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1 Introduction

We consider identification and estimation of the effect of a treatment regime, i.e. a sequence
of treatments given in an initial state on the time in the very same state under unconfound-
edness. Exits out of the initial state and treatments are allowed to occur at any point in time.
This set-up typically arises in evaluations of active labor market policy (ALMP) programs
were e.g. training often is assigned at any elapsed unemployment duration and the outcome
is time in unemployment. Another important example is medical treatments given after some
waiting time and were the outcome is survival time.

The setting under study introduces problems due to both dynamic treatment assignment
and dynamic selection. The former due to the fact that treatment is not offered once and
the latter since the individuals eventually leave the initial state. The dynamic treatment
assignment implies that we no longer can rely on methods from the static evaluation literature
(see e.g. Heckman et al., 1999 and Imbens, 2004 for overviews). The dynamic selection means
that we are not able to condition on the entire treatment path as in e.g. Lechner and Miquel
(2010), since the actual start of the treatment is unobserved if the individual leaves the initial
state before receiving treatment.1

Aiming to address the problems associated with analyzing survival time when the time
to treatment is not fixed Fredriksson and Johansson (2008) introduced a matching estimator
that for a given starting time t of the treatment contrasts the outcomes for the treated at t
with the outcomes for the not-yet treated at t. The key insight is that the outcomes of the
not-yet treated are censored when they become treated. The identification is based on a single
unconfoundedness assumption. This estimator is also discussed in de Luna and Johansson
(2010). A similar approach is introduced by Crepon et al. (2009), which instead states the
identifying assumptions in the form of an unconfoundedness and a separate no-anticipation
assumption. The latter is done by relating the results to Abbring and van den Berg (2003)’s
Timing-of-Events approach. Another approach is to consider the effect of treatment now
versus waiting for treatment as in Sianesi (2004).

In this paper we contribute to the literature in a number of ways. We consider a general
setting were treatments are allowed to start and stop at any point in time. We focus on
average effects of a main treatment regime on the survival rate throughout a specific inter-
val compared to the same survival rate under a reference treatment. The setting with a
single time to treatment considered in Fredriksson and Johansson (2008) and Crepon et al.
(2009) is a special case of this setting. For our general setting we explicitly show that for
unanticipated treatments the average effect on the survival rate some time after the start of
treatment is identified under sequential unconfoundedness among survivors. This essentially
is a longitudinal version of the regular static unconfoundedness assumption. This also clari-
fies identification for the setting considered in Fredriksson and Johansson (2008) and Crepon
et al. (2009).

Our main contribution, however, concerns estimation. We introduce a weighted Kaplan-
Meier (1958) type of estimator, that is shown to be asymptotically unbiased. It allows

1In the statistical literature, Robins and colleagues consider a similar setting, see e.g. Robins et al. (2000)
and Hernan et al. (2001).
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estimation of a range of interesting average effects in a dynamic setting. The estimator re-
weights the outcomes of all that follow the treatment regime of interest until they diverge from
this treatment regime. As illustration consider the effect of treatment given at t compared to
never treatment. At t the re-weighting assures that the outcomes of the not-yet treated are re-
weighted in order to mimic the distribution of the confounders in the population of treated at
t. In the subsequent periods the weights are adjusted in order to control for fact that without
weighting individuals with characteristics that makes them less likely to enter treatment will
be over represented in the sample of not-yet treated. The weights are based on propensity
scores in each period. We show that the weighted estimator provides asymptotically unbiased
estimates. The standard errors are obtained by bootstrapping. We explore the small sample
properties of the estimators using an extended Monte Carlo simulation.

We also contrast our estimator to the estimator proposed by Fredriksson and Johansson
(2008). We conclude that their estimator in general is biased. The intuition behind this
result is that their estimator is based on a pooled sample of matched controls, consisting of
controls with different values of the confounders. Although under the underlying assumptions
censoring into treatment is random conditional on the confounders, the censoring is not
random in the pooled sample of controls, and this introduces bias.

In section 2, we present the theoretical framework. Section 3 discusses the treatment effect
of interest, which resemblance the average treatment effect on the treated often considered
in the static matching literature. In section 4 we introduce our weighted estimator, and the
small sample properties of our estimator are studied in a Monte Carlo simulation presented
in section 5. Section 6 illustrates our estimator using data on work practice for unemployed
individuals in Sweden. Section 7 concludes.

2 Model

We consider identification and estimation of the average effect of a treatment where the
outcome is a transition from an initial state to a destination state. In the following we
consider a generalization of the potential outcome framework (Neyman, 1990; Rubin, 1974)
for longitudinal data. Throughout the paper we assume a random sample of N individuals
i = 1, . . . , N , although the index i is suppressed for the random variables defined below.
We assume discrete time points, t = 0, 1, . . . and a binary treatment Dt with realized values
dt ∈ Dt where Dt is the set {0, 1}. We denote by Dt = {D1, . . . , Dt} the sequence of
treatments given at the different time points, commonly referred to as a treatment regime,
see e.g., Hernan et al. (2001). For each individual there are 2t possible realizations of a regime
Dt. Throughout this paper we will make the usual assumption that there is no effect of the
treatment before it starts.2.

For sake of presentation we use this directly in our notation. For each time we can

then consider a binary potential outcome Y dt
t , an indicator of a transtion in period t if the

treatment regime had been dt ∈ Dt. Since for each t a potential outcome Y dt
t is defined, we

2Abbring and van den Berg (2003) call this the no-anticipation assumption, which is also discussed by e.g.
Abbring and Heckman (2008)
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have that Y
dt
t is the sequence of potential outcomes Y

dt
t = {Y d1

1 , . . . , Y
dt
t }. The observed

outcome, Yt, corresponds to the individuals actual treatment regime

Yt =
∑
dt∈Dt

I(Dt = dt)Y
dt
t (1)

where I() is an indicator function. In addition we also denote by X a vector of baseline
covariates observed for all individuals.

The population of interest is the individuals that are in an initial state at time origin.

Transitions, i.e. the variable taking the value Y dt
t = 1 as well as the start of treatment

could occur at t = 1, . . . T . This situation occurs, for instance, for a medical treatment given
after some waiting time, t > 1, were the outcome is survival time, or for active labor market
training given after some time in unemployment, were the outcome is time to employment.
We assume that treatment is assigned at the beginning of the discrete time period, so that
treated responses are observed in all periods. We consider non-censored survival times in the
initial state.

Our parameter of interest is the average affect of a treatment regime dt on the probability
to survive from a starting point t′ to a end point t compared to survival throughout the same
time interval under a reference treatment regime for the population following treatment
regime d and survive up until t′

ATETt,t′(dt, d
∗
t ) = (2)

Pr(Y
dt
t = 0|Dt′ = dt′ , Y

dt′−1

t′−1 = 0)− Pr(Y
d
∗
t

t = 0|Dt′ = dt′ , Y
dt′−1

t′−1 = 0).

The results of the paper concerns identification and estimation of this parameter of interest.
It resemblances the average treatment effect on the treated often considered in the static
matching literature. One differences is that this average effect is taken over the population
of treated at t′ that survive up until t′, and not over the full population of treated at t′.

3 Identification

We consider identification of ATETt,t′(dt, d
∗
t ) if we have data on the selection to treatment,

such that it is reasonable to assume that the probability distribution of the potential dura-
tions is independent of assignment to treatment when conditioning on observed covariates.
In a dynamic environment one may consider several different unconfoundedness assumptions,
see e.g. the discussion in Ridder and Vikström (2011). In this paper we assume that uncon-
foundedness holds among survivors

Assumption 1 (Sequential unconfoundedness among survivors) For all t, dt−1 and
all d

∗
s, s ≥ t with the first t− 1 components equal to dt−1

Dt⊥Y
d
∗
s

s t = s, s+ 1, . . . |X,Dt−1 = dt−1, Y
dt−1

t−1 = 0.
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where X are the observed covariates. That is conditional on survival up until t and a specific
dynamic treatment regime dt−1 treatment assignment in period t is random conditional on
the observed covariates. Assumption 1 holds in all situations where decisions are made
sequentially based on the survivor experience up to a certain time point. For instance, if case
workers assign unemployed individuals to ALMP programs based on time in unemployment
and a set of observed covariates. It is easy to show that it also holds in the more restrictive
setting where entire treatment regimes are randomly assigned conditional on covariates at at
time 0.

We also make an overlap condition

Assumption 2 (Overlap) For all t and dt−1

Pr(Dt = 1|X,Dt−1 = dt−1, Y
dt−1

t−1 = 0) = pt(X,dt−1) < 1.

Initially, we consider cases when dt′−1 = d
∗
t′−1, i.e. when the two dynamic treatment

regimes of interest are identical up to the point from where we consider survival. Naturally,
in most applications t′ will be the time point where d and d

∗
diverge for the first time. The key

identification problems are that the treatment may change at any point in time and that the
actual treatment regime is unobserved after the individual left the initial state. As already
discussed in the introduction this has important implications for the choice of control group.
In a dynamic setting where treatment is only imposed once Fredriksson and Johansson (2008)
and Crepon et al. (2009) show that those not-yet treated at t could be used as control group
to estimate the exit rate rates under no-treatment at t for those treated before t. Our setting
is more general as we allow treatment to start and end at any point in time. In this setting
we show that the exit rates under treatment regime dt could be identified using those that
follow the treatment regime d up until t but not necessarily after t as control group. This
resemblance the argument of using all not-yet treated as control group made by Fredriksson
and Johansson (2008) and Crepon et al. (2009).

Our main identification result is summarized in Theorem 1

Theorem 1 (Identification of ATET) Suppose that Assumption 1 and 2 hold. If dt′ = d
∗
t′

then for all t > t′ we have the following point identification result

ATETt,t′(dt, d
∗
t ) = (3)

EX|Dt′=dt′ ,Y t′−1=0

t∏
k=t′

Pr(Yk = 0|X,Dk = dk, Y k−1 = 0)−

EX|Dt′=dt′ ,Y t′−1=0

t∏
k=t′

Pr(Yk = 0|X,Dk = d
∗
k, Y k−1 = 0).

Proof Here consider the case when t′ = t− 1. Results for for arbitrary t and t′ are reported
in the appendix. For t′ = t− 1

ATETt,t′(dt, d
∗
t ) =
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Pr(Y dt
t = 0, Y

dt′
t′ = 0|Dt′ = dt′ , Y

dt′−1

t′−1 = 0)− Pr(Y
d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|Dt′ = dt′ , Y
dt′−1

t′−1 = 0)

Under assumption 1 (UC) and using the observational rule 1 we have

Pr(Y dt
t = 0, Y

dt′
t′ = 0|Dt′ = dt′ , Y

dt′−1

t′−1 = 0) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y dt

t = 0, Y
dt′
t′ = 0|X,Dt′ = dt′ , Y

dt′−1

t′−1 = 0) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y dt

t = 0|X,Dt′ = dt′ , Y
dt′
t′ = 0)Pr(Y

dt′
t′ = 0|X,Dt′ = dt′ , Y

dt′−1

t′−1 = 0)

= (UC at t) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y dt

t = 0|X,Dt = dt, Y
dt′
t′ = 0)Pr(Y

dt′
t′ = 0|X,Dt′ = dt′ , Y

dt′−1

t′−1 = 0)

= (obs. rule) =

EX|Dt′=dt′ ,Y t′−1=0 Pr(Yt = 0|X,Dt = dt, Y t′ = 0)Pr(Yt′ = 0|X,Dt′ = dt′ , Y t′−1 = 0)

= EX|Dt′=dt′ ,Y t′−1=0

t∏
k=t′

Pr(Yk = 0|X,Dk = dk, Y k−1 = 0,

and in addition since dt′−1 = d
∗
t′−1 we have

Pr(Y
d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|Dt′ = dt′ , Y
dt′−1

t′−1 = 0) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y

d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|X,Dt′ = dt′ , Y
dt′−1

t′−1 = 0) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y

d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|X,Dt′ = dt′ , Dt′−1 = d
∗
t′−1, Y

d
∗
t′−1

t′−1 = 0) =

= (UC at t∗) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y

d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|X,Dt′ = d
∗
t′ , Y

d
∗
t′−1

t′−1 = 0) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y

d
∗
t

t = 0|X,Dt′ = d
∗
t′ , Y

d
∗
t′

t′ = 0)Pr(Y
d
∗
t′

t′ = 0|X,Dt′ = d
∗
t′ , Y

d
∗
t′−1

t′−1 = 0)

= (UC at t) =

E
X|Dt′=dt′ ,Y

dt′−1
t′−1

=0
Pr(Y

d
∗
t

t = 0|X,Dt = d
∗
t , Y

d
∗
t′

t′ = 0)Pr(Y
d
∗
t′

t′ = 0|X,Dt′ = d
∗
t′ , Y

d
∗
t′−1

t′−1 = 0)

= (obs. rule) =

EX|Dt′=dt′ ,Y t′−1=0 Pr(Yt = 0|X,Dt = d
∗
t , Y t′ = 0)Pr(Yt′ = 0|X,Dt′ = d

∗
t′ , Y t′−1 = 0)

= EX|Dt′=dt′ ,Y t′−1=0

t∏
k=t′

Pr(Yk = 0|X,Dk = d
∗
k, Y k−1 = 0)

2.
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Next, if dt′−1 ̸= d
∗
t′−1. Then using the same reasoning as above we have

Pr(Y
d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|Dt′ = d
∗
t′ , Y

d
∗
t′−1

t′−1 = 0) = (4)

Pr(Y
d
∗
t

t = 0, Y
d
∗
t′

t′ = 0|Dt′ = d∗t′ , Dt′−1 = d
∗
t′−1, Y

d
∗
t′−1

t′−1 = 0) =

EX|Dt′=d
∗
t′ ,Y t′−1=0

t∏
k=t′

Pr(Yk = 0|X,Dk = d
∗
k, Y k−1 = 0).

However, if dt′−1 ̸= d
∗
t′−1 then because of the dynamic selection up until t′ − 1 the popu-

lation with Dt′ = dt′−1, Y
dt′−1

t′−1 = 0 will, in general, differ from the population with Dt′ =

d
∗
t′−1, Y

d
∗
t′−1

t′−1 = 0, so that the observed outcomes for the latter population is not enough to

point identify the outcomes of the former population. That is if dt′ ̸= d
∗
t′ thenATETt,t′(dt, d

∗
t ),

in general, is not point identified.

4 Weighted estimation

In this section we consider estimation of ATETt,t′(dt, d
∗
t ) for cases when dt′−1 = d

∗
t′−1. We

introduce a weighted Kaplan-Meier (KM) type of estimator, which estimates the outcomes
under treatment regime dt (d

∗
t ) using those that follow the treatment regime d (d

∗
) up until

t but not necessarily after t. This follows from the same reasoning as in the section on
identification. We have

ÂTET t,t′(dt, d
∗
t ) = (5)

t∏
k=t′

1− ∑
i∈Dt′−1=dt′−1,Y t′−1=0w

dk
k,t′(dt′)Yk,i1(Y k−1,i = 0)1(Dk,i = dk)∑

i∈Dt′−1=dt′−1,Y t′−1=0w
dk
k,t′(dt′)1(Y k−1,i = 0)1(Dk,i = dk)

−

t∏
k=t′

1− ∑
i∈Dt′−1=dt′−1,Y t′−1=0w

d
∗
k

k,t′(dt′)Yk,i1(Y k−1,i = 0)1(Dk,i = d
∗
k)∑

i∈Dt′−1=dt′−1,Y t′−1=0w
d
∗
k

k,t′(dt′)1(Y k−1,i = 0)1(Dk,i = d
∗
k)


where

wdk
k,t′(dt′) =

1∏k
m=t′+1 pdm(X,dm−1)

(6)

and

w
d
∗
k

k,t′(dt′) =
pdt′ (X,dt′−1)

pd∗
t′
(X,d

∗
t′−1)

∏k
m=t′+1 pd∗m(X,d

∗
m−1)

(7)

and

pdm(X,dm−1) =Pr(Dm = dm|X,Dm−1 = dm−1, Y
dm−1

m−1 = 0). (8)

In the appendix we show that this provides an asymptotically unbiased estimator of the
ATET .
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Several things are important to note about the estimator given by (5). First, it is a
weighted KM estimator, since the numerator re-weights the observed exits in a certain pe-
riod and the denominator re-weights the individuals at risk shortly before this time period.
Second, as already mentioned individuals are used in the estimation as long as they follow
the treatment regime of interest. At the point of divergence they are regarded as censored.
Naturally, individuals are followed the entire time in the initial state if they exit while being
on the treatment regime of interest. Third, individuals with a certain set of covariates are,
in general, given different weight in different periods. This follows since the weights depends
on the entire censoring up until the specific period, k. Fourth, the weights depend on the
inverse probability of remaining on the treatment regime of interest conditional on observed
covariates.

Fifth, briefly consider the intuition behind the weights. Take the case when dt is a
sequence of 0-s until t′ and the remaining values are 1, and when d

∗
t is a sequence of 0-s. In

this case the ATETt,t′(dt, d
∗
t ) reflects the effect on the average survival rate when comparing

no treatment up until t′ and always treated thereafter with never treated. Then, at t′ we

have wdk
k,t′(dt′) = 1 and

w
d
∗
k

k,t′(dt′) =
pdt′ (X,dt′−1)

pd∗
t′
(X,d

∗
t′−1)

=
pdt′ (X,dt′−1)

1− pdt′ (X,dt′−1)
(9)

where the second equality follows since dt′−1 = d
∗
t′−1, and since dt′ = 1 and d

∗
t′ = 0. Here the

outcomes of the individuals following treatment regime d
∗
t′ are re-weighted in order to mimic

the distribution of X in the population taking treatment regime dt′ . It is also exactly the
same weights encountered in the static matching literature. For the static case we have from
e.g. Wooldridge (2010) the following estimator of the average treatment effect on the treated

ATET = E
{
(D − p(X))Y

ρ(1− p(X))

}
= E

{
1

ρ
DY

}
− E

{
p(X)

ρ(1− p(X))
(1−D)Y

}
, (10)

where D and Y are treatment and outcome in the static setting, and ρ = Pr(D = 1), i.e.
the unconditional probability of entering treatment. Note that also here the outcomes of the
non-treated is not re-weighted and the outcomes of the non-treated are weighted with the
probability of entering treatment divided by 1 minus this probability. The only difference is
the presence of ρ. However, note that in our dynamic case with a KM type of estimator this
is captured by the expressions in the denominators.3

Next, using the same example we have at t′ + 1

w
d
∗
k

k,t′(dt′+1) =
pdt′ (X,dt′−1)

pd∗
t′
(X,d

∗
t′−1)pd∗t′+1

(X,d
∗
t′)

, (11)

so that the re-weighting serves two purposes. Besides re-weighting in order to mimic the
distribution of X among the population taking treatment regime dt′ the weights also correct

3For instance, at t′ for our example the denominator in the first part of the estimator is
∑

Dt′,i.
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for the selective censoring due to treatment assignment in period t′ + 1. More specifically,
in period t′ + 1 a fraction of all not-yet treated, i.e. on d

∗
, becomes treated, i.e. diverge

from d
∗
. This outflow is selective since the probability of diverging depends on the observed

covariates. Our estimator corrects for this selective drop-out by giving individuals with X
characteristics that makes likely to diverge from d

∗
are given larger weight.

Standard errors are obtained by bootstrapping. In practice the true propensity scores
are replaced by estimated propensity scores. The small sample properties of the estimator is
explored in a Monte Carlo simulation presented in section 5.

5 Simulation results

In this section we investigate the properties of the estimator introduced in section 4. In this
simulation we assume that if treated the individual remains treated in all subsequent periods.
One reason for this is that we wish to compare our estimator to other proposed estimators
for this special case. We assume that transitions out of the initial state are given by

Pr(Yi,t = 1|Y i,t−1 = 0) = [1 + exp(−(a0 + a1Xi + a2V
Y
i ))]−1 (12)

and that transitions into treatment are given by

Pr(Di,t = 1|Di,t−1 = 0) = [1 + exp(−(b0 + b1Xi + b2V
D
i ))]−1, (13)

where X is assumed to be observed by the econometrician, and V D and V Y are unobserved.
All three are taken as independently uniformly distributed on [-0.5,0.5]. In all simulations a0
= -3.0, and b0 is −4.5 or −2.0. This corresponds to cases with low and moderately high rate
of inflow into treatment, respectively. For the other parameters we consider three cases. In
a setting with neither observed nor unobserved heterogeneity we take a1 = b1 = a2 = b1 = 0,
the setting with only observed heterogeneity has a1 = b1 = 1, and in the most extended
setting with unobserved heterogeneity we in addition set a2 = b1 = 1. Note that the latter
setting allows the treatment and the outcome to be correlated through X, but not through
the unobserved effects, so that the sequential unconfoundedness assumption is fulfilled.

In the sample design we generate samples of sizes 20,000, 12,000 and 8,000. The number
of replications is 300. When we implement our weighted KM estimator we estimate the
treatment propensities using logit regression models and the standard errors are calculated
using bootstrap (99 replications).

As comparison we also run simulations for the estimator proposed by Fredriksson and
Johansson (2008). They propose a two-step matching estimator. In the first step a matched
sample of treated and controls is constructed using one-to-one matching. In the second
step this matched sample construct estimates of the survival rates under treatment and no-
treatment using two separate un-weighted KM estimators. In practice we implement this
estimator using 1-nearest neighbor propensity score matching, where the propensity score is
estimated using logit.

Tables 1 and 2 also report simulation results for the Fredriksson and Johansson (2008)
estimator. Based on the results for bias and size we confirm that this estimator performs well
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if there are no heterogeneity in the transition rate out of the initial state and in the transition
rate into treatment. However, in our second specification that includes correlated observed
heterogeneity the FJ estimator is severely biased. In our specification when individuals with
a high transition rate out the initial state also have a high probability to enter treatment the
FJ estimator, is as theoretically, predicted negatively biased. The bias is even more severe
when unobserved heterogeneity is included in our third specification.

6 Application to Swedish ALMP

In this section we study the effects of a work practice program governed by the Swedish public
employment service (PES). The aim of the program, directed toward long term unemployed, is
to provide the unemployed individual with practical experience and to maintain or strengthen
their productivity. The work practice could take place at both private and public employers.
The maximum duration is 6 months.

The population is taken from the population register Händel administrated by the PES. As
one requirement for payment from the unemployment insurance is that one is registered at the
PES this implies that we basically have full coverage of all unemployed job seekers in Sweden.
The register contatins information on the time when an individual (i) became unemployed, (ii)
entered into a labor market program, and (iii) the time of exit from unemployment. We also
have information on the reason for the exit (employment, education, social assistance, sickness
or disability insurance programs or unknown reason). Händel also includes a number of
personal characteristics recorded at the beginning of the unemployment spell and information
on eligibility for unemployment insurance (UI).4 To this data we have matched information
on marital status, household characteristics (e.g. number of children), labor income and
income from various insurance programs (e.g. sickness and disability insurance programs)
schemes from the population register LOUISE.

We sample all unemployed individuals in ages 25-55 at the time of entry into unemploy-
ment who has a spell of unemployment longer than 6 months in the period January 1, 1999
to December 31, 2003. We exclude unemployment spells starting within 180 days from the
last spell. For this population we construct detailed information on previous unemployment
episodes which is used as control variables. We aggregate the daily spell data to monthly
intervals.5We focus on individuals that enter work practice between 6 and 27 months of un-

4Unemployment benefits can be paid in two different ways, a fixed basic compensation or an income-related
amount based on previous earnings. To receive any compensation, the unemployed person must be at least
20 and fulfill: i) the basic conditions, and ii) the work condition. The basic conditions are a set of rules for
the unemployed. For instance, they state that he or she should be partially or completely unemployed and
prepared to accept suitable job offers. The work condition specifies that the unemployed person must have
been employed for approximately 6 out of the last 12 months preceding unemployment. If these requirements
are met, the unemployed person is qualified for the fixed basic compensation. To be eligible for the higher
income-related compensation you also need to have been a member of an unemployment insurance fund for
at least twelve months preceding the first day of unemployment.

5We mainly do this for presentation reasons. Remeber that we estimate specific average effects for each
possible start of treatment. Another reason is measurement error in the daily information. Finally, no-
anticipation implying that individuals do not know or cannot predict the exact timing of their assignment to
work practice is more likely to hold for monthly data then for daily data.
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employment. An unemployment spells that ended for other reasons than employment are
treated as a right-censored durations.6

Table 3 provides descriptive statistics for our sample of work practice spells and all other
unemployment spells used in the analysis. In total we have more than 500,000 unemploy-
ment spells and 8.4% (46,495 individuals) of the spells concerns participation in work practice.
36.3% (16,878 individuals) of those entering the program starts within 9 months of unemploy-
ment. Only 3.2 percent (1,488 individuals) of the participants starts in months 22-27. This
is, thus, a large and extensive program, with a high degree of dynamic treatment assignment.
62.7% of all observations are uncensored spells and among these spells the mean (median)
unemployment duration is 14.3 (10) months.

In the estimation we take use of estimated propensity scores. We estimate logit regression
models in which we include gender, age, age squared, number of unemployment days in the
last 5 years, level of education (5 categories), indicator for UI entitlement, region of resi-
dence (22 regions), indicator for at least one child in the household, marital status, country
of origin (3 categories) labor income, social benefits and unemployment insurance benefits
and calendar year. We include incomes and benefits both one and two years before the start
of the unemployment. Table 4 presents descriptive statistics on a subset of these covariates
for the treated and for the individuals that leave unemployment before enrollment into work
practice. From this table we can see that males, immigrants and individuals eligible for UI
are overrepresented among the participants. Furthermore the participants have more exten-
sive unemployment history. Individuals living in the Stockholm and Goteborg metropolitan
statistical area (MSA) and individuals with a university degree are less likely work practice
participants. All in all the two populations of treated and non-treated are rather similar. If
anything, the program participants are negatively selected population, so that they in absence
of treatment would have had longer unemployment spells compared to other unemployed.

In order for our estimator to provide consistent estimates the sequential unconfounded-
ness among survivors needs to hold. The implication of this is that conditional on our large
set of covariates treatment is randomly assigned among individuals still unemployed at each
unemployment duration. that individuals that treated early does not have shorter/longer du-
rations in the absence of the program than those treated later or never treated. Case workers
in Sweden have large influence over enrollment into different programs why self selection to
the PES program is less important (see e.g. Eriksson, 1997; Carling and Richardsson, 2001).
Moreover, Eriksson and Lagerström (2006, 2012) show that previous unemployment episodes
status negatively affects the chances of becoming employed. Time in unemployment should
therefore by important for treatment assignment. Also, note that we condition on detailed

6Unemployment benefits can be paid in two different ways, a fixed basic compensation or an income-related
amount based on previous earnings. To receive any compensation, the unemployed person must be at least
20 and fulfill: i) the basic conditions, and ii) the work condition. The basic conditions are a set of rules for
the unemployed. For instance, they state that he or she should be partially or completely unemployed and
prepared to accept suitable job offers. The work condition specifies that the unemployed person must have
been employed for approximately 6 out of the last 12 months preceding unemployment. If these requirements
are met, the unemployed person is qualified for the fixed basic compensation. To be eligible for the higher
income-related compensation you also need to have been a member of an unemployment insurance fund for
at least twelve months preceding the first day of unemployment.
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information on previous unemployment spells. Besides sequential unconfoundedness among
survivors treatment needs to be unanticpated, i.e. unemployed should not be able to predict
the exact timing of their assignment to work practice. Since there are several unpredictable
events leading to program enrollment, such as caseworkers discretionary power, we believe
that this assumption is fulfilled.

Treatment assignment probabilities each waiting time using logit regression models. As
illustration we present effect estimates using our weighted estimator and estimates using
the pre-matched but un-weighted estimator by Fredriksson and Johansson (2008). It is
implemented using a one-to-one nearest neighborhood matching strategy. We match on the
same estimated propensity score as was used for our weighting estimator.

Figure 2 displays the results for a selection of waiting or enrollment times. They are pre-
sented using the difference in fraction re-employed as outcome for each of the 24 months after
program start. Initially, consider the results for enrollment after 7 months of unemployment.
For this enrollment time we find that for the first 2-3 months the exit rates are lower among
program participants. This is in line with results from training and employment subsidy
programs (see e.g. Forslund et al., 2004; Forslund and Vikström, 2011). This locking-in
effect most likely is due to lower search effort during the program. After this initial period
participant gradually catch-up and about 10 months after the enrollment to the program the
fraction employed is higher. This effect on employment rate is maintained during the entire
follow-up horizon (up to 25 month after entering into the program). We find similar patterns
for waiting times up to 13 months. For longer waiting times we also find locking-in effects,
but participants never fully catch-up with those who did not enroll at the given time. The
problem with the evaluation of enrolling at longer time periods is that few individuals start
their work practice at a given month why the precision of our estimates is low. Considering
the comparison with the Fredriksson and Johansson (2008) estimator we can see that there
are quite small differences for waiting times up to 16 months. For longer waiting times to
treatment there are some differences.

7 Conclusions

In this paper, we have implemented a weighted KM estimator for the average effects on
survival time of dynamic treatment regimes under sequential unconfoundedness. The iden-
tification and estimation problems arise since the dynamic setting considered in this paper
is plagued by both dynamic treatment assignment as well as dynamic selection. The former
due to the fact that treatment is allowed to start and stop at any point in time. The latter
since the outcome of interest is the duration in an initial state.
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Tables and Figures

Figure 1: Transition rate into program by time in unemployment
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Figure 2: Effect of work practice on fraction reemployed. By time to program start
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(a) 7 months waiting time
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(b) 10 months waiting time

−
.0

6
−

.0
4

−
.0

2
0

.0
2

E
ffe

ct
 o

n 
fr

ac
tio

n 
w

ith
 e

m
pl

oy
m

en
t

0 5 10 15 20 25
Months since program start

Weighted FJ

(c) 13 months waiting time
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(d) 16 months waiting time
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(e) 21 months waiting time
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(f) 23 months waiting time
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(g) 25 months waiting time
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(h) 27 months waiting time
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Table 1: Monte Carlo results for the weighted estimator under different model specifications

Weighted FJ
Size Bias MSE Size Bias MSE

No heterogeneity [a1 = b1 = a2 = b2 = 0], low inflow β0 = −4.5
t = 1 0.090 -0.99 0.25 0.047 -1.36 0.41
t = 2 0.053 -0.94 0.37 0.050 -0.63 0.78
t = 3 0.057 -2.46 0.57 0.057 0.37 1.14
t = 5 0.063 -1.90 0.89 0.053 -2.16 1.65
t = 7 0.070 -0.78 1.11 0.053 -6.18 2.07
t = 10 0.070 1.14 1.18 0.040 -5.33 2.00
No heterogeneity [a1 = b1 = a2 = b2 = 0], large inflow: β0 = −2.0
t = 1 0.057 -0.36 0.02 0.070 0.00 0.04
t = 2 0.047 -0.41 0.03 0.063 -0.39 0.07
t = 3 0.047 -0.23 0.05 0.063 -0.31 0.10
t = 5 0.063 -0.45 0.08 0.090 -0.72 0.19
t = 7 0.073 -0.32 0.13 0.073 -1.40 0.32
t = 10 0.057 -0.07 0.14 0.087 -1.22 0.38
Observed heterogeneity [a1 = b1 = 1, a2 = b2 = 0], low inflow: β0 = −4.5
t = 1 0.040 0.21 0.18 0.077 0.76 0.55
t = 2 0.023 -0.94 0.34 0.060 1.06 0.87
t = 3 0.047 -0.63 0.46 0.053 0.22 1.10
t = 5 0.037 0.67 0.56 0.057 -0.25 1.67
t = 7 0.063 -0.05 0.71 0.063 -2.81 2.29
t = 10 0.050 -0.80 0.67 0.050 -3.99 2.27
Observed heterogeneity [a1 = b1 = 1, a2 = b2 = 0], large inflow: β0 = −2.0
t = 1 0.043 -0.47 0.02 0.060 -0.05 0.04
t = 2 0.040 -0.28 0.04 0.093 -0.35 0.10
t = 3 0.037 -0.13 0.05 0.103 -1.18 0.15
t = 5 0.053 -0.03 0.08 0.097 -3.85 0.22
t = 7 0.043 -0.13 0.11 0.113 -10.76 0.44
t = 10 0.057 0.00 0.12 0.117 -11.87 0.47
Observed and unobserved heterogeneity [a1 = b1 = a2 = b2 = 1], low inflow: β0 = −4.5
t = 1 0.070 -1.53 0.20 0.037 -1.17 0.35
t = 2 0.050 -1.43 0.29 0.053 -2.67 0.63
t = 3 0.037 -0.73 0.35 0.050 -1.79 0.79
t = 5 0.030 -0.85 0.35 0.073 -1.40 0.94
t = 7 0.050 0.18 0.32 0.060 -4.15 0.74
t = 10 0.067 -0.20 0.31 0.047 -4.35 0.67
Observed and unobserved heterogeneity [a1 = b1 = a2 = b2 = 1], large inflow: β0 = −2.0
t = 1 0.047 -0.14 0.03 0.077 -0.05 0.07
t = 2 0.047 -0.08 0.05 0.090 -1.85 0.14
t = 3 0.080 -0.68 0.08 0.127 -4.38 0.20
t = 5 0.053 -0.84 0.09 0.170 -9.76 0.32
t = 7 0.053 -0.77 0.10 0.230 -16.69 0.56
t = 10 0.080 -0.64 0.10 0.260 -19.03 0.63

Note: Results for a logistic simulation model (a0 =-3.0 in all specifications). The standard errors for the
weighted estimator is based on bootstrap (99 replications). Size is for 5% level tests for the treatment
parameter which enters the model with a true coefficient equal to zero. The table also reports the mean
bias (Bias) and mean squared error (MSE). The design uses 20,000 observations and the results are based
on 300 replications.
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Table 2: Monte Carlo results for the weighted estimator under different sample sizes

Weighted FJ
Size Bias MSE Size Bias MSE

Sample size 20,000
t = 1 0.047 -0.14 0.03 0.077 -0.05 0.07
t = 2 0.047 -0.08 0.05 0.090 -1.85 0.14
t = 3 0.080 -0.68 0.08 0.127 -4.38 0.20
t = 5 0.053 -0.84 0.09 0.170 -9.76 0.32
t = 7 0.037 -0.82 0.09 0.200 -13.69 0.44
t = 10 0.080 -0.64 0.10 0.260 -19.03 0.63
Sample size 12,000
t = 1 0.050 0.36 0.03 0.063 0.20 0.07
t = 2 0.060 0.33 0.07 0.067 0.07 0.14
t = 3 0.057 0.45 0.10 0.053 -0.83 0.22
t = 5 0.057 0.33 0.15 0.073 -1.88 0.35
t = 7 0.050 0.18 0.17 0.093 -5.53 0.52
t = 10 0.033 -0.80 0.20 0.127 -10.57 0.74
Sample size 8,000
t = 1 0.067 -0.38 0.06 0.023 0.00 0.09
t = 2 0.067 -0.72 0.10 0.067 -0.05 0.21
t = 3 0.037 -0.13 0.14 0.053 -0.23 0.32
t = 5 0.047 -0.20 0.23 0.060 -2.56 0.48
t = 7 0.060 0.11 0.29 0.083 -6.87 0.69
t = 10 0.057 -2.25 0.36 0.100 -13.67 1.09

Note: Results for a logistic simulation model with a0 =-3.0, a0 =-2.0 and a1 = b1 = a2 = b2 = 1 in all
specifications. The standard errors for the weighted estimator is based on bootstrap (99 replications). Size
is for 5% level tests for the treatment parameter which enters the model with a true coefficient equal to
zero. The table also reports the mean bias (Bias) and mean squared error (MSE). The results are based on
300 replications.
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Table 3: Sample statistics for time in unemployment and time until work practice

Regardless of treatment

# spells 553,510
% spells with work practice 8.4
% uncensored 62.7
average unemployment duration 14.3 (11.4)
median unemployment duration 10

Concerning spells with work practice
# spells 46,247
% not censored 71.4
average unemployment duration 26.7 (17.9)
median unemployment duration 21
average time to program start 13.9 (8.6)
median time to program start 11
% program start in
6-9 months 36.3
10-12 months 17.5
13-15 months 14.5
16-18 months 9.0
19-21 months 5.9
22-24 months 4.1
25-27 months 3.2

Notes: The time unit is month. Standard deviations in parentheses.
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Table 4: Sample statistics treated and non-treated in our sample

Variable No work practice Work practice

Female (%) 51.1 49.6
Age 37.2 (8.2) 38.1 (8.4)
Foreign born (%) 30.9 33.1 ()
Married (%) 38.7 39.7 ()
Children in household (%) 49.2 49.5 ()
Eligible for UI (%) 82.5 89.0 ()
High School education (%) 44.5 46.6
University education (%) 32.2 29.7
Stockholm MSA (%) 19.6 10.3
Goteborg MSA (%) 18.3 12.8
Sk̊ane (%) 14.5 14.4
North (%) 13.9 20.8
South (%) 11.1 13.5
Previous unemployment 326 (390) 416 (452)
Labor income year -1 112,900 (131,000) 101,300 (110,500)
Labor income year -2 107,500 (129,800) 95,800 (107,600)
Social benefits year -1 (%) 15.4 15.8
Social benefits year -2 (%) 15.9 16.7
UI benefits year -1 (%) 30.5 36.2
UI benefits year -2 (%) 31.2 37.0

Note: Previous unemployment is in days of unemployment during 5 years before the start of the unemploy-
ment spell. Labor income is in SEK. Standard deviations in parentheses.
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Appendix: Proofs

In this appendix the population with Dt−1 = dt−1, Y
dt−1

t−1 = 0 will be denoted Wt.

Properties of (5)

First, consider the first part of the estimator when k = t′. Since w
dt′
t′,t′(dt′) = 1 and using the

observational rule in (1) we, trivially, have

E
[
w

dt′
t′,t′(dt′)Yt′,i1(Dt′,i = dt′)|X,Wt′−1

]
= Pr

(
Y

dt′
t′ = 1, Dt′ = dt′ |X,Wt′−1

)
, (A.1)

and
E
[
w

dt′
t′,t′(dt′)1(Dt′,i = dt′)|X,Wt′−1

]
= Pr

(
Dt′ = dt′ |X,Wt′−1

)
. (A.2)

Second, consider the second part of the estimator when k = t′. If assumption 1 holds, using (1)

and since dt′−1 = d
∗
t′−1

E
[
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d
∗
t′
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Using UC at t′ and that dt′−1 = d
∗
t′−1
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Using similar reasoning as above

E
[
w

d
∗
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t′,t′(dt′)1(Dt′,i = d
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t′)X,Wt′−1
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. (A.5)

Third, consider the first part of the estimator when k = t′ + 1. If assumption 1 holds and using

(1)

E
[
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dt′+1
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(
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and by similar reasoning
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Fourth, consider the second part of the estimator when for k = t′+1. If assumption 1 holds, using
(1) and since dt′−1 = d
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t′ = 0

]
Pr

(
Y

d
∗
t′

t′ = 0|X,Dt′ = d
∗
t′ , Y

d
∗
t′−1

t′−1 = 0

)
pd

t′ (X,dt′−1)

=(UC at t′) =

E
[
Y

d
∗
t′+1

t′+1 |X,Dt′ = dt′ , Y
d
∗
t′

t′ = 0

]
Pr

(
Y

d
∗
t′

t′ = 0|X,Dt′ = dt′ , Y
d
∗
t′−1

t′−1 = 0

)
pd

t′ (X,dt′−1)

Pr

(
Y

d
∗
t′+1

t′+1 = 1, Y
d
∗
t′

t′ = 0, Dt′ = dt′ |X,Wt′−1

)
,

and by similiar reasoning

E
[
w

d
∗
k

t′+1,t′(dt′)1(Y t′,i = 0)1(Dt′+1,i = d
∗
t′+1)|X,Wt′−1

]
= Pr

(
Y

d
∗
t′

t′ = 0,Dt′ = dt′ |X,Wt′−1

)
. (A.9)
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Then taking the probability limit of (5)

p lim
N→∞

ÂTET t,t′(dt, d
∗
t ) = (A.10)

t∏
k=t′

1− E
[
wdk

k,t′(dt′)Yk,i1(Y k−1,i = 0)1(Dk,i = dk)
]

E
[
wdk

k,t′(dt′)1(Y k−1,i = 0)1(Dk,i = dk)
]

−

t∏
k=t′

1− E
[
w

d
∗
k

k,t′(dt′)Yk,i1(Y k−1,i = 0)1(Dk,i = d
∗
k)
]

E
[
w

d
∗
k

k,t′(dt′)1(Y k−1,i = 0)1(Dk,i = d
∗
k)
]

 .

Using that the equations (A.1)-(A.9) the unconditional on X are the same too and similiar reasoning
for k = t′ + 1, ..., t we have

p lim
N→∞

ÂTET t,t′(dt, d
∗
t ) =

t∏
k=t′

1− Pr

(
Y dk

k = 1, Y
dk−1

k−1 = 0,Dt′ = dt′ |X, πt′−1

)
Pr

(
Y

dk−1

k−1 = 0, Dt′ = dt′ |X, πt′−1

)
−

t∏
k=t′

1− Pr

(
Y

d
∗
k

k = 1, Y
d
∗
k−1

k−1 = 0, Dt′ = dt′ |X, πt′−1

)
Pr

(
Y

d
∗
t′

k−1 = 0, Dt′ = dt′ |X, πt′−1

)


t∏
k=t′

[
1− Pr

(
Y dk

k = 1, |X, Y
dk−1

k−1 = 0, Dt′ = dt′

)]
−

t∏
k=t′

[
1− Pr

(
Y

d
∗
k

k = 1, |X, Y
d
∗
k−1

k−1 = 0, Dt′ = dt′

)]
=

Pr(Y
dt

t = 0|Dt′ = dt′ , Y
dt′−1

t′−1 = 0)− Pr(Y
d
∗
t

t = 0|Dt′ = dt′ , Y
dt′−1

t′−1 = 0) = ATETt,t′(dt, d
∗
t ).
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