Not Your Average Job: Measuring Farm Labor in Tanzania ${ }^{1}$

Vellore Arthi
University of Oxford
Joachim De Weerdt
Universities of Antwerp and Leuven

Kathleen Beegle
World Bank

Amparo Palacios-López
World Bank

Abstract

A good understanding of the constraints on agricultural growth in Africa relies on the accurate measurement of smallholder labor. Yet, serious weaknesses in these statistics persist. The extent of bias in smallholder labor data is examined by conducting a randomized survey experiment among farming households in rural Tanzania. Agricultural labor estimates obtained through weekly surveys are compared with the results of reporting in a single end-of-season recall survey. The findings show strong evidence of recall bias: people in traditional recall-style modules report working up to four times as many hours per person-plot relative to those reporting labor on a weekly basis. If hours are aggregated to the household level, however, this discrepancy disappears, a factor driven by the underreporting by recall households of people and plots active in agricultural work. The evidence suggests that these competing forms of recall bias are driven not only by failures in memory, but also by the mental burdens of reporting on highly variable agricultural work patterns to provide a typical estimate. All things equal, studies suffering from this bias would understate agricultural labor productivity.

JEL Codes: C8, O12, Q12
Keywords : Recall error, Measurement error, Farm labor, Agricultural productivity

[^0]
1. INTRODUCTION

Of the 1.4 billion people living in extreme poverty, the majority reside in rural areas and rely on agriculture as a source of income and livelihood (Olinto et al. 2013). In Sub-Saharan Africa, nearly 75 percent of the extreme poor reside in rural areas, and over 90 percent participate in agriculture. Smallholder agriculture is the predominant form of farm organization, with 33 million small farms holding less than two hectares and representing 80 percent of all farms in Africa (FAO 2009). On these farms, agricultural practices are typically labor intensive, and the majority of the labor is provided by household members.

Accordingly, the labor of household members in agriculture is a key asset for poor households, and its accurate measurement is essential to the development of sound policy. Despite the importance of the agricultural sector in reducing poverty and food insecurity (Chen and Ravallion 2007; Irz et al. 2001; Ligon and Sadoulet 2007), serious weaknesses in agricultural statistics persist. ${ }^{2}$ In this study, we examine one aspect, measures of family farm labor.

To assess the degree of recall bias in household farm labor, we conducted a survey experiment in Mara Region, Tanzania, over the long rainy season, January-June 2014. Smallholder farming households were randomly assigned to one of four survey designs: (a) households reporting agricultural labor in weekly face-to-face visits; (b) households reporting agricultural labor in weekly phone surveys; (c) households reporting agricultural labor in a single postharvest recall survey, the Tanzania National Panel Survey (NPS); and (d) households reporting agricultural labor in a shorter version of the Tanzania NPS postharvest recall survey. Household labor information collected in weekly visits-our resource-intensive golden standard-was then compared with data reported after the harvest. After establishing the magnitude of recall bias, we investigated the mechanisms by which it arose.

We found strong evidence of recall bias in the reporting of family farm labor, but, because of competing forms of recall bias in the reporting of hours of labor, the number of plots, and the number of active household members, the degree of distortion in reporting depended on the level of data aggregation. Labor data collected on a weekly basis, whether in person or by phone, are similar, albeit sometimes not statistically identical. Likewise, the labor data reported by recall in our two recall designs are also quite alike. However, there are striking and economically meaningful differences between the weekly and recall data. Respondents in recall-style modules reported they worked up to nearly four times as many hours per person per plot, compared with respondents reporting labor on a weekly basis. If hours are aggregated to the household level, however, this discrepancy disappears. This is driven by two factors: underreporting by recall households of the number of both working household members and the plots under cultivation. Evidence suggests that these competing forms of recall bias are driven not only by failures in memory, but also by the mental burdens of computing data on a typical situation if agricultural work patterns are highly variable during the season.

[^1]Our results have important implications for development policy and fill key gaps in the literature concerning survey methods and the quality of agricultural labor data. Ours is one of the few studies to test the accuracy of agricultural labor data in developing-country settings. While labor data have been an essential ingredient in a broad range of important studies on smallholder agriculture in developing countries, scant attention has been paid thus far to the quality and robustness of the underlying data on family farm labor. ${ }^{3}$ By showing evidence that agricultural labor inputs may be substantially overestimated because of recall bias, we challenge the reliability of the traditional end-of-season labor estimates commonly used in development economics.

These findings also contribute to academic and policy debates concerning the agricultural productivity gap and the degree to which rural labor may be misallocated in developing economies. Several studies have been engaged in this debate. Gollin, Lagakos, and Waugh (2014) and McCullough (2015), question the accuracy of current labor measures and reconsider the agricultural productivity gap after adjusting for labor data quality. By conducting comparisons at the per hour level (McCullough 2015) and by adjusting for sectoral differences in hours worked as well as for levels of human capital (Gollin, Lagakos, and Waugh 2014), both studies find that the difference in the productivity between the agricultural and nonfarming sectors is narrower than usually thought. Our study suggests that when surveying irregular labor through recall an upward of hours worked on the farm may result, which would further explain part of the productivity gap.

Although our results call into question the accuracy of current farm labor data, they also propose specific ways to improve the accuracy of labor measurement. The consistency of the labor reported across face-to-face and phone surveys suggests that season-long phone surveys are an option for reducing error in the measurement of rural agricultural labor.

The rest of the paper proceeds as follows. In section 2, we offer background on labor measurement. In section 3, we provide an overview of the empirical approach, including details on the survey experiment. In section 4 , we present the results of our experiment on the reporting of labor inputs in family farming and outline the sources of bias in recall data. Section 5 concludes.

2. MEASURING LABOR

2.1. Current practice

The wealth of evidence on the quality and reliability of labor statistics in household surveys comes largely from the United States (for a thorough review, see Bound, Brown, and Mathiowetz 2001). In developing and agriculturally driven countries, for contrast, little is known about the extent to which the design of surveys influences labor statistics. Clearly, it is difficult to extrapolate from studies conducted in the United States to the African context. Moreover, the existing literature on data quality and survey methods in low-income settings rarely pertains to farm labor (see Bardasi

[^2]et al. 2011). It has been noted that International Labour Organization recommendations for measuring labor are likely to be inadequate in settings such as rural Tanzania, where the majority of labor is found in the informal self-employed and farm sectors (World Bank 2014).

A review of existing surveys that collect labor data in Africa shows that, in practice, the capture of labor market statistics in household surveys varies widely. The recall period, the sequencing of questions, the use of screening questions, the seasonal timing, the granularity of reporting requested, the unit over which labor is reported, and the choice of respondent can vary across surveys within and across countries. Inconsistencies in data collection methods hamper comparisons over time and space if survey methods differ, as has been shown in the context of the measurement of welfare, poverty, and hunger (Backiny-Yetna, Steele, and Djima 2014; Beegle et al. 2012, 2016; De Weerdt et al. 2016) and labor measurement (Bardasi et al. 2011).

National integrated or multitopic household surveys in Africa generally collect data on agricultural labor in two ways. ${ }^{4}$ In one approach, general labor information, including agricultural labor, is collected in a labor module. In another, specific agricultural labor data are collected in an agriculture module, such as in the Living Standards Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA). In the former case, information on labor involving each household member above some specified age is collected in reference to the last seven days or, perhaps, the last 12 months (Anderson Schaffner 2000). The person's labor input is not differentiated by plot, by crop, or by farm activity (such as weeding, harvesting, and so on). Instead, in the agricultural module outlined by Reardon and Glewwe (2000), the total days of labor at the household level over the last completed season are collected for each plot and by specific activity. An expanded agricultural module would have the same questions for each household member (as in the LSMSISA). ${ }^{5}$ A common feature in these surveys is that labor information is collected from a single interview.

Though it is considered an improvement over surveys with more general labor force questions, the expanded LSMS-ISA agricultural module has several potential drawbacks. First, it is time-consuming to collect this detailed information. Second, the burden on respondents is substantial: respondents are asked to provide information that they may never have considered (for instance, about labor by activity for each plot). Third, there is potential for problems in recall and memory.

2.2. What complicates the measurement of smallholder farm labor?

Features of smallholder farming

[^3]The estimation of labor inputs on smallholder farms is complex and vulnerable to misreporting. ${ }^{6}$ Smallholder farms typically mostly employ family labor, and, so, there is no wage income on which to anchor recall. Written records are rarely kept, and the respondent must rely on recall to report on past events. To arrive at the total amount of labor allocated by a household to farming, the household must accurately report the plots under cultivation, the specific household members who worked on each plot, the activities performed, and the timing and duration of these activities. Farming is a seasonal activity, and work patterns are irregular during the season. Reporting on the typical or average amount of time spent farming requires, after the completion of the season, remembering distant events and performing complicated mental calculations. Alternatively, reporting hours worked in the last seven days at any single point during the agricultural season will not necessarily be indicative of total labor during the season if labor inputs vary greatly during the season.

Insights from cognitive psychology

The design of the survey instrument itself may also influence the quality of data on family farm labor. Considering common survey practices and the features of smallholder farm labor, alongside insights from the social and cognitive psychology literature, there is a particular need for caution in interpreting farm labor data taken from household surveys.

Perhaps the most important aspect in our context is the implications of the recall period. The effects can operate through faults in memory. Forgetting an event is considered more likely as time passes. Alternatively, telescoping, by which a respondent remembers a distant event as if it occurred more recently, can result in memory-driven distortions, particularly in longer recall periods (Sudman and Bradburn 1973). An example is a respondent who worked on the farm 35 days ago, but who reports that he worked on the farm in the past 30 days. Beegle, Carletto, and Himelein (2012) find little evidence that longer recall periods lead to less reliable reporting of hired farm labor in Kenya, Malawi, and Rwanda.

The length of the period of recall in survey responses may be important beyond the implications of memory processes. It can affect how a respondent interprets questions. Schwarz (2007) provides evidence that, in the context of longer recall periods, only salient events are reported. For instance, in a survey in which respondents are asked how many times they have been angry over a period of time, Schwarz finds that, if the recall period is one day, the respondent assumes that minor irritations should be counted. Extending the recall period to one year leads the respondent to believe that only serious incidents of anger should be reported. The study concludes that the shift in inferred pragmatic meaning makes it difficult to disentangle the effects of question interpretation and the effects of forgetting. Das, Hammer, and Sánchez-Páramo (2012) find a

[^4]similar pattern in the self-reporting of past health, whereby smaller illness events are ignored or forgotten as the recall period increases. They also find heterogeneity in these effects by income, driven by the normalization by the poor of what would otherwise - that is, for richer people-be salient illness events worthy of medical treatment. In our context, if asked to report on labor in the last week, a farmer may interpret the question differently compared with someone who is asked to report on several months' worth of labor at the end of the season. Our results suggest that even seemingly straightforward questions, such as how many plots the farmer has cultivated, or who has worked on them, are affected by the recall period.

Beyond the length of the recall period, there are aspects of the cognitive and communicative processes that affect survey responses. Menon (1993) shows that, for infrequent and salient events, respondents are likely to recall and count individual events because they are stored episodically and remain in memory for a longer time. In the absence of episodic event information that is easily retrieved, respondents will rely on other strategies. For regular events, such as "I visit my grandmother every Saturday," respondents are not likely to use the recall-andcount strategy, relying instead on the information they have stored about the event's periodicity. Such rate-based estimations may be adjusted by memories of nonoccurrence ("except when I'm on holiday") or more frequent occurrence ("also on her birthday if that doesn't fall on a Saturday"). Menon (1993) notes that counting the occurrence of events that are neither salient nor regular requires much more cognitive effort on the part of the respondent. Thus, where work is neither salient nor regular, as may be the case for the labor of smallholder farmers over an agricultural season, respondents are unable to use rate-based or recall-and-count strategies and, so, are likely to yield erroneous reports of labor.

In the absence of episodic or rate-based information, respondents may revert to their general assumptions about the state of the world in their search for answers to survey questions. These assumptions then form a benchmark that is used to infer previous behavior. Indeed, the spuriously high recall-surveyed labor we find in our study can stem from this sort of inference (see below). Schwarz and Oyserman (2001) cite evidence that retrospective estimates of income and of tobacco, marijuana, and alcohol consumption are unduly influenced by people's income and consumption habits at the time of the interview. Thus, they infer their previous behavior based on their current or recent behavior. Similarly, de Nicola and Giné (2014) show that survey responses on income from small-scale boat owners in coastal India rely more on inference and less on true recollection as the recall period increases. The authors show that, while this bias has little influence on the mean (because, in their case, fishermen base their inferences on average earnings), it does lead to an underestimation of income variability as the recall period increases. The information and assumptions held by respondents are also important if people report on the behavior of others, a common practice in the collection of labor data in household surveys (Bardasi et al. 2011; de Nicola and Giné 2014).

Respondents may also be suggestible and base their inferences on what they believe should have occurred. Ross and Conway (1986) allowed students to participate in a skills-training program that did not, in fact, influence their skills. After participating in the study, the students
quantified their pretraining skills at a lower level than the level at which they had originally assessed their skills prior to receiving the skills training. The authors argue that the students reconstructed their past, guided by their subjective theories over what the skills training ought to have done. If African farmers hold implicit theories about the link between, say, labor inputs and production, then the report on the one may influence the report on the other. For example, in an end-of-season recall survey, labor may be retrospectively overstated during good harvests and understated during bad harvests.

3. EXPERIMENTAL DESIGN AND CONTEXT

The goal of this study is to examine biases of the sort described above in agricultural labor data collected through household surveys. We focus on potential biases introduced by the length of the recall period and the frequency of reporting. We have conducted a large randomized survey experiment among smallholder farming households in rural Tanzania through which we have compared agricultural labor information collected in weekly surveys (our benchmark for the true labor estimates) with that collected in a single end-of-season survey. Understanding farm productivity at the lowest level entails studying inputs and yields on plots. From a broader perspective, questions of productivity in smallholder farming may require analysis of aggregated measures. We focus on both by examining plot-person labor reporting as well as aggregate household measures of family labor.

3.1. Experimental design

We have conducted a survey experiment among 854 farming households in 18 enumeration areas in the Mara Region of rural northern Tanzania. Labor input was measured for the 2014 masika (the main, long-rains season), running roughly from January to June 2014. Households were randomly assigned to one of four survey designs within each of the 18 enumeration areas. The differences in the four survey arms are the manner and frequency with which they are contacted. ${ }^{7}$

Two survey designs entailed weekly interviews throughout the entire masika season either in person or by phone. ${ }^{8}$ Face-to-face baseline survey was conducted in January 2014 and a face-to-face end line survey was fielded in July-September 2014.

The other two survey designs entailed one recall survey fielded at the end of the agricultural season in July-September 2014. This survey differs from the end line surveys received by the weekly households in that collected information on labor from January to June.

The four alternative survey designs are as follows:

- Weekly visit (benchmark): Weekly face-to-face surveys for the duration of the masika

 For weekly visit households, a baseline survey was conducted in January 2014, followed by weekly face-to-face surveys conducted by enumerators through the end of June 2014 and an end line survey (July-September 2014) to collect farm production information. For each plot,[^5]household members who had worked on the plot during the previous week were identified, and the hours for each day they worked on the plot during the previous week were reported. ${ }^{9}$

- Weekly phone: Weekly phone surveys for the duration of the masika ${ }^{10}$

For weekly phone households, a face-to-face baseline survey was conducted in January 2014 (during which households were provided with mobile phones to respond to subsequent surveys), followed by weekly phone surveys through the end of June 2014 and a face-to-face end line survey in July-September 2014 to collect farm production information. For each plot, household members who had worked on the plot during the previous week were identified, and the hours for each day they worked on the plot during the previous week were reported.

- Recall NPS: Face-to-face survey at the end of the masika, standard NPS module

For recall NPS households, a face-to-face end line survey was conducted after the harvest (July-September 2014), during which both labor and farm production information was collected. The agricultural labor module was identical to the respective module in the Tanzania NPS, waves 3 (2012/13) and 4 (2014/15). For each plot, the household members who worked the plot at any point during the season were identified, and the following information was reported: (a) total days spent on the plot over the season in each of four activities (land preparation and planting; weeding; ridging, fertilizer application, and other nonharvest activities; and harvesting) and (b) typical hours per day worked in each of these four activities.

- Recall alternative (ALT): Face-to-face survey at the end of the masika, alternate survey module
For recall ALT households, a face-to-face end line survey was conducted after the harvest (July-September 2014), during which both labor and farm production information was collected. For each plot, the household members who had worked on that plot at any point during the season were identified, and the following information was reported: (a) total weeks worked on the plot over the season (irrespective of activity), (b) approximate number of days per week worked, and (c) approximate number of hours worked per day.

Throughout this paper, we establish the magnitude of bias through comparisons with the weekly visit design. This is based on the premise that the data reported in the weekly visit design are likely to be the closest to the actual situation given that weekly visit and weekly phone respondents were probed for day-by-day responses that were specific to the plot and to the person. Accordingly, these interviews minimized the need for respondents to make any complicated calculations or inferences regarding seasonwide labor. While we cannot exclude the possibility that forgetting or telescoping still led to some bias, we assume that the short one-week period and

[^6]specificity reduces the influence of forgetting. Anchoring the reporting to the previous interview reduced the possibility of telescoping.

Table 1 presents descriptive statistics on household characteristics across the four survey designs, drawing on the end line survey (postharvest). For these set of traits, households are well balanced across the different survey designs.

To be sure that the differences across the four arms of the experiment are not plagued by confounding factors, we consider some identification concerns. First, households are randomized within villages to account for micro agroecological patterns affecting household labor (which we may not capture through data sources). This raises the possibility of intracluster contamination, whereby one person's response is influenced by another's design status. We opt for within-village randomization because we believe that such contamination is unlikely because villages are relatively large and diffuse.

Second, the weekly visits themselves could have caused differential labor (akin to Hawthorne effects). We cannot rule this out, but note two points. There was a general increase in hours as the season progresses (which might occur if respondents started work at a more intensive pace or overreported work as a result of frequent interviews), nor do we find a decline in hours over the season in the weekly interviews because of respondent fatigue. There was also little difference between the face-to-face and phone interviews, whereas one would expect Hawthorne effects to be stronger in in-person visits.

Third, we note that self-reporting rates were similar across survey designs. In the weekly visit group, interviewers were instructed to collect information directly from respondents, where possible, to avoid proxy reporting. Meanwhile, in the weekly phone interviews, one household member typically reported on his/herself as well as on other household members, although the possibility exists that people may have self-reported by turn. In both recall survey designs and consistent with current common practice, interviewers were instructed to ask the most knowledgeable person in the household to report on family farm labor. Despite differences in the instructions given to enumerators and in the feasibility of self-reporting by survey type, the degree of self-reporting achieved was, in fact, similar across the four survey designs of the study. The response rates among self-reporting respondents were as follows: weekly visit (35 percent), weekly phone (33 percent), recall NPS (27 percent), and recall ALT (28 percent).

Finally, attrition was minimal. Households that were surveyed weekly and that dropped out within the first five weeks following the baseline interview were replaced at random from the list of unassigned households. In the weekly visit group, 17 (7 percent) households surveyed in the baseline later dropped out of the study; these were replaced by 14 households, for a total of 212 weekly visit households reporting data for the main season. In the weekly phone group, 14 (6.2 percent) households dropped out, and 12 were added as replacements, for a total of 212 households reporting agricultural labor throughout the season. Replacements were made in this manner up to the sixth week of the weekly interviews. None of the recall survey households declined to participate.

3.2. Farming practices in Mara

Although its location on the edge of Lake Victoria enables a small fishing industry, Mara Region is primarily agricultural. The bulk of farming activity takes place over the main, long-rains season (the masika), which runs roughly from January to June. The two main crops cultivated in the villages in our study are maize and cassava. Maize has a fixed seasonal cycle of land preparation, planting, weeding, and harvesting, a cycle which is governed by the onset of the rains. ${ }^{11}$ By contrast, cassava has no specific cultivation cycle and is grown throughout the year. Cassava harvesting occurs throughout the year, depending on household food needs. Households frequently diversify cultivation, intercropping the two staples with beans, sweet potatoes, and sorghum.

Before comparing labor reporting by survey design, we use the benchmark weekly visit data to provide some context. Households have an average of 6.4 members and are typically composed of about one-third children under 10 , with membership $50 / 50$ by gender. The average household cultivates 4.6 plots of about 1 acre each. These plots tend not to be located adjacent to the household's dwelling, nor are they typically adjacent to each other. On average, households report their plots are located a 26 -minute walk from the primary residence. ${ }^{12}$

Most people aged 10 or above were engaged in household farm labor. Table 2 provides an overview of the activities of these household members in our sample according to the weekly visit data. Consistent with the agricultural character of the region, the most common activity was work on a household farm; 88 percent of people spent at least one day in this activity over the season. Paid work, whether agricultural or otherwise, was rare: only 16 percent of people engaged in any paid agricultural work for others, and 11 percent performed paid nonagricultural work. A large share of people spent at least some time collecting firewood and water. About a quarter spent at least one day in school, and slightly less than half were sick for at least one day over the season.

Table 2, column 2 shows the average number of days spent in a given activity, as reported through the weekly visits, conditional on the performance of any reported labor activity that week. While important, family farm labor was perhaps less frequent than might be expected: people spent an average of 1.88 days a week working on their household farms, conditional on the performance of any reported work that week. We show below that this does not necessarily imply a regular weekly work pattern. There is considerable irregularity and cyclicality in agricultural work. As suggested in a number of studies of farm labor in Sub-Saharan Africa (see the discussion in Arthi and Fenske 2016), we find that the agricultural workday typically lasts four or five hours. ${ }^{13}$ It is much shorter than the hours spent in nonagricultural and market activities (such as paid nonagricultural work, non-agricultural household business, fishing, livestock keeping, and schooling), conditional on the performance of such work.

[^7]The largest portion of each workday is devoted to household agriculture. Figure 1 gives an overview of the hours per day across activities as reported in the weekly visits. Figure 1a averages across all people ages 10 or above for all days, and figure 1 b excludes weekends and days the person was ill. Roughly a third of the total of 3.6 to 4.2 working hours, respectively, are devoted to agricultural activities. These data obscure important distributional differences, to which we return in later sections. Finally, figure 1c shows the allocation of time on days when at least some household farm activity was reported. On average, 5.8 hours were spent across all activities, of which 78 percent was spent on household farming. The remainder of the time was made up largely of collecting water, tending to livestock, and attending school.

4. RESULTS

4.1. Main results

Overreporting hours on the farm

To examine the implications of survey design on the reporting of household farm labor, we start from the lowest unit: the number of hours each household member spent on each household plot over the course of the entire season (henceforth, person-plot hours). ${ }^{14}$

Throughout the analysis presented here and unless otherwise specified, plots refer to plots on which any household member was reported to have worked at any point during the season. This measure of plots depends on the actual incidence of labor (rather than on the stated use of the plots) and so does not include plots held fallow, rented out, and so on, for which no household labor was reported. The analysis is restricted to household members ages 10 or older who reported they worked on any household plot during the season (a "person"). ${ }^{15}$ By this definition, then, any specific person-plot hours could total zero.

Panel A of table 3 reports the results at the person-plot level. Hours per day, exaggerated by roughly 11 percent, are more accurately reported in recall than are other aspects of time use such as hours, days, or weeks. ${ }^{16}$ By contrast, total weeks in recall are higher than in weekly visits by 128 percent, and total days are higher by 179-223 percent. The cumulative effect of the exaggerated days and weeks in the recall modules results in a striking divergence in the time spent

[^8]by people working on a given plot: while in the weekly visit group, the person-plot average of total season hours was 39.5, this number jumped to 121.3 and 146.3 in recall NPS and recall ALT, respectively. Total hours worked per person-plot are 3.0 and 3.7 times higher in the recall surveys than in our preferred benchmark, the weekly visit estimates. ${ }^{17}$ These results show considerable recall bias in seasonwide person-plot hours, driven primarily by error in the least granular time unit reported (days in the case of the recall NPS and weeks in the case of the recall ALT).

Aggregation of hours and the competing sources of recall bias

Does the stark difference in reported hours we find by person-plot persist at all levels? Aggregating from the labor at the person-plot level to that at the household level entails introducing data on both the number of household members working in agriculture and the number of household plots on which farming takes place. If both of these new components are recorded with the same accuracy in the recall data as in the weekly data, then the degree of overreporting in hours per person-plot (presented in table 3, panel A) and in hours aggregated by household will be roughly the same. Table 3, panels B-D show this aggregation, presenting statistics on the person level (that is, all labor performed by a given person on any plot; panel B), the plot level (that is, all labor performed on a given plot by any person; panel C), and the household level (panel D). The large difference between the weekly and recall surveys virtually disappears in aggregation.

This arises because of considerable underreporting by recall households of the number of plots cultivated and the number of people farming. Table 7 shows that an average of 1.5 (or roughly 33 percent) fewer household members report they worked in farming in the recall NPS and the recall ALT than in the weekly visit group. The number of plots in recall is underestimated by roughly 35 percent, or 1.6 plots. As was the case in hours, the number of people and plots reported as active in agricultural labor is essentially identical between the two weekly survey designs and between the two recall designs. In section 4.2, we investigate which people and which plots may be systematically underreported in recall surveys and why.

Returning to table 3, we can see that the significant difference in the number of active workers between recall-surveyed and weekly surveyed households plays out in an important way in aggregating labor at each stage. If hours are aggregated to either the person or the plot, the total season hours remain higher in recall than in the weekly surveys, but the gap in person-plot hours

[^9]shrinks. The number of recall ALT hours is 3.7 times higher than the number among the weekly visit group at the person-plot level, but is only 1.9 and 2.5 times higher at the person and plot levels, respectively.

In looking at total time from the household perspective (in hours, days, weeks), we see too few statistically significant or economically meaningful differences between the four survey designs. It appears that three wrongs make a right: the competing manifestations of recall bias (that is, the misreporting by recall households of days or weeks, plots, and workers) offset each other in average household labor. While the reliability of the labor data generated by recall surveys may be sufficient for household labor supply measures, it may be problematic for other applications, such as plot productivity analysis or the calculation of labor force participation in agriculture.

4.2. Irregularity in work patterns

The dramatic difference between the recall and weekly surveys in the number of hours worked, as well as in the people and plots active in agriculture, is clear, worrisome evidence that recall bias exists in both the intensive and extensive margins of end-of-season labor reporting. What drives these large and systematic gaps? In our context, the competing forms of recall bias, the overreporting of hours per person-plot, and the underreporting of the people and plots active in agriculture nearly cancel each other out in the aggregate. These manifestations of recall bias can be explained by the same phenomenon: the cognitive burdens of irregular work patterns. We discuss in turn the mechanisms by which irregularity drives each of these results.

The reporting of the amount of time worked

If forgetting were the chief mechanism by which recall bias becomes manifest in the person-plot labor data, one might expect weekly interviews to yield higher season-total estimates than end-ofseason interviews. As the direction of the bias runs counter to this explanation, forgetting does not drive our results. Instead, we propose that the hours discrepancy arises from reliance on flawed inferences in the recall interviews. Weekly data show that people do some agricultural work in an average 11 of the season's 26 weeks and on 46 of the season's roughly 182 days. Over such a long period, recall NPS and recall ALT respondents are unlikely to use recall-and-count strategies in reporting total days and total weeks, respectively. Thus, rather than attempting to count actual days and weeks worked, respondents may revert to shortcuts, such as inferring seasonwide work from, say, their average workload or their most recent, intense, or otherwise psychologically salient period of work. Such inference may drive the week (recall ALT) and day (recall NPS) estimates. For more granular time units, inference accomplishes this because of the design of the standard survey: for days (recall ALT) and hours (both recall modules), a memory-based recall-and-count strategy is precluded, since the question asks respondents to provide an approximate or typical number.

Whether inference results in an accurate approximation of the true number of hours worked may depend on the degree to which work takes place in regular, predictable, or uniform patterns. For the smallholders in our study, work schedules are both variable (that is, they are different from one week to another) and irregular (that is, there is no systematic or predictable pattern to the
variability in work across weeks). Table 3 shows that agricultural labor does not take place every day, nor does it even necessarily take place every week. However, these facts alone need not undermine the success of inference if there is a regular cycle or pattern to the work that respondents can use as a relatively accurate rule of thumb.

To uncover what, if any, labor patterns exist during the season, we examine the weekly data. ${ }^{18}$ First, we calculate the modal days spent farming during those weeks in which there was any farm work. In table 4, for each mode of days worked, we show the distribution of days worked. The distribution of workdays is essentially bimodal: many people generally work in agriculture once a week (24 percent), while another group works six times a week (29 percent). Even though farming is the predominant activity in the region, the farming workweek is short, and the majority of people farm little each week. ${ }^{19}$

There is also substantial deviation from the modal work pattern. For example, of those with a modal farm workweek of six days, fewer than half (42 percent) of their weeks entailed six days of work. For these people, 15 percent of their working weeks consist of five working days, and 9 percent entail only one working day. The proportion of all workweeks conforming to the people's modal workday (represented by the diagonal in bold in the table) usually represent under half of the weeks, except for mode 1 persons, who work one day a week in 56 percent of their working weeks. The proportion of weeks not conforming to the modal work pattern are relatively evenly spread from one to seven working days. From these data, it is clear that even a person's typical workweek is not that typical and that their work patterns in an atypical week vary widely.

The case with respect to hours, however, is somewhat different. In table 5, we present the modal number of hours worked per day in farming. Two patterns emerge. First, in contrast to the bimodal days-per-week patterns above, nearly half of farming workdays consist of four hours of work. Second, a larger share of a person's days is spent working the same number of hours as their modal hours. Thus, a larger share of the days worked are on the bolded diagonal here relative to table 4. There is less variation in the number of hours worked per day than in the number of days worked per week. Inferences based on a typical workday are therefore likely to be more accurate than those based on a typical workweek.

Together, these results suggest there may be no real typical work pattern to which farmers can reliably refer in constructing their survey responses. Furthermore, we find that the spacing of workdays or working weeks is not consistent over the season and that the variation in days per week or hours per day observed in tables 4 and 5 is not driven by seasonality (not reported), meaning that any mental shortcuts or rules of thumb used in inference (for example, "I may not

[^10]work every day, but I usually work every three days" or "I typically work four days a week") may produce inaccurate estimates of season-long labor.

Having postulated that irregularity in work schedules is likely to contribute to inaccuracy in labor measurement and that errors increase as schedules become more irregular and having shown evidence of few systematic patterns in smallholder work schedules, we turn to the question of how people arrive at the labor figures they report.

Several possibilities are raised in the cognitive psychology literature. First, people might infer their labor by extrapolating from salient episodes of work, such as the busiest workweek. Second, they might base their inferences on the most recent workweek. Third, as de Nicola and Gine (2014) find in the case of earnings, people might attempt to calculate a total from their knowledge of averages. In all cases, the seasonwide total is built on the basis of some subset of the season.

To examine which subset of the season may be used as the reference period for their seasonwide inferences, we use the weekly data. Here, we compare the recall data with the seasonlong extrapolations based on the person-level average, peak, recent, and harvest work periods in the weekly visit and weekly phone data. These estimates are presented in table 6. Unlike de Nicola and Giné (2014), it appears that farmers in our data do not base season-long estimates on the average workweek. This finding is consistent with the idea that it may be difficult for people to calculate an average mentally in the absence of a clear, regular work pattern. There is little evidence that respondents are inferring their season-long labor based on their average weekly labor at the harvest, the scaled total of which is much higher than the reported data in recall NPS and recall ALT. Nor does it appear that respondents are making inferences based on their busiest week, the totals of which would be two or three times higher than those reported in the recall survey designs. Instead, although none of these reference periods provides a close approximation of the recall-reported person-season hour totals, the totals inferred from the most recent work experiences appear the closest to those obtained by recall, a finding consistent with those in Schwarz and Oyserman (2001). ${ }^{20}$

Alternately, it might be that people look to the units or levels of aggregation that are intuitive or meaningful to them to form estimates of labor. If farmers tend to think about labor at the person level rather than the plot level, then they may erroneously substitute their person-level estimates for their person-plot level labor. Simulations using weekly data show that such a scenario may indeed be the case. Thus, we arrive at a total of 187 hours worked over the season in the weekly visits and 212 hours in the weekly phone data. These calculations are close to those reported at the person-plot level for recall NPS and recall ALT (121 hours and 146 hours, respectively) rather than those these groups report at the person level. Similarly, if, as weekly visit

[^11]data at the person-plot level shows, farmers only perform 2.5 weeks of work on a given plot over the entire season, the possibility is large that their reporting as if they were working on every plot up to as often as they work on any plot-for instance, 12.8 plot-weeks at the person-level in weekly visit interviews-introduces errors in plot-person labor calculations. Accordingly, it appears as though farmers may report work that occurs across all plots as if it occurred on every plot, thereby inflating person-plot labor estimates.

Reporting on people and plots

Unlike the case of work time, the direction of the bias in the reporting on people and plots active in agriculture means that forgetting is a plausible explanation for the observed gap between the weekly survey and the recall survey. Indeed, it may be a more plausible explanation in this case than mismeasurement because of poor inference because there is less gray area in reporting on the extensive margin of agricultural labor, that is, it is unlikely that a person would have to infer their participation or a plot's engagement in agricultural work. What, then, drives certain plots and people to be forgotten? Here, as before, inconsistency plays a role, albeit perhaps a weaker one: where the associated work is rare or infrequent, people and plots are unlikely to be recalled as active in farming.

Reporting on plots

First, we examine the possibility that, in recall surveys, households may have forgotten or otherwise failed to report plots that may have fallen out of the study over the course of the season for legitimate reasons. Put another way, we ask whether, in recall-surveyed households, the people and plots active in agriculture actually represent net end-of-season data, while, in the weekly surveyed household, they may represent cumulative or gross data.

Table 7, panel B shows a clear gap in the reporting on plots in the recalls, wherein roughly half the active agricultural plots are reported as in the weekly surveys. To track the addition and subtraction of plots over time, we turn to the weekly data. In the recall survey, plots are reported in the postharvest end line survey (July-September 2014), whereas weekly surveyed households first list plots in the baseline survey (January 2014). For these weekly surveyed households, the plot roster is then updated each week for the duration of the season. This allows for changes to the original plot listing, for instance, because it is necessary to add plots that were mistakenly forgotten at baseline, to add plots that are brought into cultivation after the previous weekly survey, or to drop plots that households planned to cultivate and, subsequently, decided not to cultivate. Figure 2 shows the increase over the course of the season in the cumulative number of plots reported by each group. Over the course of the weekly data collection, the number of plots per household in the weekly visit group grew from an average of 3.4 to 5.1 in the first 20 weeks of interviews. ${ }^{21}$

[^12]This stands in contrast to the 2.8 plots per household reported by recall NPS and recall ALT households. This is only slightly larger than the number of plots reported in the three waves of the NPS (reporting plots in the 2008, 2010, and 2012 long rainy seasons) for rural farm households in the Mara or bordering regions, where the mean number of plots per household is 2.2. However, it is much smaller than even the smallest-ever number of plots reported by households in the weekly surveys.

The main reason households offer for making changes on the plot list obtained in the baseline is that some plots have been erroneously forgotten (table 8). Far fewer plots (91) in the weekly visit group are dropped over the course of the season; the chief reason given is that the plots were originally listed in error. The number of plots dropped over the course of the season is not sufficiently high to account for the discrepancy between the plots reported by recall and the plots reported in weekly interviews. Furthermore, households are more likely to add plots over the season than drop them. Even if we restrict the number of plots per household to those that faced no change over the season, that is, plots that were never dropped early or added late, on the premise that, perhaps, recall households only tended to remember to report those plots that were consistently present to be reported on, the weekly-recall plot gap remains (not reported).

Plot traits might reveal which plots are likelier to have been forgotten. We perform this reckoning by comparing the proportion of plots by characteristic across the four arms of the study. In table 9, we show, however, that, except perhaps for an overrepresentation of nearby plots in the recall surveys, plot characteristics are similar, suggesting that recall farmers do not systematically forget certain types of plots. ${ }^{22}$

Instead, it may be possible that the plots that are forgotten are the prime responsibility or exclusive domain of people who are themselves likely to have gone unreported. If this were the case, then the omission of a person (say, one who worked little or infrequently) from the household reporting may also result in the omission of her or his plot. To test this, we look for significant differences in the average number of plots worked per person and the average number of people working per plot. These data are presented in table 7 . They suggest both that many different people work on a given plot (an average of 3.2 people in weekly visit households) and that a given person will work on many different plots (an average of 3.6 plots). Thus, it is unlikely that the omission of a single household member would necessarily result in the omission in their plots.

Reporting on people

We now perform a similar analysis of which household workers may be likelier to be forgotten in recall-based reporting and why.

First, as above, we examine the entry and exit of people from the household using weekly data. In the baseline survey, households reported on household members who were working on each of the household plots. Figure 3 shows that, in this earliest survey, an average of 2.1 people per weekly visit household were reported as engaged in agricultural work. This number grew

[^13]quickly in the first several weeks, eventually reaching roughly double the initial figure. In contrast, the recall-surveyed households were asked at the end of the season to report on the household members who were working on each of the household plots; they reported an average of 2.8 workers per household. Figure 3 indicates that there are differences in the rates of increase by traits. Thus, women show a steeper curve, indicating that they tended not to be reported at the baseline, but were subsequently working on the plot during the season. Table 10 shows that, nonetheless, women were not systematically forgotten, except, perhaps, to a small degree in the recall ALT.

Second, although a person, by survey design, may not be more or less likely to be reported because of her or his gender, there is evidence that children, who may be less important in household farm production and who may be expected to be marginalized within the household, are more likely to be forgotten.

Third, there is little difference across arms of the study in those who self-identify as farmers, whereas we might expect that people who identify farming as their livelihood would be less likely to be forgotten in end-of-season surveys. Indeed, the share of farmers is statistically significantly larger in the recall ALT group than in the weekly visit data. However, given that most household members in the sample-whether identifying as farmers or not-are active in agricultural work, this occupational designation may have little practical meaning.

Finally, we look to actual work patterns to uncover the types of household members who may be underrepresented in the recall surveys. While the average number of household members working for an above-mean number of weeks is 1.7 in weekly visit households and 1.8 in weekly phone households, these data are much closer to but still somewhat lower than the 2.8 workers per household reported in recall surveys. Table 10 shows this finding more straightforwardly. Those who work infrequently during the season are dramatically underrepresented whether at the person-plot-day level or the person-day level. For instance, according to the recall NPS, 13 percent of the household labor force works fewer than 10 days per person-plot, while weekly visit surveys report that 56 percent of household workers fall within this category. The total seasonal hours reported in weekly visit and weekly phone interviews that correspond to work for an above-mean number of weeks are similar to the number of hours reported in recall surveys overall (not reported), adding to support for the idea that those who work infrequently are likelier to be forgotten in recall surveys. Because of the paucity of person-plot weeks and days outlined in table 3 and because of the wide spacing of work events they suggest, the work schedules of people who work infrequently are almost certainly highly irregular and difficult both to remember and to make inferences about. Accordingly, it may be that the bulk of household members whom recall-surveyed households remember to report as active in agriculture are those who make large or consistent labor contributions during the season; meanwhile, there appears to be a subset of workers-perhaps those working little, infrequently, or irregularly-who risk being forgotten.

Here (by forgetting), as in the case of the mismeasurement of working time (by inference), it appears that the lack of a typical pattern of work serves to make end-of-season surveys more
cognitively burdensome than their weekly alternatives and to exacerbate recall bias in the reporting of family farm labor.

5. CONCLUSION

How accurate are data on household farm labor? Our survey experiment finds that recall data collected in the postharvest period leads to overestimates of the time household members spend on specific plots over the course of the season, in some cases by a factor of 3.7. Yet, this overreporting is counterbalanced by considerable underreporting-by up to 50 percent each-in the number of plots worked by household members engaged in family farming. Accordingly, at the household level of aggregation, the total number of seasonal hours worked vary little across recall periods. Recall bias appears to result both from forgetting and from the extrapolation of seasonwide labor from erroneous inferences about past labor. Both of these distortions are rooted in the irregular nature of farmwork schedules and practices in our study region. In the absence of a typical work schedule or a typical and consistent level of engagement among workers and on plots, traditional end-of-season recall surveys force respondents into cognitively taxing calculations. These calculations result in labor inferences that appear to be based on recent rather than representative experiences, the omission of members only intermittently engaged in family farm labor, and the exclusion of plots further from the house and, thus, less salient in memory.

This paper makes two contributions to the literature. The first contribution is to the literature on measurement. If our results hold in other settings, then agriculture-based low-income countries, asking about farm activities 6-12 months after they have ended will tend to exaggerate estimates of the total days and hours household members spend working on their plots and farms. These findings may even hold outside the context of agriculture, for instance, in settings in which some but not other components of the labor calculation face considerable variability (for example, see Dupas, Robinson, and Saavedra 2015).

Clearly, survey designers should tread lightly when asking questions about the frequency of nonsalient, irregular events. But what is the alternative? The benchmark weekly visit approach used here is an expensive one that is unlikely to be a realistic prospect at the larger scale necessary for national labor surveys. A result that comes out forcefully in this study is the strong performance of the phone surveys, which show little difference from the benchmark weekly visit survey. Crucially, given the significantly lower transportation costs involved, phone surveys are also, by design, likely to be less expensive to implement than face-to-face high-frequency alternatives, but how much cheaper?

We use the cost data available through our survey experiment to mimic a scenario whereby an existing household baseline survey adds either short face-to-face surveys or short phone surveys. The results of this costing exercise are presented in table 11 . We assume that all fixed costs related to training and preparation have been subsumed in the baseline interview and focus instead on the increase in the variable costs of conducting $1,10,20,25$, or 30 visits or phone calls. Phone calls are much less expensive that revisits. .The cost of a single round of phone surveys is 6 percent of the cost of the baseline survey. This estimate is close to the 7 percent reported by

Dillon (2012). Contacting all respondents 10 times by phone would increase the cost of the survey by 54 percent, while calling all respondents 30 times would increase costs by 162 percent. Our particular experiment required 24 calls to cover the complete agricultural season, but this is highly context-specific, and other surveys may be able to achieve gains in accuracy with fewer points of contact.

These numbers suggest that, in practice, the use of high-frequency phone surveys to collect more reliable labor data may be quite expensive. Nonetheless, it may represent a viable option in surveys that already use phone calls to respondents for other purposes, such as to ensure the continued participation of respondents, to keep track of respondents who relocate, or to collect data requiring high-frequency contacts or a quick turnaround (Dillon 2012; Garlick, Orkin, and Quinn 2015).

Given the importance of cognitive burdens in driving mismeasurement in labor data obtained by recall, another approach is to design surveys in ways that minimize these burdens. For instance, where the analytical demands on the data make this possible, questions could be posed in ways that are more intuitive relative to and better aligned with the ways farmers remember and make inferences about their work. ${ }^{23}$ Similarly, data collectors can attempt to shorten the recall period so that labor reporting is likelier to be based on memory than on inference.

Another approach involves managing and correcting for known shortcomings in recall survey data. For instance, by assessing the degree of irregularity in farming practices in the survey context, data collectors will be able to anticipate more effectively whether and the extent to which the resulting labor data will be reliable. They may also use high-frequency surveys such as the ones used in this study, which dramatically shorten the traditional season-long recall period, as an approach to large-scale data collection or as a means to create a consistent adjustment factor that can be applied to past and future recall surveys in the traditional vein. Of course, whether the latter is a reasonable approach to correcting systematic bias in reporting will depend on the specifics of the research context and the degree of variability in these specifics within a given survey group, for instance, the location by region, the crop, the degree of irregularity in farming, the degree of individual responsibility over plots, the prevalence of other types of economic activity, and the uses to which the resulting data will be put.

The second contribution of this study is to the debate on the agricultural productivity gap (Gollin, Lagakos, and Waugh 2014). Systematically overestimated measures of the amount of work people carry out on smallholder farms leads to underestimates of labor productivity in agriculture. Furthermore, it is likely that the effects are correlated with individual characteristics. For example, we find that more highly educated respondents produce less recall bias in reported family farm labor than do their less well educated counterparts (not reported). If people with greater levels of human capital are less likely to overestimate their labor in recall, perhaps because they are more well able to cope with the cognitive burdens of remembering and inferring irregular labor, then their higher labor productivity may not be entirely attributable to true differences in

[^14]productivity driven by skill and education, but, rather, to differences in the quality of labor reporting by level of education.

This study may have a rather narrow concept of farm labor. In fact, there is more to farming than going to the field. For instance, the study may fail to capture the farmer's day in sufficient detail, such as accounting for the time spent fixing tools, planning for contingencies, negotiating land and labor agreements, and all the other economic and social interactions that are crucial to farm life. Whether the issue is as lofty as fostering structural transformation or as modest as improving data quality, it is clear that a better understanding of the farming context, including the patterns or the lack of patterns in time use, is key.

REFERENCES

Anderson Schaffner, Julie. 2000. "Employment." In Designing Household Survey Questionnaires for Developing Countries: Lessons from 15 Years of the Living Standards Development Study, vol. 1, edited by Margaret E. Grosh and Paul Glewwe, 217-50. Washington, DC: World Bank; New York: Oxford University Press.
Arthi, Vellore, and James Fenske. 2016. "Intra-household Labor Allocation in Colonial Nigeria." Explorations in Economic History 60 (April): 69-92.
Backiny-Yetna, Prospere, Diane Steele, and Ismael Yacoubou Djima. 2014. "The Impact of Household Food Consumption Data Collection Methods on Poverty and Inequality Measures in Niger." Policy Research Working Paper 7090, World Bank, Washington, DC.
Bardasi, Elena, Kathleen Beegle, Andrew Dillon, and Pieter Serneels. 2011. "Do Labor Statistics Depend on How and to Whom the Questions Are Asked? Results from a Survey Experiment in Tanzania." World Bank Economic Review 25 (3): 418-47.
Barnum, Howard, and Lynn Squire. 1979. "An Econometric Application of the Theory of the Farm-Household." Journal of Development Economics 6 (1): 79-102.
Beegle, Kathleen, Calogero Carletto, and Kristen Himelein. 2012. "Reliability of Recall in Agricultural Data." Journal of Development Economics 98 (1): 34-41.
Beegle, Kathleen, Luc Christiaensen, Andrew Dabalen, and Isis Gaddis. 2016. Poverty in a Rising Africa. Africa Poverty Report. Washington, DC: World Bank.
Beegle, Kathleen, Joachim De Weerdt, Jed Friedman, and John Gibson. 2012. "Methods of Household Consumption Measurement through Surveys: Experimental Results from Tanzania." Journal of Development Economics 98 (1): 3-18.
Benjamin, Dwayne. 1992. "Household Composition, Labor Markets, and Labor Demand: Testing for Separation in Agricultural Household Models." Econometrica 60 (2): 287-322.
Bound, John, Charles Brown, and Nancy Mathiowetz. 2001. "Measurement Error in Survey Data." In Handbook of Econometrics, vol. 5, edited by James J. Heckman and Edward Leamer, 37053843. Amsterdam: Elsevier Science.

Chen, Shaohua, and Martin Ravallion. 2007. "Absolute Poverty Measures for the Developing World, 1981-2004." Proceedings of the National Academy of Sciences 104 (16): 757-62.
Chowdhury, Nasima T. 2010. "The Relative Efficiency of Hired and Family Labour in Bangladesh Agriculture." Unpublished working paper, Department of Economics, Gothenburg University, Gothenburg, Sweden.
Das, Jishnu, Jeffrey Hammer, and Carolina Sánchez-Páramo. 2012. "The Impact of Recall Periods on Reported Morbidity and Health Seeking Behavior." Journal of Development Economics 98 (1): 76-88.

Deininger, Klaus, Calogero Carletto, Sara Savastano, and James Muwonge. 2011. "Can Diaries Help in Improving Agricultural Production Statistics? Evidence from Uganda." Journal of Development Economics 98 (1): 42-50.
de Nicola, Francesca, and Xavier Giné. 2014. "How Accurate Are Recall Data? Evidence from Coastal India." Journal of Development Economics 106 (January): 52-65.
Deolalikar, Anil, and Wim Vijverberg. 1987. "A Test of Heterogeneity of Family and Hired Labour in Asian Agriculture." Oxford Bulletin of Economics and Statistics 49 (3): 291-305.
De Weerdt, Joachim, Kathleen Beegle, Jed Friedman, and John Gibson. 2016. "The Challenge of Measuring Hunger through Survey." Economic Development and Cultural Change (May 6). http://www.journals.uchicago.edu/doi/abs/10.1086/686669?journalCode=edcc.
Dillon, Brian. 2012. "Using Mobile Phones to Collect Panel Data in Developing Countries."

Journal of International Development 24 (4): 518-27.
Dupas, Pascaline, Jonathan Robinson, and Santiago Saavedra. 2015. "The Daily Grind: Cash Needs, Labor Supply, and Self-Control." Unpublished working paper, Stanford University, Stanford, CA.
FAO (Food and Agriculture Organization of the United Nations). 2009. "How to Feed the World in 2050." Issue Brief, High-level expert forum, October 12-13, Rome.
Fermont, Anneke, and Todd Benson. 2011. "Estimating Yield of Food Crops Grown by Smallholder Farmers: A Review in the Uganda Context." IFPRI Discussion Paper 01097, International Food Policy Research Institute, Washington, DC.
Garlick, Rob, Kate Orkin, and Simon Quinn. 2015. "Call Me Maybe: Experimental Evidence on Using Mobile Phones to Survey African Microenterprises." Working paper, Duke University, Durham, NC.
Gollin, Douglas, David Lagakos, and Michael E. Waugh. 2014. "The Agricultural Productivity Gap." Quarterly Journal of Economics 129 (2): 939-93.
Irz, Xavier, Lin Lin, Colin Thirtle, and Steve Wiggins. 2001. "Agricultural Productivity Growth and Poverty Alleviation." Development Policy Review 19 (4): 449-66.
Jacoby, Hanan. 1993. "Shadow Wages and Peasant Family Labour Supply: An Econometric Application to the Peruvian Sierra." Review of Economic Studies 60 (4): 903-21.
Johnston, Deborah, and Hester Le Roux. 2007. "Leaving the Household Out of Family Labour? The Implications for the Size-Efficiency Debate." European Journal of Development Research 19 (3): 355-71.
Lanjouw, Jean O., and Peter Lanjouw. 2001. "The Rural Non-Farm Sector: Issues and Evidence from Developing Countries." Agricultural Economics 26 (1): 1-23.
Ligon, Ethan, and Elisabeth Sadoulet. 2007. "Estimating the Effects of Aggregate Agricultural Growth on the Distribution of Expenditures." Background paper for World Development Report 2008, World Bank, Washington, DC.
Matshe, Innocent, and Trevor Young. 2004. "Off-farm Labour Allocation Decisions in SmallScale Rural Households in Zimbabwe." Agricultural Economics 30 (3): 175-86.
McCullough, Ellen B. 2015. "Labor Productivity and Employment Gaps in Sub-Saharan Africa." Policy Research Working Paper 7234, World Bank, Washington, DC.
Menon, Geeta. 1993. "The Effects of Accessibility of Information in Memory on Judgments of Behavioral Frequencies." Journal of Consumer Research 20 (3): 431-40.
Olinto, Pedro, Kathleen Beegle, Carlos Sobrado, and Hiroki Uematsu. 2013. "The State of the Poor: Where Are the Poor, Where Is Extreme Poverty Harder to End, and What Is the Current Profile of the World's Poor?" Economic Premise 125 (October), World Bank, Washington, DC.

Reardon, Tom, and Paul Glewwe. 2000. "Agriculture." In Designing Household Survey Questionnaires for Developing Countries: Lessons from 15 Years of the Living Standards Development Study, vol. 2, edited by Margaret E. Grosh and Paul Glewwe, 139-82. Washington, DC: World Bank; New York: Oxford University Press.
Rosenzweig, Mark R., and Kenneth I. Wolpin. 1985. "Specific Experience, Household Structure, and Intergenerational Transfers: Farm Family Land and Labor Arrangements in Developing Countries." Quarterly Journal of Economics 100 (Supplement): 961-87.
Ross, Michael, and Michael Conway. 1986. "Remembering One's Own Past: The Reconstruction of Personal Histories." In Handbook of Motivation and Cognition: Foundations of Social Behavior, vol. 1, edited by Richard M. Sorrentino and E. Tory Higgins, 122-44. New York:

Guilford Press.
Schwarz, Norbert. 2007. "Cognitive Aspects of Survey Methodology." Applied Cognitive Psychology 21 (2): 277-87.
Schwarz, Norbert, and Daphna Oyserman. 2001. "Asking Questions about Behavior: Cognition, Communication, and Questionnaire Construction." American Journal of Evaluation 22 (2): 127-60.
Shapiro, David. 1990. "Farm Size, Household Size and Composition, and Women's Contribution to Agricultural Production: Evidence from Zaire." Journal of Development Studies 27 (1): 121.

Singh, Inderjit J., Lynn Squire, and John Strauss, eds. 1986. Agricultural Household Models: Extensions, Applications and Policy. Washington, DC: World Bank; Baltimore: Johns Hopkins University Press.
Sudman, Seymour, and Norman Bradburn. 1973. "Effects of Time and Memory Factors on Response in Surveys." Journal of the American Statistical Association 68 (344): 805-15.
Udry, Christopher. 1996. "Gender, Agricultural Production, and the Theory of the Household." Journal of Political Economy 104 (5): 1010-46.
World Bank. 2014. Final Report. Report 90434. Vol. 2 of Tanzania: Productive Jobs Wanted. Country Economic Memorandum. Washington, DC: World Bank.

Figure 1: Activities in an average day

Panel A

Accounting for 3.6 hours of activties

Panel B

B. Any day Monday to Friday and not sick

	own farm labor
free ag labor	
	paid ag labor
livestock	
self-employment	
collect water	
	employment
collect firewood	
school	

Accounting for 4.3 hours of activities

Panel C

Note: All panels of Figure 1 are based on Weekly Visit data for household members aged 10 years and over. The data in Panels A and B pertains to all individuals, not just to those individuals reporting agricultural labor at any point in the season.

Figure 2: Plots Reported Over Duration of the Season

Note: "Ag Labor" refers to those plots on which own-household agricultural labor was reported at any point in the season, while "All" refers to any household plot reported, irrespective of its stated or actual use. Week number 0 refers to the baseline questionnaire, while week 31 refers to the endline.

Figure 3: Family Farm Workers Reported Over Duration of the Season

Note: Week number 0 refers to the baseline questionnaire, while week 31 refers to the endline. All individuals in this figure are ones who reported own-household agricultural labor at some point in the season. For ease in reading, only the average number of workers for Recall NPS and Recall ALT are provided above as a comparison to weekly data. Adults are defined as individuals 20 and over, and children as those aged 10-19, inclusive. Farmers are those who selfreport their occupation as being in farming.

Table 1: Sample Characteristics

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Individuals ($N=5, \mathbf{3 7 5 \text {) }}$				
Age	$\begin{gathered} 20.98 \\ (20.12) \end{gathered}$	$\begin{aligned} & 22.47^{*} \\ & (20.47) \end{aligned}$	$\begin{aligned} & 22.34 * \\ & (20.70) \end{aligned}$	$\begin{gathered} 21.60 \\ (19.71) \end{gathered}$
Proportion aged 10 years and over	0.63	0.67**	0.63	0.63
Proportion male	0.49	0.48	0.49	0.51
Proportion in school	0.28	0.32**	0.30	0.30
Proportion living with spouse	0.27	0.31*	0.28	0.27
Proportion literate	0.58	0.61	0.56	0.56
Proportion father deceased	0.28	0.26	0.29	0.28
Proportion mother deceased	0.16	0.17	0.17	0.16
Proportion visit health care provider past 4 weeks	0.16	0.15	0.15	0.14
Households ($\mathrm{N}=854$)				
Household size	$\begin{gathered} 6.44 \\ (3.1) \end{gathered}$	$\begin{gathered} 6.54 \\ (3.3) \end{gathered}$	$\begin{gathered} 6.27 \\ (2.9) \end{gathered}$	$\begin{gathered} 6.21 \\ (2.4) \end{gathered}$
Rooms in dwelling	$\begin{array}{r} 2.93 \\ (1.2) \end{array}$	$\begin{gathered} 3.08 \\ (1.3) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.98 \\ (1.2) \end{gathered}$
Minutes to water source	$\begin{array}{r} 58.49 \\ (48.3) \end{array}$	$\begin{gathered} 55.01 \\ (43.4) \end{gathered}$	$\begin{array}{r} 54.81 \\ (45.7) \end{array}$	$\begin{gathered} 53.50 \\ (41.5) \end{gathered}$
Proportion with good walls	0.47	0.48	0.40	0.44
Proportion with good roof	0.74	0.78	0.76	0.78
Proportion with good floor	0.22	0.32**	0.24	0.31**
Number of households	212	212	212	218

Note: Table uses endline data. Mean values which are significantly different from the mean for the Weekly Visit group are denoted as follows: ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, * $\mathrm{p}<0.1$.

Table 2: Overview of Activities during the Agricultural Season

	Share of Individuals reporting the activity at least	Average days per week in activity, conditional on reporting the activity at least once over the	Hours per day in activity, conditional once over season activity that day
Activity	0.88	1.88	4.49
Household farm	0.16	0.34	4.65
Paid agricultural	0.21	0.28	4.38
Free agricultural, other hh	0.10	1.24	6.38
Fishing	0.27	1.08	5.08
Livestock	0.11	1.00	8.38
Paid non-agricultural	0.31	1.43	7.59
Non-agricultural business	0.56	0.49	2.01
Collecting firewood	0.73	2.72	1.23
Collecting water	0.27	2.76	7.86
Schooling	0.49	$\mathrm{~N} / \mathrm{A}$	N/A
Sick			
N			

Note: The table is based on Weekly Visit data, and is restricted to individuals aged 10 years and over.

Table 3: Total Hours and Days of Agricultural Labor Reported Over Season

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
A. Per person-plot				
Hours	$\begin{gathered} \hline 39.5 \\ (69.5) \end{gathered}$	$\begin{aligned} & 48.8^{* * *} \\ & (85.2) \end{aligned}$	$\begin{aligned} & 121.3 * * * \\ & (133.8) \end{aligned}$	$\begin{aligned} & 146.3^{* * *} \\ & (159.3) \end{aligned}$
Days	$\begin{array}{r} 9.2 \\ (14.2) \end{array}$	$\begin{aligned} & 10.7 * * * \\ & (14.9) \end{aligned}$	$\begin{aligned} & 25.7^{* * *} \\ & (24.6) \end{aligned}$	$\begin{aligned} & 29.8^{* * *} \\ & (29.6) \end{aligned}$
Weeks	$\begin{gathered} 2.5 \\ (3.2) \end{gathered}$	$\begin{gathered} 2.6 \\ (3.1) \end{gathered}$	N/A	$\begin{aligned} & 5.7 * * * \\ & (5.2) \end{aligned}$
Hours per day worked	$\begin{gathered} 4.1 \\ (1.3) \\ \hline \end{gathered}$	$\begin{aligned} & 4.4^{* * *} \\ & (1.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6 * * * \\ & (1.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6^{* * *} \\ & (1.1) \\ & \hline \end{aligned}$
B. Per person (all household plots)				
Hours	$\begin{gathered} 201.0 \\ (196.6 \end{gathered}$	$\begin{aligned} & \hline 228.3 * * * \\ & (222.8) \end{aligned}$	$\begin{aligned} & \hline 313.5 * * * \\ & (332.2) \end{aligned}$	$\begin{aligned} & 389.56 * * * \\ & (436.8) \end{aligned}$
Days	$\begin{gathered} 46.4 \\ (40.9) \end{gathered}$	$\begin{aligned} & 49.6^{*} \\ & (39.4) \end{aligned}$	$\begin{aligned} & 66.5 * * * \\ & (62.0) \end{aligned}$	$\begin{aligned} & 79.3^{* * *} \\ & (80.5) \end{aligned}$
Weeks	$\begin{gathered} 12.8 \\ (9.0) \end{gathered}$	$\begin{gathered} 12.0^{*} \\ (8.3) \end{gathered}$	N/A	$\begin{aligned} & 15.3 * * * \\ & (13.8) \end{aligned}$
Hours per day worked	$\begin{gathered} 4.1 \\ (1.1) \\ \hline \end{gathered}$	$\begin{aligned} & 4.3 * * * \\ & (1.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6^{* * *} \\ & (1.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.6^{* * *} \\ & (1.1) \\ & \hline \end{aligned}$
C. Per plot (all household persons)				
Hours	$\begin{gathered} 183.0 \\ (232.3) \end{gathered}$	$\begin{aligned} & \text { 223.1*** } \\ & (298.5) \end{aligned}$	$\begin{aligned} & \hline 363.9^{* * *} \\ & (457.59) \end{aligned}$	$\begin{aligned} & 452.4^{* * *} \\ & (522.7) \end{aligned}$
Days	$\begin{gathered} 42.2 \\ (49.1) \end{gathered}$	$\begin{aligned} & 48.5 * * * \\ & (52.9) \end{aligned}$	$\begin{aligned} & 77.2 * * * \\ & (82.2) \end{aligned}$	$\begin{aligned} & 92.1^{* * *} \\ & (99.0) \end{aligned}$
Weeks	$\begin{gathered} 11.7 \\ (11.2) \end{gathered}$	$\begin{gathered} 11.8 \\ (11.3) \end{gathered}$	N/A	$\begin{aligned} & 17.7 * * * \\ & (17.7) \end{aligned}$
Hours per day worked	$\begin{gathered} 4.1 \\ (1.1) \end{gathered}$	$\begin{aligned} & 4.3^{* * *} \\ & (1.4) \end{aligned}$	$\begin{aligned} & 4.6^{* * *} \\ & (1.1) \end{aligned}$	$\begin{aligned} & 4.7^{* *} \\ & (1.2) \end{aligned}$
D. Per Household (all persons and all plots)				
Hours	$\begin{gathered} 848.6 \\ (699.7) \end{gathered}$	$\begin{gathered} 977.6^{*} \\ (823.2) \end{gathered}$	$\begin{gathered} 865.1 \\ (1151.3) \end{gathered}$	$\begin{aligned} & \hline 1104.1^{* *} \\ & (1548.3) \end{aligned}$
Days	$\begin{gathered} 195.8 \\ (151.8) \end{gathered}$	$\begin{gathered} 212.3 \\ (147.4) \end{gathered}$	$\begin{gathered} 183.5 \\ (213.4) \end{gathered}$	$\begin{gathered} 224.9 \\ (288.2) \end{gathered}$
Weeks	$\begin{gathered} 54.0 \\ (35.1) \end{gathered}$	$\begin{gathered} 51.9 \\ (32.8) \end{gathered}$	N/A	$\begin{aligned} & 43.3 * * \\ & (50.2) \end{aligned}$
Hours per day worked	$\begin{gathered} 4.1 \\ (0.8) \\ \hline \end{gathered}$	$\begin{gathered} 4.2 \\ (1.2) \end{gathered}$	$\begin{aligned} & 4.6^{* * *} \\ & (1.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7^{* * *} \\ & (1.1) \\ & \hline \end{aligned}$
Note: Mean values which are significantly different from the mean for the Weekly Visit group are denoted as follows: *** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05, * \mathrm{p}<0.1$. All of the calculations are restricted to those aged 10 and older who reported having performed agricultural labor at any point in the season, and those plots reporting a positive number of hours of agricultural labor at any point in the season. The calculations are based on all plausible (but not necessarily realized) person-plot combinations per the preceding definition of individuals and plots. "N/A" indicates that the information is not collected in the survey design.				

Table 4: Modal Days Farmed per Week Farmed

Modal days	Frequency $(\boldsymbol{\%})$	Distribution of days farmed, for a given mode (\%)						
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
1	24.4	$\mathbf{5 5 . 7}$	14.9	7.8	6.4	5.6	7.3	2.3
2	12.1	17.9	$\mathbf{4 1 . 0}$	11.4	8.41	8.2	8.5	4.6
3	7.2	14.7	14.7	$\mathbf{3 3 . 8}$	11.1	11.8	10.0	3.9
4	6.4	11.8	13.8	12.8	$\mathbf{3 4 . 7}$	11.2	11.8	3.9
5	10.3	12.2	13.0	13.6	11.3	$\mathbf{3 4 . 5}$	11.7	3.7
6	29.0	9.1	7.6	9.0	11.0	15.4	$\mathbf{4 1 . 8}$	6.1
7	10.5	6.29	8.7	8.4	9.5	11.1	15.3	$\mathbf{4 0 . 9}$

Note: This table is based on the data for Weekly Visit individuals aged 10 or over and considering weeks in which some own-household agricultural labor was reported. We do not consider work reported in the baseline, since working patterns cannot be discerned from the data therein. The table can be read as follows. 29.02% of considered individuals have a modal working week of 6 days (in weeks with any own-household agricultural work). 41.75% of their working weeks actually entailed working six days, while 9.13% of their weeks they worked one day.

Table 5: Modal Hours Farmed per Day Farmed

$\begin{array}{l}\text { Modal } \\ \text { hours }\end{array}$	$\begin{array}{l}\text { Frequency } \\ \mathbf{(\%)}\end{array}$	Distribution of hours farmed, for a given mode						
$\mathbf{(\%)}$							$]$	$\mathbf{3}$
:---								
$1-2$								

Note: This table is based on the data for Weekly Visit individuals aged 10 or over. We do not consider work reported in the baseline, since working patterns cannot be discerned from the data therein. Less than 2 percent of all observations on hours per day were under 2 hours; 7 percent were more than 6 hours.

Table 6: Scaled Comparisons to Reported Total Person-Level Season Hours

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Actual reported hours	201.0	228.3	313.7	389.5
	(196.6)	(222.8)	(332.5)	
Scaling based on time unit:				
Hours in busiest week	939.4	1011.1		
(scaled up by 26 weeks)	(642.2)	(694.7)		
Hours in most recent week	392.9	498.2		
(scaled up by 26 weeks)	(348.9)	(348.9)		
Hours in average harvest week	432.9	629.2		
(scaled up by 26 weeks)	(532.2)	(654.4)		
Hours in average week	410.5	484.4		
(scaled up by 26 weeks)	(229.1)	(244.1)		

Note: In this table, all figures are reported at the person level. Scaling is based on the variation in weekly data, and is compared to the actual reported figure amongst recall-surveyed individuals.

Table 7: People and Plots Active in Household Farming

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
A. People per household				
All people	4.9	5.0	$4.0^{* * *}$	$3.9^{* * *}$
	(2.4)	(2.4)	(2.2)	(1.9)
People working on the farm	4.2	4.3	$2.6^{* * *}$	$2.7^{* * *}$
	(2.1)	(2.2)	(1.5)	(1.4)
Plots worked per person	3.6	3.5	$2.3^{* * *}$	$2.4^{* * *}$
	(1.9)	(1.9)	(1.3)	(1.3)
B. Plots per household				
All plots	5.2	5.0	$2.8^{* * *}$	$2.8^{* * *}$
	(2.4)	(2.2)	(1.6)	(1.6)
Plots cultivated	4.6	4.4	$2.4^{* * *}$	$2.4^{* * *}$
	(2.2)	(2.0)	(1.3)	(1.3)
Plots cultivated, exc. plots dropped	4.4	4.2	$\mathrm{~N} / \mathrm{A}$	N / A
	(2.2)	(2.0)		
Plots cultivated, exc. plots added	3.1	3.2	$\mathrm{~N} / \mathrm{A}$	N / A
	(1.4)	(1.3)		
Plots cultivated, exc. plots dropped	2.9	3.1	$\mathrm{~N} / \mathrm{A}$	N / A
and added	(1.4)	(1.3)		
People working per plot cultivated	3.2	3.4^{*}	$2.5^{* * *}$	$2.7^{* * *}$
	(1.8)	(1.9)	(1.3)	(1.4)

Note: Mean values which are significantly different from the mean for the Weekly Visit group are denoted as follows: *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$. All of the calculations in Panel A are restricted to those aged 10 and older. "All plots" refers to all plots reported by the household, including plots which are fallow, rented out, and cultivated (including those owned and rented in). "Plots cultivated" refers to those plots on which agricultural labor was actually reported as taking place.

Table 8: Changes in Plot Listings Over the Season

	Weekly Visit	Weekly Phone
A. Plots added after baseline		
Forgot to list before	$247[216]$	$122[107]$
Started renting plot	$95[83]$	$91[85]$
Split off plot	$13[9]$	$38[29]$
Plot was given to household	$23[17]$	$18[16]$
Bought plot	$8[8]$	$16[15]$
Other reason	$3[2]$	$10[6]$
No reason given, added in week 1	$2[2]$	$1[0]$
No reason given, added after week 1	$7[0]$	$10[2]$
Total	$398[337]$	$360[260]$
B. Plots dropped before endline		
No longer renting plot	$30[21]$	$9[8]$
No longer cultivating plot	$12[7]$	$4[4]$
Sold plot	$7[6]$	$0[0]$
Gave away plot	$8[4]$	$1[1]$
Other	$0[0]$	$1[1]$
Total	$91[56]$	$49[33]$

Note: The figures presented without brackets are the number of plots in the designated category, and figures in brackets are the subset of these plots reporting any agricultural labor during the season. The list includes 25 plots on which agricultural labor was reported which were added late, only to be later dropped; and 18 plots on which agricultural labor was reported which were dropped, only to be added back later.

Table 9: Characteristics of Plots Reporting Agricultural Labor

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Mean plot size (ha)	0.39	0.41	0.36	0.36
	(0.38)	(0.41)	(0.32)	(0.35)
Plot size (ha), proportion:				
$(0,0.5]$	0.67	0.64	0.71	0.68
$(0.5,1]$	0.14	0.15	0.12	0.14
(1, 1.5]	0.04	0.05	0.05	0.03
(1.5, 2]	0.01	0.01	0.01	0.01
($2,3.5$]	0.01	0.01	0.00	0.00
Unknown	0.13	0.14	0.12	0.13
Mean distance from residence (min)	31.57	33.73	31.22	29.53
	(37.08)	(35.87)	(40.92)	(39.77)
Distance (min), proportion:				
$(0,30]$	0.66	0.60***	$0.74 * * *$	0.75***
$(30,60]$	0.23	$0.27 * *$	0.15 ***	$0.16 * * *$
$(60,90]$	0.06	0.07	0.03**	0.03**
$(90,120]$	0.02	0.03*	$0.06 * * *$	0.04**
(120, 240]	0.03	0.03	0.03	0.02
Ownership status, proportion:				
Owned	0.68	0.69	0.83***	0.82***
Used free	0.05	0.04	0.05	0.07
Rented in	0.13	0.15	0.11	0.11
Unknown^	0.14	0.13	0.00 ***	0.00 ***
Proportion cultivating any maize	0.39	0.38	0.39	0.42
Proportion cultivating sweet potato	0.25	0.24	0.30*	0.30*
Proportion cultivating cassava	0.37	0.39	0.42*	0.40
Proportion cultivating no maize, sweet potato, or cassava	0.22	0.17**	0.20	0.17**

Note: ${ }^{\wedge}$ Ownership status was erroneously missing for some plots due to data processing error. For mean and proportion values which are significantly different from those for the Weekly Visit group are denoted as follows: *** $\mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$.

Table 10: Characteristics of People Reporting Agricultural Labor

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Proportion adults (ages 20 and up)	0.60	0.65**	0.74***	0.73***
Proportion children (ages 10-19)	0.40	0.35**	0.26***	0.27 ***
Proportion men	0.47	0.49	0.49	0.52**
Proportion women	0.53	0.51	0.51	0.48**
Education level, proportion:				
Below primary	0.69	0.67	0.72	$0.75 * * *$
Primary	0.01	0.00*	0.01	0.01
Above primary	0.24	0.25	0.15***	0.09***
Proportion stated occupation farmer	0.78	0.78	0.82	0.83**
Proportion working <10 days (pp)	0.56	0.50***	0.13***	0.22 ***
Proportion working <20 days (pp)	0.78	0.76*	$0.38 * * *$	$0.44 * * *$
Proportion working <30 days (pp)	0.87	0.87	0.61 ***	0.57***
Proportion working <10 days (p)	0.19	0.16	0.06***	$0.09 * * *$
Proportion working <20 days (p)	0.35	0.30 **	0.16***	$0.22 * * *$
Proportion working <30 days (p)	0.46	0.41 **	0.29***	0.32***

Note: Values which are significantly different from those for the Weekly Visit group are denoted as follows: *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,^{*} \mathrm{p}<0.1$. The designation " $p \mathrm{p}$ " refers to per person-plot, while " p " refers to per person.

Table 11: Per-Household Interviewing Cost Increases

\# Interviews	Weekly Visit	Weekly Phone
1	14%	6%
10	139%	54%
20	277%	108%
25	346%	135%
30	416%	162%

Note: The costs presented in this table are the cost increases in US Dollars, per household, relative to the cost of an LSMStype (baseline) survey.

[^0]: ${ }^{1}$ This study is an output of the "Minding the (Data) Gap: Improving Measurements of Agricultural Productivity through Methodological Validation and Research" project led by the Living Standards Measurement Study team of the World Bank and funded by the U.K. Department for International Development. Additional funding was received from the IZA/DFID Growth and Labour Markets in Low Income Countries Program (GLM-LIC) under grant agreement GA-C3-RA1-360 and from the World Bank Research Committee. The authors gratefully acknowledge the comments of participants at the Centre for the Study of African Economies' Research Workshop, the European Survey Research Association Conference, the Growth and Labour Markets in Low-Income Countries Programme Conferences, the Northeast Universities Development Consortium, the Structural Transformation of African Agriculture and Rural Spaces Conference, and seminar series at the University of Antwerp, the University of Namur, the University of Washington, and the World Bank. The data have been collected on surveybe and the fieldwork has been expertly implemented by Economic Development Initiatives.

[^1]: ${ }^{2}$ See ABCDQ (Agricultural Bulletin Board on Data Collection, Dissemination, and Quality of Statistics) (database), Statistical Division, Food and Agriculture Organization of the United Nations, Rome, http://faostat.fao.org/abcdq/.

[^2]: ${ }^{3}$ Examples include farm household models (Barnum and Squire 1979; Benjamin 1992; Rosenzweig and Wolpin 1985; Singh, Squire, and Strauss 1986), shadow wages in family farm labor (Jacoby 1993), trade-offs between hired and household labor (Chowdhury 2010; Deolalikar and Vijverberg 1987; Johnston and Le Roux 2007), the way households allocate labor to farm and off-farm work (Lanjouw and Lanjouw 2001; Matshe and Young 2004; Shapiro 1990), and intrahousehold labor allocation choices (Udry 1996).

[^3]: ${ }^{4}$ Apart from multitopic household surveys, smallholder information can be collected through specialized farm surveys. These often entail visiting the household at multiple times, particularly those surveys utilizing resident enumerators (for example, agricultural extension agents or other ministry of agriculture staff). However, these surveys typically do not collect details on household farm labor.
 ${ }^{5}$ The LSMS-ISA program has been conducted in Burkina Faso, Ethiopia, Malawi, Mali, Niger, Nigeria, Tanzania, and Uganda. See LSMS (Living Standards Measurement Study) (database), World Bank, Washington, DC, http://www.worldbank.org/lsms.

[^4]: ${ }^{6}$ Measurement problems are not restricted to labor. For instance, intercropping, continuous planting, extended harvest periods, and multiple plots of small sizes and irregular shapes can make reporting on most inputs and outputs difficult. Although several strategies are proposed in the literature to account for mixed-stand crops, no method has yet gained wide acceptance (Fermont and Benson 2011). The introduction of Global Positioning System devices has improved the measurement of landholdings, but the methods for collecting production and input data are not much different now than in the last several decades (Deininger et al. 2011).

[^5]: ${ }^{7}$ The data were collected using computer-assisted personal interviewing through the surveybe software program.
 ${ }^{8}$ All weekly visit households received a mobile phone, but recall households did not. Mobile phone ownership is widespread, at 72 percent of households in our sample. Thus, this element is unlikely to influence the results.

[^6]: ${ }^{9}$ In addition, after the hours per person per day over the previous week were reported, the range of activities performed during that time was recorded (land preparation and planting; weeding; ridging, fertilizer application, and other nonharvest activities; harvesting), but the number of hours were not specified for each activity.
 ${ }^{10}$ The weekly phone interview design draws on lessons summarized by Dillon (2012), who uses a phone survey to collect information on purchased input applications among cotton farmers in Tanzania. Similar recent work has used phone surveys to collect high-frequency data on economic activity. See Garlick, Orkin, and Quinn (2015) for a review of the literature on phone-based strategies for collecting household and enterprise data.

[^7]: ${ }^{11}$ Our experiment was initiated at the beginning of the maize cycle, in January 2014, and followed respondents to the completion of the harvest in August-September.
 ${ }^{12}$ The time to commute to and from plots is not included in any of the working times reported in this study. Households were explicitly instructed to exclude commuting time in reporting the time worked in farming activities.
 ${ }^{13}$ Although some of the discrepancy between the true and assumed agricultural workday is a function of recall bias, the work reported by recall-surveyed individuals suggests that even they experience shorter agricultural workdays and fewer agricultural workdays per week than are typically assumed.

[^8]: ${ }^{14}$ The recall NPS households were asked to report the number of days spent performing each of four agricultural activities. They did not provide the specific days on which these activities occurred; so, we do not know if reporting one day in weeding and one day in planting was, in fact, two separate days of work, or a single day in which both of these two activities were performed. To compute total time in hours for the recall NPS group, we chose to compute an upper bound for the number of days by assuming that each activity-day reported was sequential or mutually exclusive, that is, that people did not perform more than one activity on the same day. This choice is supported by the similarity between this measure and the days data reported by recall ALT households. It is also supported by the activity patterns of the weekly surveyed households, where we find evidence that agricultural workers overwhelmingly tend to pursue one agricultural activity in a given workday. The typical length of an agricultural workday (roughly four or five hours) as reported across the other three arms of the study is similar to the mean hours per activity in the recall NPS survey, further supporting this interpretation.
 ${ }^{15}$ Of the 3,707 individuals ages 10 and older in the 854 households in our study, 821 reported no agricultural work and are excluded from the analysis.
 ${ }^{16}$ As we show in Section 4.2, this is consistent with the fact that hours worked per day are more regular and less variable relative to weeks and days per week worked.

[^9]: ${ }^{17}$ Additional comparisons can be made with our survey experiment data and the data from the three waves of the Tanzanian NPS. This is a national panel survey in which sampled households are interviewed once during each survey wave (randomly across 12 months). We can compare the NPS with our weekly data because, in each NPS interview, members were asked if they worked in agriculture, livestock, or fisheries in the previous seven days. This is a broader set of activities than the set here, which is restricted to time spent on the plot. For the NPS subsample of rural households in or near the Mara Region, both participation and hours are significantly higher in the NPS than in our weekly data (results not reported). Hours conditional on working are closer: approximately 26 to 20 hours for the NPS and our weekly data, respectively. This suggests that the respondents in the NPS are interpreting the question not literally about hours in the previous seven days, but perhaps are reporting a typical number of hours working. In comparing NPS estimates with estimates obtained in our end-of-season recall modules, we find that both the total days worked on plots and the average hours per working day on plots are roughly the same as in the NPS: 26 days and 4.9 hours per working day in the NPS, compared with 29 days and 4.6 and 4.8 hours in the two recall designs if analysis is conducted conditional on realized person-plot combinations (not reported).

[^10]: ${ }^{18}$ For simplicity's sake, these statistics are calculated at the person level (that is, summed across all plots on which each person worked), rather than the person-plot level. If anything, this will understate the degree of irregularity in person-plot working patterns because there is considerable irregularity in the work on a specific plot (see below in this subsection).
 ${ }^{19}$ This reality has implications for the traditional calculation methodology on labor and labor productivity in agriculture, which tends to assume full-time engagement in farming. Even the recall-based weeks worked and hours worked per day, which we posit are overestimates, are not sufficiently high to support these standard assumptions.

[^11]: ${ }^{20}$ In our context, the most recent period coincides with both the peak work period and a particularly culturally and economically salient one, namely, the harvest. For this reason, it is difficult to disentangle the effects of recency from those of work intensity or salience. For instance, if recall NPS and recall ALT household members reported labor based on the work they performed during the last weeks of the season, this could be because the most recent work performed is the easiest to remember, because this is a peak and time-bound work period, or because the work period coincides with the harvest, where work is most salient in terms of income gains.

[^12]: ${ }^{21}$ Part of the change in plots reported over the season could be the phrasing or context of the survey. In the baseline, households were asked "Please list all plots anyone in this household currently owns or cultivates." Over the subsequent weeks, the survey was clearly (by default) referencing the 2014 long rainy season. In the end line survey, recall households were asked "please list all plots anyone in your household owned or cultivated during the 2014 long rainy season (masika season)." Nonetheless, because our standard for the inclusion of a plot in the data depends on whether labor was actually reported on the plot during the masika, misreporting based on a misunderstanding of the

[^13]: baseline question's intent is unlikely to have driven the weekly recall gap in the number of plots.
 ${ }^{22}$ The large and significant differences by ownership status are driven by technical difficulties in the collection of ownership information among some weekly surveyed households.

[^14]: ${ }^{23}$ Indeed, survey experiments that test the level—for example, person-plot, person, and so on-at which individuals provide the most accurate labor histories would be a promising area for future research.

