d) in figure

1. Consequently, it is important to take into account a potential difference between quality and

quantity when we are dealing with changes due to technological progress over time.

3.3 Numerical Example

3.3.1 Benchmark parametrization

In this section, we show a simple numerical example that illustrates the results of the model.

In order to be able to interpret the results more properly, we use results found in the previous

literature and data in order to calibrate our parameters. We start using parameter values

described by Eeckhout et al. (2014)’s table 2 in order to pin down the values for city TFP and

workers’ labor productivity. We consider the case that γi ≡ γ, ∀i ∈ {1, 2, 3} and use Eeckhout

et al. (2014)’s table 2 to set γ as well. Moreover, we follow Davis and Ortalo-Magné (2011) and

set α = 0.24. Finally, we must specify values for both θ and the housing stock. We will keep
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(a) Software’s Price Index: 1997–2017
Source: Bureau of Labor Statistics
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(b) Real Investment in Software: 1999–2017
Source: Bureau of Economic Analysis
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(c) PC’s Price Index: 1997–2017
Source: Bureau of Labor Statistics
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(d) Real Investment in PCs: 1995–2011
Source: Bureau of Economic Analysis

Figure 1: Price Index and Real Investment in Technology

these values as given at Hi = 62, 559, 000,∀i ∈ {1, 2} which is close to the BEA’s estimate for

half of the total housing units for the United States in 2005Q2, and θ = 0.85. We present these

parameters in table 1. We assume that these parameters are fixed over time in our numerical

exercise.

Table 1: Maintained Parameters – from Eeckhout et al. (2014)

γ θ A1 A2 y1 y2 y3 Hi α

0.8 0.85 19,118 9,065 0.3189 1 1.4733 62,559,000 0.24

We then consider two periods in time: 1995 and 2015. We consider changes in the size and

composition of the population – measured by the size of the labor force and the distribution

across occupations. We follow the distribution of the population across routine and non-routine
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manual and cognitive occupations for the years 1989 and 2014 as presented by Cortes et al.

(2016). We combine routine cognitive and manual occupations to form the middle-skill measure,

while we consider non-routine cognitive occupations as high skill and non-routine manual as low

skill. Finally, we disregard the unemployed. Similarly, we consider changes in the technology. We

pin down xk by normalizing it at 1 in 1995 and using the estimates for multi-factor productivity

(MFP) growth for softwares as presented by Byrne et al. (2017)’s table 3B in order to pin down

xk in 2015. Similarly, in order to consider the changes in the price for technology, we normalize

r = 700 in 1995 – close to the value that Eeckhout et al. (2014) implied for a middle-skill worker

in the small city – and use Byrne and Corrado (2017)’s estimate of price decrease in the cost

of ICT investments (Table 4 – software), in order to pin down the value for r in 2015. The

calibrated values are presented in table 2.

Table 2: Adjusted Parameters - Experiments

yk r M1 M2 M3

1995 1 700 15,836,150 66,973,717 40,745,094
2015 1.333 635.58 26,640,565 67,576,067 61,078,368

Results are presented in figure 2 and table 3. As we can see from figures 2(a) and 2(b) and

table 3’s panel B, between 1995 and 2015, city 1 not only became even bigger than city 2, but it

also became more unequal – the proportion of mid-skilled workers went down significantly more

in city 1 than in city 2. While this result is in line with the overall increase in inequality that

we observed over time, jointly showing a geographical component, it does not clearly indicates

the underlying reason for this increase in inequality. From our parameters in table 2, we have

that many things changed between 1995 and 2015. First, not only the population has grown,

but the distribution of skills across the overall population has developed fatter tails. Second,

technology became cheaper as well as more productive. In order to disentangle these effects,

we consider two counterfactuals. In the first counterfactual, we keep the overall population

size and skill distribution at its 1995 levels and only allow technology to become cheaper and

more productive, presented in figure 2(c) and in table 3 Pop. Fixed lines. In the second

counterfactual, we keep technology at its 1995 levels of cost and productivity, while allowing

population and skill distribution to adjust to its 2015 levels, presented in 2(d) and in table

3 Tech. Fixed lines. As we can see from the results, while changes in population may be

responsible for the bulk of the change in the overall shape of the distributions between 1995 and

2015, the changes in technology cost and productivity are the leading factors behind the big

cities becoming increasingly more unequal compared to smaller ones.
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(c) Skill Distribution – Population Constant
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Figure 2: Skill Distribution across cities – 1995 vs. 2015

4 Data Sources and Measurement

Data on Workers

Our main data source is the Census Public Use Microdata. We use the 5% Samples for 1980,

1990, and 2000 and for 2013-2015 we combine the American Community Survey yearly files. From

these files, we construct labor force and price information at the Metropolitan Statistical Area

(MSA) level. The definition of an MSA we use is the 2000 Combined Metropolitan Statistical

Areas (CMSA) by the Census for all MSAs that are part of an CMSA and otherwise the MSA

itself. For simplicity, we will refer to this definition as MSA from now on. We follow the same

procedure as Baum-Snow and Pavan (2013) in order to match the Census Public Use Microdata

Area (PUMA) of each Census sample to the 2000 Census Metropolitan Area definitions. The
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Table 3: Numerical Exercise Results

Panel A: Prices and Wages

p1 p2 w11 w12 w21 w22 w31 w32

1995 188.38 28.193 184.73 117.10 432.80 274.36 706.45 447.82
2015 224.91 34.466 166.30 106.02 422.28 269.21 650.81 414.91
Pop. Fixed 185.38 28.572 184.48 117.77 422.85 269.95 705.52 450.4
Tech. Fixed 227.91 34.084 166.48 105.52 432.05 273.83 651.53 412.94

Panel B: City Size and Skill Distribution

S1 f11 f21 f31 S2 f12 f22 f32
1995 99,936,000 12.84% 54.12% 33.04% 23,620,000 12.72% 54.55% 32.73%
2015 125,058,000 21.71% 42.86% 39.79% 30,237,100 16.33% 46.21% 37.45%
Pop. Fixed 99,342,000 12.93% 53.54% 33.45% 24,213,500 12.06% 56.92% 31.02%
Tech. Fixed 125,633,000 21.60% 43.43% 39.39% 29,664,100 17.05% 43.85% 39.09%

Census data restricts us to consider only MSAs which are sufficiently large, as they are otherwise

not identifiable due to the minimal size of a PUMA. For each year we then construct information

on the labor force in each MSA and the local price level. We focus our attention to full-time

full-year workers aged 25-54. In order to obtain an estimate of the price level at the MSA level,

we consider a simple price index including both consumption goods – which sell at a the same

price across different locations – and housing, which is priced differently in each MSA. Based on

a hedonic regression using rental data and building characteristics, we calculate the difference in

housing values across cities. In large parts of our empirical analysis we focus on the occupational

composition of MSAs. To do so, we aggregate the census occupations into broad groups based on

their task content as in Cortes et al. (2014). Table 5 shows the classification into groups by task

components and the corresponding titles of occupation groups in the Census 2010 Occupation

Classification system6.

Table 4 presents sample averages and standard deviations in the subsample of MSAs for which

we have data in all years in the Census and information on technology adoption. We present

descriptive statistics for the main variables used in the analysis: occupation shares, employment

levels and our MSA rent index.

Technology Data

Our technology data comes from the Ci Technology Database, produced by the Aberdeen

Group (formerly known as Harte-Hanks). The data has detailed hardware and software infor-

6See https://www.census.gov/people/io/files/2010_OccCodeswithCrosswalkfrom2002-2011nov04.

xls for the detailed list of Census 2010 Occupations and Cortes et al. (2014) for the mapping to previous Census
Occupation Classifications
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Table 4: Descriptive Statistics

1980 2015
mean mean

(st. dev.) (st. dev.)

Occupation Share

Non-Routine Cognitive 0.32 0.44
(0.04) (0.05)

Non-Routine Manual 0.09 0.14
(0.02) (0.02)

Routine Cognitive 0.28 0.23
(0.02) (0.02)

Routine Manual 0.30 0.19
(0.06) (0.04)

Rent and Size

log rent index 0.01 0.01
(0.13) (0.22)

Employment in 000s 991.78 1546.51
(1160.60) (1687.15)

Observations 253 253

Note: Averages and standard deviations are weighted
by MSA employment. Subsample of MSAs for which
we have complete data in all years.

Table 5: Occupation Groups by Tasks

Tasks Census Occupations
Non-routine Cognitive Management

Business and financial operations
Computer, Engineering and Science
Education, Legal, Community Service, Arts and Media Occupations
Healthcare Practitioners and Technical Occupations

Non-routine Manual Service Occupations
Routine Cognitive Sales and Related

Office and Administrative Support
Routine Manual Construction and Extraction

Installation, Maintenance and Repair
Production
Transportation and Material Moving

mation for over 200,000 sites in 20157, including not only installed capacity but also expected

7In fact, the overall sample is significantly larger than 200,000, but we are restricting the sample to the plants
and sites to which we have detailed software information.
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future expenses in technology. Their data also includes detailed geographical location for the

interviewed sites, as well as aggregation to the firm level. Finally, they also collect some basic

information about the sites, such as detailed industry code, number of employees, and total rev-

enue. We have available information for three years – 1990, 1996, and 2015. While the sample

seems representative for all 3 available years, we focus on 1996 and 2015, not only due to a larger

sample than 1990, but also due to the detailed information on software installation.

Our measure of ERP considers the fraction of plants in the MSAs that adopted ERP soft-

wares. We consider ERPs that help managing the following areas: Accounting, Human Re-

sources, Customer & Sales Force, Collaborative and Integration, Supply Chain Management,

as well as bundle softwares like the ones produced by SAP, which are usually called Enterprise

Applications. We clean the data in order to eliminate any state-run or governmental department

from the sample of sites. Figure 3 shows the geographical dispersion of ERP concentration across

the country in 2015. First of all geographical coverage is quite good, with only very few MSAs

missing. In fact, the missing MSAs are due to the matching procedure of the Census PUMA to

the 2000 Census Metropolitan Area definitions as described by Baum-Snow and Pavan (2013).

Moreover, there seems to be a lot of dispersion in the ERP shares across MSAs even in 2015,

when we should expect already a more widespread use of technology. These results are corrob-

orated by the results presented in table 6. As we can see, we have at least some information on

280 MSAs across the country. Moreover, we can see that, while on average about 47% of the

establishments have at least some form of ERP, there is substantial variation across the country.

Some MSAs have a fraction as low as 26%, while others have more than 61% of establishments

with some form of ERP. Even more, as we show in figure 4, the degree of adoption seems closely

tied to the size as well as cost of living in the MSA, proxied by the rental index.

Table 6: Descriptive Statistics of technology Adoption across MSAs – 2015

Mean Median St. Dev. Min Max N

Share of Sites with ERP 0.47 0.48 0.06 0.26 0.61 280
Number of Sites with ERP in MSA 308.77 85.50 999.60 5.00 14128.00 280
Number of Sites in MSA 625.17 184.50 2090.36 11.00 30541.00 280

5 Empirical Evidence

In this section we describe our main evidence regarding the adoption of automation technology

and the occupational composition of cities. We focus on the two main predictions of the the-

ory: (1) locations with higher housing costs should implement automation technology at higher
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Figure 4: Entreprise Resource Planning Software vs local price level

rates and (2) locations with higher housing costs should also see decreasing shares of their work-

force being employed in middle-skill occupations, whose tasks are being replaced by automation

technology. To test these predictions, we focus on one specific technology: Enterprise Resource

Planning (ERP) software. This type of software allows to automate many tasks usually done by

clerical and administrative support staff, which generally fall in the category of routine-cognitive

tasks.

Table 7 shows the results of a linear regression of the index of ERP usage on the local price

index and the share of routine cognitive workers in 1980. Columns 1 and 2 indicate that, when

considered separately, both the current local price level and the past share of routine-cognitive
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Table 7: Enterprise Resource Planning Software

(1) (2) (3)
ERP 2015 ERP 2015 ERP 2015

log rent index 0.0858∗∗∗ 0.0777∗∗∗

(0.0153) (0.0180)

routine cognitive share 1980 0.508∗∗∗ 0.205
(0.133) (0.137)

Observations 253 253 253
R2 0.230 0.082 0.242

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by its employment in 2015.

workers can explain a substantial amount of variation in ERP adoption. In the first specification,

a 10% higher local price index (about half a standard deviation) is associated with a 0.8% increase

in the share of sites that use ERP. The most expensive places in our sample have about 8% more

sites that use ERP, relative to the cheapest places. In the second specification, a 1% higher the

share of routine-cognitive workers in 1980 (about half a standard deviation) is associated with a

0.05% higher share of sites with ERP. However, when considering both variables jointly the effect

of the lagged routine-cognitive share conditional on the local price level shrinks substantially and

turns out insignificant. Yet, the coefficient on the price level is stable across the specifications.

These results indicate that the usage of ERP is more widespread in MSAs with a higher local

price level, but conditional on the current price level the past concentration of routine-cognitive

workers does not predict the change in concentration. This is in line with the theoretic prediction

that cities with high living costs invest more in automation technology.

We turn to the second prediction of the theory: High cost locations should feature a decline

in the share of workers, whose tasks can be automated after the introduction of new technology.

We use 1980 as the pre-technology period and compare to the occupational composition in 2015.

Our focus on such a long span of time is motivated by the fact that we compare steady state

predictions of the model and ignore short-term dynamics.

Table 8 presents the results of linear regressions of the change in the routine-cognitive share of

MSAs between 1980 and 2015 on its 1980 level and the local rent index in 2015. Again, columns 1

and 2 present the bivariate specifications and column 3 the model with both covariates. The first

column indicates that a 10% higher local house price level is associated with a 0.7% larger drop

in the routine-cognitive share over 1980-2015. Thus, the most expensive places have about a 7%

larger drop in the routine-cognitive share relative to the cheapest locations, this is a substantially
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Table 8: Change in routine-cognitive share, 1980-2015

(1) (2) (3)
∆ rout-cog ∆ rout-cog ∆ rout-cog

log rent index -0.0663∗∗∗ -0.0395∗∗

(0.0143) (0.0143)

routine cognitive share 1980 -0.831∗∗∗ -0.677∗∗∗

(0.0765) (0.0763)

Observations 253 253 253
R2 0.307 0.490 0.582

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by its employment in 2015.

difference compared to the average routine-cognitive share of 23% in 2015. Column 2 presents

the bivariate specification with the share of routine-cognitive workers in 1980. A 1% higher

routine-cognitive share in 1980 is associated with a 0.8% larger drop subsequently. In column 3

the results for the multivariate regression are presented. Both variables are strongly related to

the decline in the routine-cognitive share of workers, even after accounting for their covariation.

However, the partial effect of each is smaller. The effect of a 10% higher house price drops to

0.4% and the effect of a 1% higher initial share drops to 0.7%. This confirms the prediction,

that expensive locations should see a decline in the share of workers, whose tasks are replaced

by machines, after the introduction of the new technology.

5.1 Robustness Check - Weighting

In the main analysis of the data we weighted each MSA by its employment. This may raise

concerns that we are relying too much on large cities to inform our estimates. Therefore, we

consider a different weighting scheme to check for robustness. One may argue that we should

compare our previous results to results without any weighting. However, our estimates of the

ERP share are very noisy for some MSAs due to small sample size. Therefore we use the inverse of

the standard error of the ERP index as weights. We calculate the standard error σERP according

to the following formula

σ̂ERP =

√
π̂ERP (1− π̂ERP )

N
(15)

where π̂ERP is the empirical share of ERP sites in a location and N the number of sites.

In order to examine the differences in empirical results between this weighting scheme and
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Table 9: Entreprise Resource Planning Software - weights σ̂−1ERP

(1) (2) (3)
ERP 2015 ERP 2015 ERP 2015

log rent index 0.0769∗∗∗ 0.0650∗∗∗

(0.0141) (0.0158)

routine cognitive share 1980 0.420∗∗∗ 0.225∗

(0.110) (0.112)

Observations 253 253 253
R2 0.114 0.060 0.128

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by the inverse of the estimated standard
error of the ERP measure.

the original weighting by size table 9 and 10 replicate the corresponding estimations of the main

section with the new weighting scheme. The results in table 7 and 9 show the results regarding

ERP adoption with the two weighting schemes. We find that the parameter estimates are very

similar.

Comparing the results regarding the change in the routine-cognitive share of employment,

table 8 and 10, we find again the same pattern. Results are very similar, albeit parameter

estimates on rent being slightly smaller in absolute size. From this exercise we conclude that

results were not simplz driven by very large MSAs.

Table 10: Change in routine-cognitive share, 1980-2015 σ̂−1ERP

(1) (2) (3)
∆ rout-cog ∆ rout-cog ∆ rout-cog

log rent index -0.0700∗∗∗ -0.0326∗∗∗

(0.00903) (0.00902)

routine cognitive share 1980 -0.801∗∗∗ -0.703∗∗∗

(0.0466) (0.0426)

Observations 253 253 253
R2 0.240 0.558 0.601

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by the inverse of the estimated standard
error of the ERP measure.

Finally, in appendix C we replace the log rent index by log employment. As presented in
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section 2, the model delivers an equilibrium in which not only the more productive city is more

expensive, but it is also bigger. As we can see from tables 16 and 17, results are qualitatively

the same as the ones presented here.

5.2 Measures of Concentration

We now calculate measures of concentration of skills across regions. These measures allow us to

test if we have observed an increase in the spatial dispersion of skills across MSAs in the last 30

years. Moreover, these measures abstract from issues of long-run trends in the composition of

labor force. Consequently, we are able to focus on the correlation between the spatial dispersion

of skills and MSAs characteristics – in particular size and cost of housing. We consider three

simple measures: The location quotient that compares the skill distribution in the MSA against

the overall skill distribution in the economy, the Ellison and Glaeser (1997) index of industry

concentration, and an adjusted version of this index proposed by Oyer and Schaefer (2016). The

latter two indexes attempt to measure concentration by comparing it against a distribution that

would be obtained by chance (the “dartboard approach”).

5.2.1 Location Quotient

As a first pass, we consider a concentration measure that compares the distribution in a given

MSA against the overall economy distribution. In particular, we consider that the degree of

concentration of skill i in city j (λij) is given by:

λij =

mij
Sj
Mi∑N
l=1Ml

(16)

Intuitively, if a MSA is more concentrated in skill level i than the economy at large, this

index’s value would be above 1. Moreover, this measure has two additional benefits. First, by

focusing on shares, it reduces the impact of the MSA’s overall size on the analysis. Second, by

comparing the region against the economy-wide distribution, it takes into account the potential

changes in the national labor market. Consequently, it allows us to focus on the increase/decrease

of concentration across regions as well as how it correlates to these regions’ characteristics.

In our analysis, we consider two time periods – 1980 and 2015. Moreover, following Cortes

et al. (2016), we divide the occupations in 4 groups: non-routine manual, routine manual, routine

cognitive, and non-routine cognitive. We divide the regions in two groups around the median.

As a first pass, we divide MSAs in terms of the size of its labor force, i.e., large vs. small. Similar

22



results are obtained if we use the log rent index, i.e. cheap vs. expensive, as the measure to

separate the MSAs. Results are presented in table 11.

Table 11: Simple Measure of Concentration across skill and city size groups

Panel A: 1980

Non-Routine
Manual

Routine
Manual

Routine
Cognitive

Non-Routine
Cognitive

Mean Median Mean Median Mean Median Mean Median
Large City 0.99 0.95 1.08 1.05 0.97 0.97 0.95 0.95
Small City 1.05∗ 1.03† 1.11 1.11 0.92∗∗ 0.91†† 0.93 0.90

Panel B: 2015

Non-Routine
Manual

Routine
Manual

Routine
Cognitive

Non-Routine
Cognitive

Mean Median Mean Median Mean Median Mean Median
Large City 0.99 0.96 1.07 1.05 1.02 1.01 0.96 0.97
Small City 1.02 1.02 1.21∗∗ 1.19†† 1.00 0.99 0.90∗ 0.89††

**,* represent significant at 1 and 5 % respectively in a t-test of means with unequal variances.
††,† represent significant at 1 and 5% respectively in a Wilcoxon rank-sum test of medians.

As we can see from table 11, in 1980, small cities had on average a higher concentration in

non-routine manual jobs, a lower concentration in routine cognitive jobs, and were at par in

routine manual and non-routine cognitive once compared to large cities. Differently, in 2015 we

see small cities being on average more concentrated in routine manual jobs, less concentrated in

non-routine cognitive jobs, and at par in routine cognitive and non-routine manual jobs. Taken as

a whole, table 11 shows an increase in the concentration of routine cognitive and routine manual

jobs in small cities, jointly with a decrease in non-routine manual and non-routine cognitive jobs,

as expected from our theory.

Finally, figure 5 presents the density distribution of the simple concentration index for small

and large cities across skill groups and time. While we observe that there is significant variance

in this index across CMSAs, the overall message is the same as the one presented in table 11.

5.2.2 Ellison-Glaeser (1997) Index

We now adapt the concentration index presented by Ellison and Glaeser (1997) for the skill

distribution context. Denote γi as the EG concentration index for skill i. To define this index,

we first introduce some notation. Define sij as the share of workers of skill i in city j, i.e.,

sij =
mij
Mi

. Let xj be the share of total employment in city j, i.e., xj =
Sj∑N
l=1Ml

. Then, our
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measure of spatial concentration of skill i is given by:

γi =

∑
j (sij − xj)2

1−
∑

j x
2
j

(17)

According to Ellison and Glaeser (1997), there are several advantages in using this index. First,

it is easy to compute with readily available data. Second, the scale of the index allows us to

make comparisons with a no-agglomeration case in which the data is generated by the simple

dartboard model of random location choices (in which case E(γi) = 0). Finally, the index is

comparable across populations of different skill sizes. Notice that in this case, we have one index

per skill group per year. Consequently, we are unable compare large and small cities. However,

we are able to see if skill groups became more or less concentrated across cities over time.

Table 12: Ellison-Glaeser Index

1980 2015 % Change

Non-Routine Manual 0.00063 0.00044 -0.29659
Routine Manual 0.00080 0.00068 -0.15094
Routine Cognitive 0.00011 0.00014 0.24356
Non-Routine Cognitive 0.00026 0.00029 0.11259

Results are presented in table 12. As we can see, manual occupations have seen a decline

in concentration, whereas cognitive occupations have seen a (small) increase in concentration.

These results complement the results regarding the location index, by indicating how concen-

tration of each occupation group has changed across cities. While these results are generally in

line with what we should expect given our model’s outcomes, we are not able to precisely link

them to city characteristics. In order to do that, in the next section we follow Oyer and Schaefer

(2016) and adapt the Ellison and Glaeser (1997) to create a city’s skill concentration index.

5.2.3 Oyer-Schaefer (2016) Index

We now consider an adapted version of the EG concentration index that we call the Oyer-Schaefer

index (henceforth OS index). Hence, denote ζj the OS concentration index for city j. To define

this index, we first introduce some notation. Define x̃i the overall share of workers of skill i in

the economy, i.e. x̃i = Mi∑N
l=1Ml

. Similarly, define s̃ij the share of workers of skill i in city j, i.e.,

s̃ij =
mij
Sj

, where Sj is city j’s labor force size. Then, the OS index is define as:

ζj =
Sj

Sj − 1

∑
i (s̃ij − x̃i)

2

1−
∑

i x̃
2
i

− 1

Sj − 1
(18)
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Differently from the EG index, in the OS index we are able to compare the degree of con-

centration across city sizes or across cities with different housing costs. Unfortunately, we are

unable to pin down the source of the increase/decrease in within-city concentration. In particu-

lar, we are unable to tie the changes in concentration to changes in the shares of each particular

skill group. In this sense, EG and OS indexes, while complementing each other, both have its

weaknesses and do not give a complete picture of the changes in concentration.

Table 13 presents the results for 1980 and 2015. As we can see, in both periods, small cities

are consistently more concentrated than large cities, although there is also more variance of

concentration across small cities. Furthermore, while both small and large cities have seen a

reduction in concentration over time, the reduction has been on average larger at large cities.

Finally, we present the changes in the density distribution of the OS index in figure 6. As

we can see, the distribution of the OS index became more concentrated as we move from 1980

to 2015.

Table 13: OS Index across city sizes and time

Panel A: 1980
Mean Median St. Dev. Min Max

Large City 0.01193 0.00551 0.01732 0.00012 0.10032
Small City 0.01879 0.00965 0.02132 0.00037 0.11660

Panel B: 2015
Mean Median St. Dev. Min Max

Large City 0.00896 0.00406 0.01156 0.00014 0.06074
Small City 0.01835 0.01259 0.01738 0.00003 0.10652
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6 Estimation

In order to complement the descriptive evidence in the previous sections and to perform quan-

titative counterfactuals we estimate an extended version of the model. The extended model

embeds a more realistic housing market by introducing Stone-Geary preferences and a finite

supply elasticity of housing. Furthermore, the production function is generalized to allow for

differential returns to scale of labor by occupation and a finite elasticity of substitution between

occupation level output.

The identification of the main model parameters is relatively simple, given the static structure

of the model. In the following we shortly introduce the model extensions and then discuss

identification of the main model parameters. The identification arguments also deliver a practical

estimation protocol.

6.1 Extended Model Setup

We extend the model to capture the key features of housing, labor and capital allocations in the

data.

[!Add workers i here!] There are J locations each endowed with amenities aj,i, TFP Aj and

housing supply schedule pj(h) = h0jh
εj .

Furthermore, we allow for Stone-Geary preferences

uj,i(c, h) = aj,ic
1−αi(h− hi)αi (19)

Thus, housing spending shares can vary with the local price level.

AjFj(m,k,x,xk, ) = Aj

{∑
i

[
(mj,ixi)

γiφi + (kj,ix
k
i )
γi
] λ
γi

}β
λ

(20)

As before factor remuneration is determined competitively, workers and capital are paid

according to their marginal product. Wages are endogenously determined in equilibrium, but

the rental rate of capital r is taken as given. The definition of a spatial equilibrium remains the

same as before.

6.2 Identification and Estimation Protocol

In this section we present how we identify the structural parameters of the model. As the

identification arguments are mostly based on linear equations they can be directly estimated.
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The utility function parameters (αi, hi) are related to the spending share on housing and its

covariation with the local price level, see equation (21).

pjhj,i
wj,i

= αi + (1− αi)hi
pj
wj,i

(21)

Local spending on housing pjhj,i and wages wj,i are directly observable in the data. Local

house prices pj are estimated as a hedonic index. The parameters αi and hi can be identified

as long as J ≥ 2 under the assumption that both αi and hi do not vary systematically with

unobserved local characteristics.

The production function parameters can be identified up to some basic normalization.

Suppose β is known. Then we are left with the labor productivity parameters xi, capital

productivity xki , the elasticity of substitution between capital and labor governed by γi and the

labor returns to scale φi.

The ratio of the marginal product of capital to labor allows us to identify φi and γi indepen-

dently of other occupations output or local TFP. The productivity of capital and labor can only

be identified in relative terms from this equation. At this point we normalize one of xi, this is

just to set the scale of the model productivity parameters.

log

(
r

wij

)
= γi log

(
xki

φix
φi
i

)
+ (γi − 1) log(kj,i)− (γiφi − 1) log(mj,i) (22)

This equation can be readily estimated and separately identifies γi and φi. However, from

this equation we can not yet separate xi and xki .

In occupations that do not use capital equation (22) does not apply. Let us denote such an

occupation by i′. For occupations i′ divide its wage by wage of occupation i. We are left with

an equation that is that is linear in φi′ and λ. All other terms are known at this point.

log(wj,i′)− log(wj,i) =λφi′ log(xi′) + (φi′λ− 1) log(mj,i′)−
(
λ

γi
− 1

)
log
[
(mj,ixi)

γiφi + (kj,ix
k
i )
γi
]
. . .

− log(λ)− log
[
φi (xi)

γiφi (mj,i)
γiφi−1

]
(23)

The equations used to show how to identify the parameters can be directly estimated. Note

that identification can be achieved without the knowledge of TFP and local amenities. Threats

to identification would be local factor specific productivity that systematically varies with the

amount of workers.

Note that the production function specifies that only local inputs are used in production.
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Therefore if inputs are actually freely tradable across locations we will obtain an elasticity of

substitution between occupation outputs of∞ (λ = 1). Therefore, the potential misspecification

of the trade structure does not invalidate the estimation protocol.

TFP and amenities are pinned down through residuals. TFP is the residual of wages under

normalization of β, where we use the average residual of all wages in the city in order to pin

down TFP conditional on (log) city size.

6.2.1 Parameter Estimates and Model Fit - Preliminary

Table 14: Estimates – Production Function Parameters

non-routine non-routine routine routine
cognitive manual cognitive manual

γ 1.0 1.0 0.779 1.0
(·) (·) (0.00106) (·)

φ 1.06 1.03 1.06 1.02
(8.49e-6) (1.16e-5) (2.48e-5) (1.42e-5)

x 1.66 1.48 1.0 2.11
(0.00351) (0.00445) (.) (0.00947)

xk · · 3.13 ·
(·) (·) (0.0307) (·)

Table 15: Estimates – Stone-Geary Parameters

α̂i ĥi

Non-Routine Cognitive 0.086 3.842
Non-Routine Manual 0.221 2.086
Routine Cognitive 0.112 3.303
Routine Manual 0.079 3.277

6.3 Counterfactuals – TBD

1. real price of capital r and xk

2. skill biased technological changes (x)

3. composition M
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7 Conclusion

In this paper, we show that the substitution of routine jobs and tasks with machines, computers,

and software has not happened evenly in space. In fact, the relative benefit of replacing middle-

skill workers that perform routine tasks by computers and software depend on the cost of hiring

a worker in this particular location. Consequently, living costs – in particular housing costs –

play a key role. Our empirical results show that the share of routine-abstract jobs has gone

down proportionately more in expensive and large cities. Moreover, these areas also have seen

a larger investment in technologies directly associated with the tasks previously exercised by

routine-abstract workers. In order to rationalize the observed empirical patterns, we propose an

equilibrium model of location choice by heterogeneously skilled workers where each location is

a small open economy in the market for computers and software. We show that if computers

are substitutes to middle-skill workers – commonly known as the automation hypothesis – we

have that in equilibrium large and expensive cities will invest more in automation, as they are

more likely to substitute middle-skill workers with computers. Intuitively, in large and expensive

cities, the relative benefit of substituting computers for routine abstract workers is higher than

in cheaper and smaller places, since computers have the same price everywhere, while workers

must reside locally, having to be compensated for the high local housing prices.
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Figure 5: Skill Distribution across city sizes and time
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Figure 6: Distribution of OS index across city sizes and time

A Theory - Preliminary Steps - Automation

A.1 Automation

Closing the Model

The final steps to close the model involve simplifying the model such that we have a system

with only two equations and two unknowns (k1 and p1
p2

. Based on the calculations presented in

the paper for k2, k1 and their respective FOCs, we obtain:

Fj(m1j,m2j,m3j, kj) = Aj

[
mγ1

1jx1 +
(
mθ

2jx2 + kθjxk
) γ2
θ +mγ3

3jx3

]
(24)

FOCs:
(m1j) : Ajγ1m

γ1−1
1j x1 = w1j

(m2j) : Ajγ2
(
mθ

2jx2 + kθjxk
) γ2
θ
−1
mθ−1

2j x2 = w2j

(m3j) : Ajγ3m
γ3−1
3j x3 = w3j

(kj) : Ajγ2
(
mθ

2jx2 + kθjxk
) γ2
θ
−1
kθ−1j xk = r

Since from utility equalization, we have:

wij
wij′

=

(
pj
pj′

)α
, ∀i ∈ {1, 2, 3} and ∀j ∈ {1, 2} (25)
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From (m11), (m12), and feasibility condition for skill 1, we have:

m11 =

[
A2

A1

(
p1
p2

)α] 1
γ1−1

M1

1 +
[
A2

A1

(
p1
p2

)α] 1
γ1−1

(26)

Similarly, for skill 3:

m31 =

[
A2

A1

(
p1
p2

)α] 1
γ3−1

M3

1 +
[
A2

A1

(
p1
p2

)α] 1
γ3−1

(27)

From (m21), (k1), (m22), (k2), labor market clearing, and the utility equalization condition,

we have: (
m21

m22

)
=

(
p1
p2

) α
θ−1 k1

k2
(28)

Now let’s go back to the expression for (k1). Manipulating it, we have that:

m21 =

{
1

x2

[(
r

A1γ2xk

) θ
γ2−θ

k
θ(1−γ2)
γ2−θ

1 − xk

]} 1
θ

k1 (29)

Similarly, for (k2), we have:

m22 =

{
1

x2

[(
r

A2γ2xk

) θ
γ2−θ

k
θ(1−γ2)
γ2−θ

2 − xk

]} 1
θ

k2 (30)

Dividing (56) by (57)and substituting (55), we have:

(
p1
p2

) αθ
θ−1

=


[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
]

[(
r

A2γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

2 − xk
]
 (31)

Manipulating and simplifying it, we have:

k
θ(1−γ2)
γ2−θ

2 =

(
A2

A1

) θ
γ2−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ2)
γ2−θ

1 +

(
r

A2γ2xk

) θ
θ−γ2

[
1−

(
p1
p2

) αθ
1−θ
]
xk
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Now, we also can use the fact that m21 +m22 = M2. Then, we have that:

M2x
1
θ
2 =

[(
r

A1γ2xk

) θ
γ2−θ

k
θ(1−γ2)
γ2−θ

1 − xk

] 1
θ

k1 +

[(
r

A2γ2xk

) θ
γ2−θ

k
θ(1−γ2)
γ2−θ

2 − xk

] 1
θ

k2 (32)

Substituting (58) and manipulating, we have:

k2 =

M2x
1
θ
2 −

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(33)

Substituting (60) into (59) and manipulating, we have:


M2x

1
θ
2 −

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

k1

(
p1
p2

) α
1−θ

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ



θ(1−γ2)
γ2−θ

=

=
(
A2

A1

) θ
γ2−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ2)
γ2−θ

1 +
(

r
A2γ2xk

) θ
θ−γ2

[
1−

(
p1
p2

) αθ
1−θ
]
xk

(34)

which implicitly pins down k1 as a function of p1
p2

.

Finally, in order to pin down the equilibrium, we need to work with the housing market

equilibrium conditions. Looking at the ratio of the housing market clearing conditions, we have:

w11m11 + w21m21 + w31m31

w12m12 + w22m22 + w32m32

=
p1
p2

Now substituting wages and labor demands and rearranging it, we have:
(
mθ

21x2 + kθ1xk
) γ2−θ

θ mθ
21x2−

−A2

A1

p1
p2

(
mθ

22x2 + kθ2xk
) γ2−θ

θ mθ
22x2

 =

(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M3

1+
[
A2
A1

(
p1
p2

)α] 1
γ3−1

)γ3

x3

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ3
γ3−1

]


(35)
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Then, from the ratio of (m21) and (m22), we have:

(
mθ

22x2 + kθ2xk
) γ2−θ

θ =

(
p2
p1

)α (
mθ

21x2 + kθ1xk
) γ2−θ

θ ×
(
m21

m22

)θ−1
×
(
A1

A2

)
(36)

Substituting (63) into (62) and rearranging, we have:{ [
1−

(
p1
p2

)1−α
M2−m21

m21

] (
mθ

21x2 + kθ1xk
) γ2−θ

θ mθ
21x2

}
=

(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M3

1+
[
A2
A1

(
p1
p2

)α] 1
γ3−1

)γ3

x3

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ3
γ3−1

]


(37)

But then, from equation (56), we have that:

mθ
21x2 =

(
r

A1γ2xk

) θ
γ2−θ

k
θ(1−θ)
γ2−θ

1 − kθ1xk (38)

Similarly, from (k1), we have:

(
mθ

21x2 + kθ1xk
) γ2−θ

θ =

(
r

A1γ2xk

)
k1−θ1 (39)

Then, from (65) and (66), we have:

(
mθ

21x2 + kθ1xk
) γ2−θ

θ mθ
21x2 =

(
r

A1γ2xk

) γ2
γ2−θ

k
γ2(1−θ)
γ2−θ

1 − r

A1γ2
k1 (40)

Substituting equation (60) into (55) and manipulating, we have:

M2 −m21

m21

=

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(41)
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Consequently:

[
1−

(
p1
p2

)1−α
M2 −m21

m21

]
=


(

1 +
(
p1
p2

)1−α)
k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M2x

1
θ
2


k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(42)

Then, from equations (67) and (69), we have that:[
1−

(
p1
p2

)1−α
M2−m21

m21

] (
mθ

21x2 + kθ1xk
) γ2−θ

θ mθ
21x2 =

(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M2x

1
θ
2


k1

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

×
{(

r
A1γ2xk

) γ2
γ2−θ k

γ2(1−θ)
γ2−θ

1 − r
A1γ2

k1

}

(43)

Notice that the LHS of equation (70) is the same of the one of equation (64). Substituting

it back, we have:



(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M2x

1
θ
2


k1

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

×
{(

r
A1γ2xk

) γ2
γ2−θ k

γ2(1−θ)
γ2−θ

1 − r
A1γ2

k1

}
=



(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M3

1+
[
A2
A1

(
p1
p2

)α] 1
γ3−1

)γ3

x3

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ3
γ3−1

]


(44)

Finally, notice that equations (71) and (61) generate a system with two equations and two
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unknowns (k1 and p1
p2

):





(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M2x

1
θ
2


k1

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

×
{(

r
A1γ2xk

) γ2
γ2−θ k

γ2(1−θ)
γ2−θ

1 − r
A1γ2

k1

}
=



(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M3

1+
[
A2
A1

(
p1
p2

)α] 1
γ3−1

)γ3

x3

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ3
γ3−1

]


(F.1)


M2x

1
θ
2 −

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

k1

(
p1
p2

) α
1−θ

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ



θ(1−γ2)
γ2−θ

=

=
(
A2

A1

) θ
γ2−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ2)
γ2−θ

1 +
(

r
A2γ2xk

) θ
θ−γ2

[
1−

(
p1
p2

) αθ
1−θ
]
xk

(F.2)

Preliminary Results

In this subsection, we present some preliminary results that will help us to show the main results

presented in the paper.

Lemma A.1: The distribution of skills across cities is identical if and only if mi1
mi2

= constant,∀i ∈
{1, 2, 3}.
Proof: (⇒) Consider that the distribution across cities is constant, then pdfi1 = pdfi2,∀i ∈
{1, 2, 3}, i.e.:

mi1

m11 +m21 +m31

=
mi2

m12 +m22 +m32

(45)

But that means that mi1
mi2

= η = S1

S2
= m11+m21+m31

m12+m22+m32
. The other direction is trivial. �

Lemma A.2: Assume γ2 < θ. p1 = p2 if and only if A1 = A2.

Proof: Towards a contradiction, let’s assume that A1 = A2 and p1 > p2. From the RHS of
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(F.1), we have: 

(
M1

1+
[(

p1
p2

)α] 1
γ1−1

)γ1

x1

[
p1
p2
−
(
p1
p2

) γ1α
γ1−1

]
+

(
M3

1+
[(

p1
p2

)α] 1
γ3−1

)γ3

x3

[
p1
p2
−
(
p1
p2

) γ3α
γ3−1

]
 > 0

Since p1 > p2, γ1 < 1, and γ3 < 1. Therefore, the LHS of (F.1) must also be positive in order

for the equality to be satisfied. Then, from equation (67), we have:

(
mθ

21x2 + kθ1xk
) γ2−θ

θ mθ
21x2 =

(
r

A1γ2xk

) γ2
γ2−θ

k
γ2(1−θ)
γ2−θ

1 − r

A1γ2
k1

So the second term on the LHS of (F.1) must be positive. Moreover, from (66), we have that:

k1

[(
r

A1γ2xk

) θ
γ2−θ

k
θ(1−γ2)
γ2−θ

1 − xk

] 1
θ

= m21x
1
θ
2 > 0

Consequently, in order to satisfy (F.1), we must have:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

< k1

(
p1
p2

)α−1

Dividing both sides by
(
p1
p2

) α
1−θ

, we have:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

< k1

(
p2
p1

)(1+ αθ
1−θ )

(46)

Now, from (F.2), we have that, due to p1 > p2 and γ2 < θ:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

>

(
p2
p1

) αθ
1−θ×

θ−γ2
θ(1−γ2)

k1 (47)

39



Then, notice that:

1 +
αθ

1− θ
− αθ

1− θ
× θ − γ2
θ(1− γ2)

= 1 +
αθ

1− θ

[
1− θ − γ2

θ(1− γ2)

]
= 1 +

αθ

1− θ

[
γ2(1− θ)
θ(1− γ2)

]
> 0 (48)

Therefore the exponent at p2
p1

is higher at the RHS of (46). Since p2
p1
∈ (0, 1), we have that:

k1

(
p2
p1

)(1+ αθ
1−θ )

<

(
p2
p1

) αθ
1−θ×

θ−γ2
θ(1−γ2)

k1

consequently, equations (46) and (47) give us a contradiction.

Now, again towards a contradiction, let’s assume p2 > p1. In this case, from the RHS of

(F.1), we have: 

(
M1

1+
[(

p1
p2

)α] 1
γ1−1

)γ1

x1

[
p1
p2
−
(
p1
p2

) γ1α
γ1−1

]
+

(
M3

1+
[(

p1
p2

)α] 1
γ3−1

)γ3

x3

[
p1
p2
−
(
p1
p2

) γ3α
γ3−1

]
 < 0

Since p1 < p2, γ1 < 1, and γ3 < 1. Therefore, the LHS of (F.1) must also be negative. Since

we already showed that the second term in the LHS and the denominator of the first term in

the LHS must be positive, this requirement of a negative LHS implies, after dividing both sides

by
(
p1
p2

) α
1−θ

:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

> k1

(
p2
p1

)(1+ αθ
1−θ )

(49)

Then, from (F.2), since p1 < p2, the last term on the RHS is positive. Consequently, once

γ2 < θ, we have:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

<

(
p2
p1

) αθ
1−θ×

θ−γ2
θ(1−γ2)

k1 (50)

Since:

1 +
αθ

1− θ
− αθ

1− θ
× θ − γ2
θ(1− γ2)

= 1 +
αθ

1− θ

[
1− θ − γ2

θ(1− γ2)

]
= 1 +

αθ

1− θ

[
γ2(1− θ)
θ(1− γ2)

]
> 0
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and p2 > p1, we have that:

k1

(
p2
p1

)(1+ αθ
1−θ )

>

(
p2
p1

) αθ
1−θ×

θ−γ2
θ(1−γ2)

k1

Consequently, equations (49) and (50) give us a contradiction. Therefore, we have that p1 =

p2 ⇔ A1 = A2. �

A.2 SBTC

The final steps to close the model involve simplifying the model such that we have a system with

only two equations and two unknowns (k1 and p1
p2

. Based on the calculations presented in the

paper for k2, k1 and their respective FOCs, we obtain:

Fj(m1j,m2j,m3j, kj) = Aj

[
mγ1

1jx1 +
(
mθ

3jx3 + kθjxk
) γ3
θ +mγ2

2jx2

]
(51)

FOCs:
(m1j) : Ajγ1m

γ1−1
1j x1 = w1j

(m2j) : Ajγ2m
γ2−1
2j x2 = w2j

(m3j) : Ajγ3
(
mθ

3jx3 + kθjxk
) γ3
θ
−1
mθ−1

3j x3 = w3j

(kj) : Ajγ3
(
mθ

3jx3 + kθjxk
) γ3
θ
−1
kθ−1j xk = r

Since from utility equalization, we have:

wij
wij′

=

(
pj
pj′

)α
, ∀i ∈ {1, 2, 3} and ∀j ∈ {1, 2} (52)

From (m11), (m12), and feasibility condition for skill 1, we have:

m11 =

[
A2

A1

(
p1
p2

)α] 1
γ1−1

M1

1 +
[
A2

A1

(
p1
p2

)α] 1
γ1−1

(53)

Similarly, for skill 2:

m21 =

[
A2

A1

(
p1
p2

)α] 1
γ2−1

M2

1 +
[
A2

A1

(
p1
p2

)α] 1
γ2−1

(54)

From (m31), (k1), (m32), (k2), labor market clearing, and the utility equalization condition,
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we have: (
m31

m32

)
=

(
p1
p2

) α
θ−1 k1

k2
(55)

Now let’s go back to the expression for (k1). Manipulating it, we have that:

m31 =

{
1

x3

[(
r

A1γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

1 − xk

]} 1
θ

k1 (56)

Similarly, for (k2), we have:

m32 =

{
1

x3

[(
r

A2γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

2 − xk

]} 1
θ

k2 (57)

Dividing (56) by (57)and substituting (55), we have:

(
p1
p2

) αθ
θ−1

=


[(

r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
]

[(
r

A2γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

2 − xk
]
 (58)

Manipulating and simplifying it, we have:

k
θ(1−γ3)
γ3−θ

2 =

(
A2

A1

) θ
γ3−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ3)
γ3−θ

1 +

(
r

A2γ3xk

) θ
θ−γ3

[
1−

(
p1
p2

) αθ
1−θ
]
xk

Now, we also can use the fact that m31 +m32 = M3. Then, we have that:

M3x
1
θ
3 =

[(
r

A1γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

1 − xk

] 1
θ

k1 +

[(
r

A2γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

2 − xk

] 1
θ

k2 (59)

Substituting (58) and manipulating, we have:

k2 =

M3x
1
θ
3 −

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

k1(
p1
p2

) α
1−θ
[(

r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

(60)
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Substituting (60) into (59) and manipulating, we have:


M3x

1
θ
3 −

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ

k1

(
p1
p2

) α
1−θ

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ



θ(1−γ3)
γ3−θ

=

=
(
A2

A1

) θ
γ3−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ3)
γ3−θ

1 +
(

r
A2γ3xk

) θ
θ−γ3

[
1−

(
p1
p2

) αθ
1−θ
]
xk

(61)

which implicitly pins down k1 as a function of p1
p2

.

Finally, in order to pin down the equilibrium, we need to work with the housing market

equilibrium conditions. Looking at the ratio of the housing market clearing conditions, we have:

w11m11 + w21m21 + w31m31

w12m12 + w22m22 + w32m32

=
p1
p2

Now substituting wages and labor demands and rearranging it, we have:
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3−

−A2

A1

p1
p2

(
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3

 =

(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M2

1+
[
A2
A1

(
p1
p2

)α] 1
γ2−1

)γ2

x2

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ2
γ2−1

]


(62)

Then, from the ratio of (m31) and (m32), we have:

(
mθ

32x3 + kθ2xk
) γ3−θ

θ =

(
p2
p1

)α (
mθ

31x3 + kθ1xk
) γ3−θ

θ ×
(
m31

m32

)θ−1
×
(
A1

A2

)
(63)

Substituting (63) into (62) and rearranging, we have:{ [
1−

(
p1
p2

)1−α
M3−m31

m31

] (
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3

}
=

(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M2

1+
[
A2
A1

(
p1
p2

)α] 1
γ2−1

)γ2

x2

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ2
γ2−1

]


(64)
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But then, from equation (56), we have that:

mθ
31x3 =

(
r

A1γ3xk

) θ
γ3−θ

k
θ(1−θ)
γ3−θ

1 − kθ1xk (65)

Similarly, from (k1), we have:

(
mθ

31x3 + kθ1xk
) γ3−θ

θ =

(
r

A1γ3xk

)
k1−θ1 (66)

Then, from (65) and (66), we have:

(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3 =

(
r

A1γ3xk

) γ3
γ3−θ

k
γ3(1−θ)
γ3−θ

1 − r

A1γ3
k1 (67)

Substituting equation (60) into (55) and manipulating, we have:

M3 −m31

m31

=

M3x
1
θ
3 − k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

(68)

Consequently:

[
1−

(
p1
p2

)1−α
M3 −m31

m31

]
=


(

1 +
(
p1
p2

)1−α)
k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M3x

1
θ
3


k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

(69)

Then, from equations (67) and (69), we have that:[
1−

(
p1
p2

)1−α
M3−m31

m31

] (
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3 =

(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M3x

1
θ
3


k1

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ

×
{(

r
A1γ3xk

) γ3
γ3−θ k

γ3(1−θ)
γ3−θ

1 − r
A1γ3

k1

}

(70)

44



Notice that the LHS of equation (70) is the same of the one of equation (64). Substituting

it back, we have:



(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M3x

1
θ
3


k1

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ

×
{(

r
A1γ3xk

) γ3
γ3−θ k

γ3(1−θ)
γ3−θ

1 − r
A1γ3

k1

}
=



(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M2

1+
[
A2
A1

(
p1
p2

)α] 1
γ2−1

)γ2

x2

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ2
γ2−1

]


(71)

Finally, notice that equations (71) and (61) generate a system with two equations and two

unknowns (k1 and p1
p2

):





(
1 +

(
p1
p2

)1−α)
k1

[(
r

A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 − xk
] 1
θ

−
(
p1
p2

)1−α
M3x

1
θ
3


k1

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ

×
{(

r
A1γ3xk

) γ3
γ3−θ k

γ3(1−θ)
γ3−θ

1 − r
A1γ3

k1

}
=



(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ1
γ1−1

]
+

(
M2

1+
[
A2
A1

(
p1
p2

)α] 1
γ2−1

)γ2

x2

[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γ2
γ2−1

]


(F.1)


M3x

1
θ
3 −

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ

k1

(
p1
p2

) α
1−θ

( r
A1γ3xk

) θ
γ3−θ k

θ(1−γ3)
γ3−θ

1 −xk

 1
θ



θ(1−γ3)
γ3−θ

=

=
(
A2

A1

) θ
γ3−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ3)
γ3−θ

1 +
(

r
A2γ3xk

) θ
θ−γ3

[
1−

(
p1
p2

) αθ
1−θ
]
xk

(F.2)

Preliminary Results

In this subsection, we present some preliminary results that will help us to show the main results

presented in the paper.

45



Lemma A.3: The distribution of skills across cities is identical if and only if mi1
mi2

= constant,∀i ∈
{1, 2, 3}.
Proof: (⇒) Consider that the distribution across cities is constant, then pdfi1 = pdfi2,∀i ∈
{1, 2, 3}, i.e.:

mi1

m11 +m21 +m31

=
mi2

m12 +m22 +m32

(72)

But that means that mi1
mi2

= η = S1

S2
= m11+m21+m31

m12+m22+m32
. The other direction is trivial. �

Lemma A.4: Assume γ3 > θ. p1 = p2 if and only if A1 = A2.

Proof: Towards a contradiction, let’s assume that A1 = A2 and p1 > p2. Consequently,(
p1
p2

) αθ
θ−1

< 1. From (58), we have k1 < k2. But then, from equation (55), we obtain m31 < m32.

Finally, from the RHS of (62), we have:

(
M1

1+
[(

p1
p2

)α] 1
γ1−1

)γ1

x1

[
p1
p2
−
(
p1
p2

) γ1α
γ1−1

]
+

(
M2

1+
[(

p1
p2

)α] 1
γ2−1

)γ2

x2

[
p1
p2
−
(
p1
p2

) γ2α
γ2−1

]
 > 0

Since p1 > p2, γ1 < 1, and γ2 < 1. However, given the results we obtained from (58) and (55),

the LHS of (62) gives us: 
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3−

−A2

A1

p1
p2

(
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3

 < 0

which is a contradiction.

Similarly, again towards a contradiction, let’s consider A1 = A2 and p1 < p2. Then
(
p1
p2

) αθ
θ−1

>

1. Again from (58), we have k1 > k2. Similarly, from (55), we obtain m31 > m32. But then,

from (62), we have that:

(
M1

1+
[(

p1
p2

)α] 1
γ1−1

)γ1

x1

[
p1
p2
−
(
p1
p2

) γ1α
γ1−1

]
+

(
M2

1+
[(

p1
p2

)α] 1
γ2−1

)γ2

x2

[
p1
p2
−
(
p1
p2

) γ2α
γ2−1

]
 < 0
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given p1 < p2. Then RHS(62) < 0. While
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3−

−A2

A1

p1
p2

(
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3

 > 0.

which again gives you a contradiction. Therefore, we have that p1 = p2. Consequently, we have

that A1 = A2 ⇒ p1 = p2.

Now, let’s show that p1 = p2 ⇒ A1 = A2. Assume p1 = p2. Then, from (55), we have:

m31

m32

=
k1
k2

(73)

From (58) , we have

k1
k2

=

(
A1

A2

) 1
1−γ3

(74)

Combining (73) and (74), we have:

m31

m32

=

(
A1

A2

) 1
1−γ3

(75)

But then, from LHS(62), substituting (73) and (75) given p1 = p2, we have:
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3−

−A2

A1

p1
p2

(
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3

 =

[(
A1

A2

) γ3
1−γ3
− A2

A1

] (
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3 (76)

while the RHS(62) gives us:

(
M1

1+
(
A1
A2

) 1
1−γ1

)γ1

x1

[
A2

A1
−
(
A1

A2

) γ1
1−γ1

]
+

(
M2

1+
(
A1
A2

) 1
1−γ2

)γ2

x2

[
A2

A1
−
(
A1

A2

) γ2
1−γ2

]
 (77)

Then, consider the case in which A1 > A2. From (76), we have that LHS(62)> 0, while (77)

gives us RHS(62)< 0. Similarly, if A1 < A2, (76) gives us LHS(62)< 0 while (77) gives us

RHS(62)> 0. Consequently, (62) is only satisfied if A1 = A2, concluding our proof.�
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B Proofs

Proof of Proposition 1

Proof. Towards a contradiction, assume that A2 > A1 and p1 > p2. Then, the RHS of (F.1) is

positive. Consequently, in order to satisfy (F.1), (F.1)’s LHS must also be positive. Following

the same argument presented in the proof of Lemma A.2, we have that inequality (46) must

hold. Then, from (F.2) we have that, given that p1 > p2, the last term in (F.2)’s RHS –(
r

A2γ2xk

) θ
θ−γ2

[
1−

(
p1
p2

) αθ
1−θ
]
xk – is negative. We also know that since A2 > A1 and γ2 < θ,(

A2

A1

) θ
γ2−θ < 1. Therefore, (F.2) gives us:

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

>

(
p2
p1

) αθ
1−θ×

θ−γ2
θ(1−γ2)

k1 (78)

Given (48) we have that, once p2
p1
∈ (0, 1):

k1

(
p2
p1

)(1+ αθ
1−θ )

<

(
p2
p1

) αθ
1−θ×

θ−γ
θ(1−γ)

k1

Consequently, (46) and (78) give us a contradiction. Following the same procedure we can

easily show that A1 > A2 and p2 > p1 give us the same contradiction. Since lemma A.3 shows

that price equality is only achieved through TFP equality, this concludes our proof.

Proof of Proposition 2

Proof. Without loss of generality, assume A1 > A2, Then, based on proposition 2, we have that

p1 > p2. Then, from equation (58), we have:

(
p1
p2

) αθ
θ−1

=


(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk(
r

A2γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

2 − xk

 (79)
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Then, since θ < 1, we have
(
p1
p2

) αθ
θ−1

< 1. Consequently:


(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk(
r

A2γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

2 − xk

 < 1 (80)

Rearranging it: (
k1
k2

) θ(1−γ2)
γ2−θ

<

(
A1

A2

) θ
γ2−θ

(81)

Since γ2 < θ, this implies that
(
k1
k2

) θ(1−γ2)
θ−γ2 >

(
A1

A2

) θ
θ−γ2 . Since A1 > A2, we must have that

k1
k2
> A1

A2
⇒ k1 > k2.

Before we prove Theorem 1, let’s prove some preliminary results that will be important for

the theorems’ proofs.

Lemma 1 If A1 > A2 we must have that
(
p2
p1

)α
A1

A2
> 1.

Proof. From proposition 1 we have that A1 > A2 ⇒ p1 > p2. Now, let’s focus on (F.1)’s RHS.

This term is positive or negative depending on the following term:

A2

A1

p1
p2
−
[(

p2
p1

)α
A1

A2

] γi
1−γi

, ∀i ∈ {1, 3} (82)

Now, towards a contradiction, let’s assume that A1 > A2 and
(
p2
p1

)α
A1

A2
< 1. Consequently,

the second term in expression (82) is less than one. Similarly,
(
p2
p1

)α
A1

A2
< 1 ⇒ A2

A1

(
p1
p2

)α
> 1.

Since α < 1 and p1
p2
> 1, this gives us that

A2

A1

p1
p2
−
[(

p2
p1

)α
A1

A2

] γi
1−γi

> 0, ∀i ∈ {1, 3}

and the (F.1)’s RHS is positive. Then, (F.1)’s LHS must also be positive. Following the same

argument presented in the proof of lemma A.2, we have that inequality (46) must hold.

Similarly, from p1 > p2, we have that the last term on (F.2)’s RHS is negative. Therefore,
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since γ2 < θ, we have:
M2x

1
θ
2 −

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1(
p1
p2

) α
1−θ
[(

r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

 >

(
A2

A1

) 1
1−γ2

(
p1
p2

) α
1−θ×

γ2−θ
(1−γ2)

k1 (83)

Then, we have that:

RHS(46)

RHS(83)
=

(
p2
p1

)1+ αθ
1−θ

[
1− γ2−θ

θ(1−γ2)

](
A1

A2

) 1
1−γ2

(84)

Notice that 1− γ2−θ
θ(1−γ2) = γ2(1−θ)

θ(1−γ2) . Consequently:

RHS(46)

RHS(83)
=

(
p2
p1

)1+
γ2α

(1−γ2)
(
A1

A2

) 1
1−γ2

=

{(
p2
p1

)1−γ2(1−α) A1

A2

} 1
1−γ2

(85)

But then, notice that 1− γ2(1−α)−α = (1−α)(1− γ2) > 0. Therefore, 1− γ2(1−α) > α.

Since p2 < p1, we have that: (
p2
p1

)1−γ2(1−α) A1

A2

<

(
p2
p1

)α
A1

A2

< 1 (86)

where the last inequality comes from our assumption for the contradiction. Then, since 1
1−γ2 > 0,

we have RHS(46)

RHS(83)
< 1. But then inequalities (46) and (83) cannot both be satisfied and we have

a contradiction.

Corollary 2 If A1 > A2 we must have m11 > m12 and m31 > m32.

Proof. From the expression for m11, we have:

m11 =

[(
p1
p2

)α
A2

A1

] 1
γ1−1

M1{
1 +

[(
p1
p2

)α
A2

A1

] 1
γ1−1

} =

[(
p2
p1

)α
A1

A2

] 1
1−γ1 M1{

1 +
[(

p2
p1

)α
A1

A2

] 1
1−γ1

} (87)

Since from lemma 1 we have
(
p2
p1

)α
A1

A2
> 1, we must have that

[(
p2
p1

)α A1
A2

] 1
1−γ1 M1{

1+
[(

p2
p1

)α A1
A2

] 1
1−γ1

} > M1

2
.

Consequently m11 > m12. The identical argument shows that m31 > m32.
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Proof of Theorem 1

Proof. We already know that m11 > m12 and m31 > m32. So, the only way in which we may

have S2 > S1 is that m22 > m21. Therefore, towards a contradiction, assume that m22 > m21.

From (68):

M2x
1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

> k1 (88)

Then, back to (F.2), we have:


M2x

1
θ
2 −

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ

k1

(
p1
p2

) α
1−θ

( r
A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 −xk

 1
θ



θ(1−γ2)
γ2−θ

=

=
(
A2

A1

) θ
γ2−θ

(
p1
p2

) αθ
1−θ

k
θ(1−γ2)
γ2−θ

1 +
(

r
A2γ2xk

) θ
θ−γ2

[
1−

(
p1
p2

) αθ
1−θ
]
xk

(89)

Since A1 > A2 we know from previous results that p1 > p2. Consequently, the last term in

(F.2)’s RHS is negative and we have:


M2x

1
θ
2 −

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ



θ(1−γ2)
γ2−θ

>

(
A2

A1

) θ
γ2−θ

(
p1
p2

) αθ
1−θ×

[
1+

1−γ2
γ2−θ

]
k
θ(1−γ2)
γ2−θ

1

(90)

Now, from (88) we have that, since γ2 < θ:


M2x

1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ



θ(1−γ2)
γ2−θ

< k
θ(1−γ2)
γ2−θ

1 (91)

51



Now, substituting (91) into (90), we have:

k
θ(1−γ2)
γ2−θ

1 >


M2x

1
θ
2 − k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ



θ(1−γ2)
γ2−θ

>

[(
p2
p1

)α
A1

A2

] θ
θ−γ2

k
θ(1−γ2)
γ2−θ

1 (92)

From lemma 2 and the fact that θ > γ2, we have that
[(

p2
p1

)α
A1

A2

] θ
θ−γ2 > 1. Consequently, we

found a contradiction. Therefore, we must have m21 > m22 and S1 > S2.

Before presenting the proof for theorem 2, let’s consider a final intermediary result:

Claim 1 Assume γ2 < θ. If A1 > A2 we must have m21

m22
<
[(

p2
p1

)α
A1

A2

] 1
1−γ2

Proof. From lemma 1, we have that if A1 > A2 we must have
(
p2
p1

)α
A1

A2
> 1. Then, from (F.2),

since p1 > p2, we must have:


M2x

1
θ
2 −

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ

k1

k1

[(
r

A1γ2xk

) θ
γ2−θ k

θ(1−γ2)
γ2−θ

1 − xk
] 1
θ



θ(1−γ2)
γ2−θ

<

{
A2

A1

(
p1
p2

)α} θ
γ2−θ

From (68) and γ2 < θ, we have m21

m22
<
[(

p2
p1

)α
A1

A2

] 1
1−γ2 , concluding the proof.

Proof of Theorem 2:

Proof. Assume that γi ≡ γ, ∀i ∈ {1, 2, 3} and γ < θ. Assume that A1 > A2 as well. From

theorem 1 and claim 1 we have S1 <
[(

p2
p1

)α
A1

A2

] 1
1−γ2 S2. Then, notice that pdf1i = m1i

Si
. Therefore

pdf11
pdf12

= m11

m12
× S2

S1
. Since m11

m12
=
[(

p2
p1

)α
A1

A2

] 1
1−γ

and S2

S1
> 1[(

p2
p1

)α A1
A2

] 1
1−γ

, we have that:

pdf11
pdf12

>

[(
p2
p1

)α
A1

A2

] 1
1−γ

× 1[(
p2
p1

)α
A1

A2

] 1
1−γ

(93)

Consequently pdf11 > pdf12. The same calculation gives us pdf31 > pdf32. Since density functions

must add to one, we must also have pdf21 < pdf22

Proof of Proposition 3
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Proof. Towards a contradiction, assume that A1 > A2 and p2 > p1. Then, from (58), after

some manipulations and using γ3 > θ, and p2
p1
> 1 we have:

(
r

A1γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

1 >

(
r

A2γ3xk

) θ
γ3−θ

k
θ(1−γ3)
γ3−θ

2

i.e.:
k1
k2

>

(
A1

A2

) 1
1−γ3

(94)

From equation (55), we have:

m31

m32

>
k1
k2
⇒ m31

m32

>

(
A1

A2

) 1
1−γ3

(95)

Then, from LHS(62), substituting (94) and (96), we have:
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3−

−A2
A1

p1
p2

(
mθ

32x3 + kθ2xk
) γ3−θ

θ mθ
32x3

 >

[(
A1

A2

) γ3
1−γ3
− A2

A1

(
p1
p2

)]
(mθ

32x3 + kθ2xk)
γ3−θ
θ mθ

32x3 > 0

(96)

While from RHS(62), we have that:[
A2

A1

p1
p2
−
[
A2

A1

(
p1
p2

)α] γi
γi−1

]
< 0,∀γi < 1

Consequently RHS(62)< 0, which gives us a contradiction. Since we showed in lemma A.2 that

p1 = p2 only happens if A1 = A2, we must have that A1 > A2 ⇒ p1 > p2. Following the same

procedure we can easily show that A2 > A1 ⇒ p2 > p1.

Proof of Proposition 4

Proof. Without loss of generality, assume that A1 > A2. From proposition 3 we have that

A1 > A2⇒ p1 > p2. From (60) and (F.2), given that p1 > p2, we have – after some manipulations:

k1
k2

>

(
A1

A2

) 1
1−γ3

(
p2
p1

) α(γ3−θ)
(1−γ3)(1−θ)

While from (55), we have that:

m31

m32

>

(
p2
p1

) α
1−θ
(
A1

A2

) 1
1−γ3

(
p2
p1

) α(γ3−θ)
(1−γ3)(1−θ)
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Simplifying it:

m31

m32

>

[
A1

A2

(
p2
p1

)α] 1
1−γ3

(97)

Let’s consider two cases:

Case 1:
[
A1

A2

(
p2
p1

)α]
≥ 1 – In this case, equation (97) already implies that m31 ≥ m32. From

(55) and θ < 1, we have that:

k1
k2
≥
(
p1
p2

) α
1−θ

> 1 (98)

Consequently, k1 > k2, concluding this part of the proof.

Case 2:
[
A1

A2

(
p2
p1

)α]
< 1 – In this case, from RHS(62), we have that:



(
M1

1+
[
A2
A1

(
p1
p2

)α] 1
γ1−1

)γ1

x1

[
A2

A1

p1
p2
−
[
A1

A2

(
p2
p1

)α] γ1
1−γ1

]
+

(
M2

1+
[
A2
A1

(
p1
p2

)α] 1
γ2−1

)γ2

x2

[
A2

A1

p1
p2
−
[
A1

A2

(
p2
p1

)α] γ2
1−γ2

]


Given A1

A2

(
p2
p1

)α
< 1, notice that:

A1

A2

(
p2
p1

)α
< 1⇒ A2

A1

(
p1
p2

)α
> 1⇒ A2

A1

p1
p2
> 1

Consequently,

[
A2

A1

p1
p2
−
[
A1

A2

(
p2
p1

)α] γi
1−γi

]
> 0 for i ∈ {1, 2} and RHS(62)> 0.

But then, from (64), given that
(
mθ

31x3 + kθ1xk
) γ3−θ

θ mθ
31x3 > 0, we would need to have:

1−
(
p1
p2

)1−α
M3 −m31

m31

> 0

Rearranging it:
m31

m32

>

(
p1
p2

)1−α

> 1 (99)

From (99) and (55), we have:

(
p2
p1

) α
1−θ k1

k2
>

(
p1
p2

)1−α

⇒ k1
k2

>

(
p1
p2

)1+ αθ
1−θ

(100)

Consequently, (100) implies that k1 > k2, concluding our proof.
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Proof of Corollary 1

Proof. Proof of proposition 4 already showed this result for all cases but
[
A1

A2

(
p2
p1

)α]
= 1. In

this case, notice that:
A1

A2

(
p2
p1

)α
= 1⇒ A2

A1

(
p1
p2

)α
= 1

Since α < 1 and p1 > p2, we have that A2

A1

(
p1
p2

)
> 1. Again, we can show that the RHS(62)> 0.

Following the same steps presented in the proof of proposition 4, we can conclude that m3i > m3j.

Proof of Theorem 3

Proof. Towards a contradiction, assume that pdf31 ≤ pdf32. In this case, we must have:

m31

m11 +m21 +m31

≤ m32

m12 +m22 +m32

Rearranging and simplifying it, we obtain:

m31m12 −m32m11 +m31m22 −m32m21 ≤ 0 (101)

From equations (53) and (54) and labor market clearing conditions, we have:

m11 =

[
A1

A2

(
p1
p2

)α] 1
1−γ

m12 and m21 =

[
A1

A2

(
p1
p2

)α] 1
1−γ

m22 (102)

As a result, we have:

m31m12 −m32m11 = m32m12

{
m31

m32

−
[
A1

A2

(
p1
p2

)α] 1
1−γ
}
> 0 (103)

and

m31m22 −m32m21 = m32m22

{
m31

m32

−
[
A1

A2

(
p1
p2

)α] 1
1−γ
}
> 0 (104)

where the inequalities come from m31

m32
>
[
A1

A2

(
p1
p2

)α] 1
1−γ

as shown in equation (97). Consequently,

equations (101), (103), and (104) jointly show a contradiction. As a result, pdf31 > pdf32.

Similarly, towards a contradiction, consider that pdf21 ≥ pdf22. In this case, we must have:

m21

m11 +m21 +m31

≥ m22

m12 +m22 +m32
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Rearranging and simplifying it, we obtain:

m12m21 −m22m11 +m32m21 −m31m22 ≤ 0 (105)

From (102), after some manipulations, we have:

m12m21 −m22m11 = 0 (106)

and

m32m21 −m31m22 = m32m22

{[
A1

A2

(
p1
p2

)α] 1
1−γ

− m31

m32

}
< 0 (107)

where the inequalities come from m31

m32
>
[
A1

A2

(
p1
p2

)α] 1
1−γ

as shown in equation (97). Consequently,

equations (105), (106), and (107) jointly show a contradiction. As a result, pdf21 < pdf22.

Finally, towards a contradiction, assume that pdf11 ≥ pdf12. In this case, we must have:

m11

m11 +m21 +m31

≥ m12

m12 +m22 +m32

Rearranging and simplifying it, we obtain:

m11m22 −m12m21 +m32m11 −m31m12 ≤ 0 (108)

In equation (106), we already showed that m11m22 −m12m21 = 0. Then, from (102) and (97),

we have:

m32m11 −m31m12 = m32m12

{[
A1

A2

(
p1
p2

)α] 1
1−γ

− m31

m32

}
< 0 (109)

Consequently, equations (108), (106), and (109) jointly show a contradiction. As a result, pdf11 <

pdf12, concluding our proof that pdf1 F.O.S.D. pdf2.

C Empirical Evidence - City Size

C.1 Size

In the theory there is strong relationship between size and productivity of locations, which should

also lead to a similar house price productivity relationship. In this section we consider, whether

it holds that size has a similar relationship as house prices with automation technology adoption
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and the change in occupational shares.

Table 16: Entreprise Resource Planning Software

(1) (2) (3)
ERP 2015 ERP 2015 ERP 2015

log employment 0.0143∗∗∗ 0.0135∗∗∗

(0.00259) (0.00331)

routine cognitive share 1980 0.508∗∗∗ 0.106
(0.133) (0.166)

Observations 253 253 253
R2 0.261 0.082 0.264

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by its employment in 2015.

Table 17: Change in routine-cognitive share, 1980-2015

(1) (2) (3)
∆ rout-cog ∆ rout-cog ∆ rout-cog

log employment -0.00941∗∗∗ -0.00417
(0.00238) (0.00219)

routine cognitive share 1980 -0.831∗∗∗ -0.707∗∗∗

(0.0765) (0.0948)
Observations 253 253 253
R2 0.252 0.490 0.529

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each observation (an MSA) is weighted by its employment in 2015.

Qualitatively the relationship between rent and ERP adoption, as well as the change in the

routine-cognitive share is the same as with size.

D Skill Biased Technological Change and City Size - Nu-

merical Examples

Differently from the case of Automation, SBTC does not imply that the high-TFP city is

larger. In this section, we present two examples that illustrate that results can go either way.

57



D.1 High-TFP city is smaller (the “Boulder” case)

Consider the following parameter values:

Example 1: Parameters

x1 x2 x3 A1 A2 H xk r
0.3189 1 1.4733 19118 19000 62559000 1.333 635.58

γ1 γ2 γ3 θ α M1 M2 M3

0.8 0.8 0.82 0.5 0.24 15836150 66973717 40745094

In this case, we obtain the following equilibrium prices and quantities:

Example 1: Equilibrium outcomes

m1j m2j m3j Sj pj

City 1 7683472.87 32494687 21148855.3 61327015.1 496.69

City 2 8152677.13 34479030 19596238.7 62227945.9 460.71

w1j w2j w3j kj

City 1 204.68 481.03 5308.34 1207650344

City 2 201.02 472.42 5213.4 1020740138

As we can see, the high-TFP city, while paying higher wages, investing more in capital,

having higher housing prices, and having more high-skill workers, it is still smaller than the

low-TFP city. In particular, the high-TFP city has fewer low- and mid-skill workers than the

low TFP city. Finally, as expected, the skill distribution in the High-TFP city skill dominates

in first order the skill distribution in the Low-TFP city, as we see in figure 1.
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Figure 7: Skill Distribution: High vs. Low TFP cities - Example 1

D.1.1 High-TFP city is larger (the “NYC” case)

Consider the following parameter values:

Example 2: Parameters

x1 x2 x3 A1 A2 H xk r
0.3189 1 1.4733 21118 19000 62559000 1.333 635.58

γ1 γ2 γ3 θ α M1 M2 M3

0.8 0.8 0.82 0.5 0.24 15836150 66973717 40745094

In order to make a simple comparison, the parameters are the same of Example 1, apart from

a higher A1. In this case, we obtain the following equilibrium prices and quantities:

Example 2: Equilibrium outcomes

m1j m2j m3j Sj pj

City 1 7841477.23 33162913.76 24434572.45 65438963.44 663.10

City 2 7994672.77 33810803.24 16310521.55 58115997.56 420.08

w1j w2j w3j kj

City 1 225.17 529.19 6283.30 1954872597.36

City 2 201.81 474.28 5631.30 995018365.67

Notice that the high-TFP city is larger. However, we still have fewer low- and mid-skill work-
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ers. As before, all other results follow through, including the F.O.S.D. of the skill distribution

of the high-TFP city, as seen in figure 2.
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Figure 8: Skill Distribution: High vs. Low TFP cities - Example 2
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