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1 Introduction

This paper applies the insights of dynamic discrete choice models to continuous-
time job search models. The idea of our approach is to adapt conditional choice
probabilities to a continuous-time job search environment. To do so, our framework
incorporates preference shocks into the search framework, resulting in a tight connec-
tion between value functions and conditional choice probabilities (henceforth CCP).
These preference shocks represent the relative attractiveness of a new job compared
to the current state of the individual (employed or unemployed), and affect the in-
stantaneous utility associated with that particular job. As a result, and consistent
with recent empirical evidence that workers tend to accept particular job offers with
probabilities that are significantly different from zero or one (Krueger and Mueller,
2016, and Wiswall and Zafar, 2018), future job offers associated with particular wages
will only be accepted probabilistically from the perspective of the worker.

Our approach has two key advantages. The first one is related to identification.
We consider a class of nonstationary job search models that incorporates on-the-job
search, non-pecuniary job attributes, and involuntary wage transitions. We establish
constructive identification of all of the model parameters, up to the discount rate. In
particular, and in contrast with the non-identification result of Flinn and Heckman
(1982), we are able to separately identify the offered wage distribution both from
employment and unemployment—the latter allowed to vary over time—without hav-
ing to assume recoverability of the underlying distribution. Key to our identification
strategy is the existence of preference shocks, that allow us to express the employment
and unemployment value functions as functions of the conditional choice probabili-
ties. Under this framework, we derive closed-form expressions for most of the model
parameters where the expressions depend on the hazard rates associated with the
different types of labor market transitions.

The second key advantage is computational. While the empirical labor search litera-
ture has been rapidly growing over the last few years, structural estimation of these
models often remains challenging. This is particularly true for models in nonstation-
ary environments, which tend to be the norm rather than the exception in the context
of job search (van den Berg, 2001, 1990, Cahuc, Carcillo, and Zylberberg, 2014). We
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provide a novel empirical framework that makes it possible to estimate nonstationary
job search models in a simple, tractable, and transparent way.

We apply our method using rich longitudinal administrative data from Hungary. The
dataset consists of half of the population, i.e., 4.6 million individuals, who are linked
across 900 thousand firms. An important feature of the Hungarian data is that indi-
viduals are observed on a monthly basis, making it possible to follow the labor force
transitions at a high frequency. In practice we consider a flexible parametric specifi-
cation that allows for unobserved heterogeneity through worker types, and devise a
sequential estimation procedure that builds on the insights of Arcidiacono and Miller
(2011) but applies them to a continuous-time search environment.

The data reveal sharp decreases over time in accepted wages out of unemployment.
Among those who find a job before benefit expiration, those with the shortest 25% of
unemployment durations were a little over half as likely to exit to a minimum wage
job than those with the longest 25% of unemployment durations. Estimates of the
model show that this in part is the result of the wage offer distribution becoming
worse as unemployment duration increases. With the offer arrival rate also declining
as unemployment duration increases, workers become increasingly less selective in
which jobs they are willing to accept. The decline in accepted wages is then a result
both of facing worse wage offer distributions but also changes in the job acceptance
rate. These results show that nonstationarities along multiple dimensions play a
central role in describing the search environment over the course of unemployment.

This paper fits into several literatures. First, it contributes to the literature on the
estimation of dynamic discrete choice models using conditional choice probabilities.
Since the seminal work of Hotz and Miller (1993), CCP methods have been increas-
ingly used as a way to estimate complex dynamic discrete choice models at a limited
computational cost (see surveys by Aguirregabiria and Mira, 2010 and Arcidiacono
and Ellickson, 2011). While CCP methods have been used a variety of settings, they
have been mostly used in a discrete time environment. Two recent exceptions are Ar-
cidiacono, Bayer, Blevins, and Ellickson (2016) and Agarwal, Ashlagi, Rees, Somaini,
and Waldinger (2021), who apply CCP methods to estimate dynamic equilibrium
models of market competition and an equilibrium model of kidney allocations, re-
spectively. CCP methods are also generally used to estimate dynamic discrete choice
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models in the absence of search frictions, an exception being recent work by Ransom
(2021). We contribute to this literature by exploring the use of CCP methods to
identify and estimate job search models in continuous time.1

This paper also contributes to the empirical job search literature. Since the semi-
nal work of Flinn and Heckman (1982), a large number of papers have structurally
estimated various types of job search models (see Eckstein and van den Berg, 2007
for a survey). In this literature, structural parameters are generally estimated via
maximum likelihood or indirect inference methods, where the full model needs to be
solved within the estimation procedure and often have to incorporate a strict cutoff
for whether the offer exceeds the reservation wage. Nonstationarity in job search,
which arises in particular when the level of unemployment benefits varies over the
unemployment spell, is an important case where the computational demands are
especially high. Since the seminal work of van den Berg (1990) who structurally
estimated a continuous-time nonstationary search model,2 examples of structural es-
timates of nonstationary job search models remain scarce, in part because of the
computational burden involved. Important exceptions include Cockx, Dejemeppe,
Launov, and Van der Linden (2018), Launov and Walde (2013), Robin (2011), Lol-
livier and Rioux (2010), Paserman (2008), and Frijters and van der Klaauw (2006).

We contribute to this literature by providing a novel empirical framework, based on
a constructive identification strategy, that makes it possible to estimate a rich class
of nonstationary job search models in a simple and tractable way (see French and
Taber, 2011 for an overview of the literature on the identification of search models).
Key to our identification strategy is the existence of preference shocks and, in that
sense, our approach is similar in spirit to Sorkin (2018). Our paper also complements
recent work by Sullivan and To (2014) and Taber and Vejlin (2020) who consider the
identification of search models that allow for non-pecuniary job attributes. In contrast
to these papers, we consider a nonstationary environment and show that virtually all
of the parameters are obtained as analytical expressions of the underlying hazard
rates. On the other hand, an important difference with Taber and Vejlin (2020) is

1See also Llull and Miller (2018), who make use of CCP methods to estimate a stationary continuous-
time job search model in the context of internal migration in Spain.

2See also Wolpin (1987), which is the first study to estimate a (discrete time) nonstationary search
model.
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that they consider an equilibrium search framework, while our framework is partial
equilibrium.

Finally, our application fits into the vast and growing empirical literature that in-
vestigates the impact of unemployment benefit levels and duration on labor supply
(see, e.g., Johnston and Mas, 2018, Nekoei and Weber, 2017, Le Barbanchon, Rath-
elot, and Roulet, 2017, Lollivier and Rioux, 2010, Card, Chetty, and Weber, 2007,
van den Berg, 1990, and Schmieder and von Wachter, 2016 and Krueger and Meyer,
2002 for overviews of this literature). Consistent with many of these earlier studies,
our estimation results provide evidence that nonstationarity plays an important role
in describing the search environment over the course of the unemployment spell. A
central feature of our empirical strategy is that it leverages the direct links that exist
between reduced form hazard rates from unemployment to employment, or from one
job to another, and the structural parameters of the model. Beyond the specific ap-
plication we consider in this paper, a similar approach can be readily used to identify
and estimate other types of search models (see Gyetvai, 2021, for an application to
occupational mobility).

The rest of the paper is structured as follows. In Section 2, we introduce and discuss
the general setup of the nonstationary search model we consider throughout the paper.
Section 3 shows identification of the model parameters. In Section 4 we discuss the
data used to estimate the model. Section 5 presents our estimation procedure, with
Section 6 discussing the estimation results. Section 7 concludes.

2 Model

2.1 The environment

Consider an economy in continuous time with infinitely lived workers, who discount
the future at a rate ρ > 0. Both employed and unemployed workers are looking
for jobs. Job offers are characterized by a wage, w, and a job type, s. Job types
capture non-wage characteristics such as firm, occupation, or industry, or any other
compensating differentials. The distribution of wages and job types are assumed to
be discrete with W and S support points. Denoting w and w as the minimum and
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maximum wages, the support for wages and job types is given by Ωw = {w, . . . , w}
and Ωs = {1, . . . , S}, respectively. Conditional on receiving an offer from a particular
job type s, the offered wage distributions depend on whether or not one is currently
employed and, if not employed, the duration of unemployment, t. The probabil-
ity mass functions for wage w are given by f sw for the employed and gsw(t) for the
unemployed.

We model job offer arrivals from the different job types as Poisson processes, and allow
employed and unemployed workers to sample jobs at different frequencies. While
working at a job of type s, the offer arrival rate for jobs of type s′ is given by λss′ .
The offer arrival rate for the unemployed for type-s jobs may vary with the duration
of the unemployment spell, t, and is given by λs(t). Unemployed workers also receive
benefits, b(t), that depend on the duration of the spell.3 The wage offer distribution
(gsw(t)), the unemployed offer arrival rates (λs(t)), and the benefits (b(t)) are the three
sources of nonstationarity in this model.

While this model shares many of the features of the continuous-time job search mod-
els that have been estimated in the literature, a key distinction is that it incorporates
preference shocks into the search framework. This feature is instrumental to our ap-
proach as it makes it possible to connect the value functions of unemployment and
employment to the conditional choice probabilities. Specifically, job offers are associ-
ated with a wage and a job type, but also with a preference shock. This preference
shock, ε, is drawn independently whenever a new job offer arrives. The preference
shock represents the relative attractiveness of a new job compared to the current state
of the individual (employed or unemployed), and is supposed to affect the instanta-
neous utility.

2.2 Value of employment

The flow payoff of working is assumed to be the sum of two parts: the utility of
the wage paid, uw, and the non-pecuniary payoff of working in a job of type s, φs.
Without loss of generality, we normalize φ1 = 0. Workers employed in a job (w, s)

3In practice, following much of the search literature, we treat unemployment and non-participation
as a single state.
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can experience three different types of transitions. First, they may be laid off and
become unemployed, which happens at a rate δs0.4 Second, within the same firm, they
may exogenously transition to a different wage w′ and job type s′. These involuntary
within-firm changes occur at a rate δss′ww′ , with the convention that δssww = 0. Third,
workers may receive an offer from another firm for a job of type s′ at a rate λss′

and then decide whether to accept it or stay with their current job. These voluntary
transitions are associated with an instantaneous cost of switching jobs, css′ , and we
assume that the switching costs are symmetric (css′ = cs

′s for all s, s′). These cross-
firm transitions occur both between (s′ 6= s) and within (s′ = s) job types.

We now turn to the value of employment, V s
w. The Bellman equation in this case

writes:(
ρ+ δs0 +

∑
w′

∑
s′
δss
′

ww′ +
∑
s′
λss

′
)
V s
w = uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′V
s′

w′ (2.1)

+
∑
w′

∑
s′
λss

′
f s
′

w′Eε max
{
V s′

w′ − css
′ + ε, V s

w

}

where V0(0) is the value of unemployment immediately upon entering an unemploy-
ment spell (t = 0). Following Arcidiacono and Miller (2011) and Arcidiacono et al.
(2016), we can re-express Equation 2.1 such that some the value functions on the
right-hand side are eliminated. Assuming that the shocks ε are drawn from a logistic
distribution, we can rewrite Equation 2.1 as:

(
ρ+ δs0 +

∑
w′

∑
s′
δss
′

ww′

)
V s
w = uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′V
s′

w′

−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

)
(2.2)

where pss′ww′ denotes the probability of accepting a new job offer of type s′ at w′ given
the current job type s and wage rate w.

Prior to the realization of ε, the probability of a job of type s′ paying w′ being accepted

4Our identification strategy would also readily apply to a more general setup where transitions to
unemployment are allowed to be wage-specific. For simplicity, we focus on the case where these
transition rates depend on job types only.
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given current job type s paying w is then:

pss
′

ww′ =
exp

(
V s′
w′ − css

′
)

exp (V s
w) + exp

(
V s′
w′ − css

′
) (2.3)

2.3 Value of unemployment

We now write the problem of the unemployed individuals. Indexing by t time spent
unemployed, we first write the Bellman equation for the unemployment value function
V0(t) in discrete time:5

V0(t) = b(t)∆t+ ∆t
1 + ρ∆t

∑
w

∑
s

λs(t)gsw(t+ ∆t)Eε max {V s
w + ε, V0(t+ ∆t)}

+1−∑s λ
s(t)∆t

1 + ρ∆t V0(t+ ∆t)

where ∆t denotes the discrete time unit and where the equation can be rewritten as:

ρV0(t) = b(t)(1+ρ∆t)+
∑
w

∑
s

λs(t)gsw(t+∆t)Eε max {V s
w − V0(t+ ∆t) + ε, 0}+V0(t+ ∆t)− V0(t)

∆t

Next, letting ∆t→ 0, and denoting by V̇0(t) the derivative of the V0(t) with respect
to unemployment duration and by psw(t) the probability of accepting a job offer of
type s and wage w at time t, we obtain the following differential equation in V0(·):

ρV0(t) = b(t)−
∑
w

∑
s

λs(t)gsw(t) ln (1− psw(t)) + V̇0(t) (2.4)

A couple of remarks are in order. First, Equation 2.4 now involves the derivative of
the value of unemployment with respect to duration of unemployment, V̇0(t). This
term represents the change in the option value of job search due to variation over
time in the value of unemployment. In the particular case where nonstationarity
arises because of over-time changes in the level of unemployment benefits, the option
value of searching for a job will decrease as job seekers get closer to the unemployment
benefit expiration date.
5Note that we rely here on the implicit normalization of a zero switching cost from unemployment
to employment. This is an innocuous normalization as the flow utility of unemployment, b(t), can
be rewritten wlog. as b(t) + (ρ+ δ)c0, where c0 denotes the switching cost out of unemployment.
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Second, Equation 2.4 is a simple linear first-order differential equation in V0(·), which
admits an exact analytical solution as a function of the structural parameters and
the conditional choice probabilities psw(t).6 The existence of preference shocks ε is
key here. Absent these shocks, V0(t) would satisfy instead the following nonlinear
differential equation:

ρV0(t) = b(t) +
∑
s

∑
w

λs(t)gsw(t) max {V s
w − V0(t), 0}+ V̇0(t)

This is a highly non-trivial differential equation which would need to be solved nu-
merically, similar to van den Berg (1990) in a simpler context without on-the-job
search.

3 Identification

We have shown in the previous section that the unemployment and employment
value functions can be expressed as a function of the structural parameters of the
model, the wage offer distributions, and the conditional job acceptance probabilities.
There are two fundamental differences compared to a Hotz-Miller type approach for
dynamic discrete choice models. First, in a search environment, choices (i.e., job offer
acceptance or rejection) are generally not observed by the analyst. Second, wage
offers are generally unobserved as well. Nonetheless, we provide in the following a
simple constructive identification strategy for the parameters of the job search model
introduced in Section 2. These results hold in a standard empirical setting where one
has access to longitudinal data on (i) across-firm job-to-job transitions, (ii) within-firm
transitions, (iii) transitions from unemployment to employment, and (iv) transitions
from employment to unemployment.

Note that we assume throughout that wages are drawn from a discrete distribution
with finite support. This distribution can be thought of as a discrete approxima-
tion to the underlying continuous wage distribution. We maintain this assumption
throughout our analysis for simplicity, but our constructive identification strategy

6As we discuss in the section below, V0(t) and V̇0(t) can be directly identified (and estimated) from
the log-odds ratios out of unemployment, without having to solve any differential equation.
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readily applies to the case of continuous wage distributions.7

3.1 Assumptions

We first introduce four assumptions that relate to the types of transitions that are
observed in the data. Namely, we denote by A1, A2, A3 and A4, respectively, the
assumptions that the following hazard rates are identified from the data:

A1 hss
′

ww′ , the hazard rate of moving from a job with wage w and type s to a job
with wage w′ and type s′ (in a different firm);

A2 hsw(t), the hazard rate out of unemployment at time t to a job that pays w and
is of type s;

A3 δss
′

ww′ , the hazard rate of within-firm wage and type changes;

A4 δs0, the hazard rate from a type-s job to unemployment.

As is standard for this class of models, we also maintain the assumption that the
discount rate ρ is known.

The involuntary within-job changes (δss′ww′) and transitions to unemployment (δs0) are
identified directly from the data. We next show that these rates, coupled with the
across-firm hazards and transitions out of unemployment, can be used to recover
closed-form solutions for the employed and unemployed wage offer distributions (f sw
and gsw(t)); the pecuniary and non-pecuniary payoffs of the job (uw and φs) each up
to a constant; the cost of switching jobs (css′); the arrival rates for those who are
employed and unemployed (λss′ and λs(t)); and unemployment benefits (b(t)). All of
our identification results are subject to the model specification given in Section 2.

3.2 Identification of the employed-side parameters

We begin by showing identification of the employed wage offer distributions for each
job type, f sw, proving the following lemma:
7Specifically, the hazard rates associated with the transitions to and from any given pair of wages
(w,w′) are directly identified from the data when wages are continuously distributed. Such hazard
rates are also known in the statistical literature as the conditional mark-specific hazard function
(see, e.g., Sun et al., 2009, Equation (1) p.395).
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Lemma 1 Assumption A1 is sufficient to identify f sw. Further, f sw has the following
solution:

f sw = hssww∑
w′ h

ss
w′w′

(3.1)

To prove the lemma, first note that the hazard hss′ww′ can be expressed as the product
of (i) the arrival rate of offers to job type s′ given the current job type is s (λss′),
(ii) the pmf of w′ for offered wages in job type s′ (f s′w′), and (iii) the probability of
accepting a job of type s′ paying wage w′ given current job type s and wage w′ (pss′ww′):

hss
′

ww′ = λss
′
f s
′

w′p
ss′

ww′ (3.2)

Now consider the hazard rate to a job that is of the same type and pays the same
amount as the current job (hssww). From Equation 2.3, the probability of accepting a
job in this case does not depend on w: pssww = pssw′w′ for all {w,w′}. That is, since
the wage and job type are the same, so too are the value functions. Hence when
the transitions are to same-type and same-pay jobs, the ratio of the hazards for two
different initial wages is the ratio of the pmfs for the two wages:

f sw
f sw′

= hssww
hssw′w′

Summing over w′ then gives the result:

f sw = hssww∑
w′ h

ss
w′w′

Next consider identification of the employed offer arrival rates (λss′) which then im-
mediately leads to identification of the conditional choice probabilities and switching
costs. Closed form solutions exist for each of these as well:

Lemma 2 (i) A sufficient condition for Assumption A1 to identify λss is that there
exists a triple (w,w′, w̃) ∈ Ω3

w such that f sw̃hssww′hssw′w 6= f sw′h
s
w̃wh

ss
ww̃.

(ii) For x ∈ {w′, w̃}, let Ax = f s
′
x f

s
xh

ss′
wwh

s′s
ww − f s

′
w f

s
wh

ss′
xxh

s′s
xx , Bx = f s

′
x h

s′s
xxh

ss′
wwh

s′s
ww −

f s
′
w h

s′s
wwh

ss′
xxh

s′s
xx , and Cx = f swh

ss′
xxh

ss′
wwh

s′s
ww − f swh

ss′
wwh

ss′
xxh

s′s
xx . A sufficient condi-

tion for Assumption A1 to identify λss′ for s 6= s′ is that there exists a triple
(w,w′, w̃) ∈ Ω3

w such that:
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(a) Aw′ 6= 0

(b) Bw′Aw̃ −Bw̃Aw′ 6= 0

(c) Aw′Cw̃ − Aw̃Cw′ 6= 0

Further, when these conditions are met, there are closed-form expressions for λss′,
css
′, psw, and V s

w.

We show identification and the closed-form expression for λss in the text with the
corresponding proof for λss′ given in Appendix A.1.1. To begin, note that the distri-
butional assumption on the preference shocks ε yields a simple relationship between
probabilities of accepting a new job offer, the employment value functions, and the
switching cost:

ln
(

pssww′

1− pssww′

)
= V s

w′ − css − V s
w (3.3)

implying:

ln
(

pssww′

1− pssww′

)
+ ln

(
pssw′w

1− pssw′w

)
= −2css (3.4)

Solving Equation 3.2 for pssww′ ,

pssww′ = hssww′

λssf sw′
(3.5)

it follows that, for any given triple (w,w′, w̃) ∈ Ω3
w:

ln
(

hssww′

λssf sw′ − hssww′

)
+ ln

(
hssw′w

λssf sw − hssw′w

)
= ln

(
hssww̃

λssf sw̃ − hssww̃

)
+ ln

(
hssw̃w

λssf sw − hssw̃w

)
(3.6)

Solving for λss under the assumption that f sw̃hsww′hsw′w 6= f sw′h
s
ww̃h

s
w̃w—a condition

that can be verified in the data—gives the result:

λss = (f swhsww̃ + f sw̃h
s
w̃w)hsww′hsw′w + (f swhsww′ + f sw′h

s
w′w)hsww̃hsw̃w

f swf
s
w̃h

s
ww′h

s
w′w − f swf sw′hsww̃hsw̃w

Given the solutions for f sw and λss, closed-form expressions for pssww and css then im-
mediately result from Equations 3.5 and 3.4, as does the difference in value functions
V s
w′ − V s

w from Equation 3.3.

Lemma 3 below states our main identification result for the final set of employed-side
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parameters, namely the utility of wages, uw, and the non-pecuniary payoff of working
in a job of type s, φs.

Lemma 3 Given Assumptions A1, A3, and A4:

(i) uw is identified up to a constant and has a closed-form expression.

(ii) When workers have CRRA preferences so that uw = αw1−θ

1−θ , both α and θ are
identified.

(iii) Given the normalization φ1 = 0, the non-pecuniary payoffs φs are a known
linear function of V0(0).

We prove part (i) of Lemma 3 in the text with proofs of the remaining parts in
Appendix A.1.2. We begin by eliminating the employed value functions on the right
hand side of Equation 2.2. To do this, note that we can use the log-odds ratio to
express V s′

w′ as a linear function of V s
w, the switching cost css′ , and the conditional

choice probabilities:

V s′

w′ = V s
w − css

′ − ln
(
pss
′

ww′

)
+ ln

(
1− pss′ww′

)
(3.7)

Equation 2.2 can then be written as:

V s
w =

(
uw + φs + δs0V0(0)−

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0) (3.8)

Normalizing the flow payoff of employment in the lowest-paying job, uw, to zero, we
can express ln(pssww/(1− pssww)) as:

ln
(

pssww
1− pssww

)
= V s

w − V s
w − css

=
uw −

∑
w′
∑
s′ λ

ss′f s
′
w′

[
ln
(
1− pss′ww′

)
− ln

(
1− pss′ww′

)]
ρ+ δs0

(3.9)

+
∑
w̃∈{w,w}

∑
w′
∑
s′ (−1)w̃ 6=w δss′w̃w′

[
css
′ + ln

(
pss
′

w̃w′

)
− ln

(
1− pss′w̃w′

)]
ρ+ δs0

− css
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As the only unknown in Equation 3.9 is uw, solving for uw gives the result.8

3.3 Identification of the unemployed-side parameters and main
result

We now turn to identification of the parameters governing the transitions out of
unemployment. As with the employed-side parameters, we begin with recovering the
time-varying offered wage distributions, gsw(t).

Lemma 4 Given Assumptions A1 through A4, the unemployed offer distribution for
job type s at time t, gsw(t), can be expressed as a linear system of W − 1 unknowns
and W (W−1)

2 − 1 equations. A solution exists when the system is of full rank.

To prove Lemma 4, we note that, for job type s, the difference in log odds from
accepting a job that pays w and accepting a job that pays w′ can be written as the
difference in the employed value functions:

ln
(

psw(t)
1− psw(t)

)
− ln

(
psw′(t)

1− psw′(t)

)
= V s

w − V s
w′ (3.10)

The model specified in Section 2 shows that the difference in log odds of accept-
ing any two wage offers is the same regardless of how the unemployed offered wage
distribution, offer arrival rate, or unemployment benefits vary over time.

The conditional choice probabilities for accepting a job at time t (psw(t)) on the left
hand side of Equation 3.10 can then be expressed as a function of the hazard out
of unemployment (hsw(t)), the arrival rate (λs(t)), and the probability that the offer
pays w (gsw(t)):

psw(t) = hsw(t)
λs(t)gsw(t) (3.11)

Denote the differenced value function V s
w−V s

w′ as κssww′ . Note that κssww′ is known from
Equation 3.3. Using Equations 3.10 and 3.11, we can then express λs(t) as:

λs(t) = hsw(t)hsw′(t)(exp(κssww′ − 1))
gsw(t)hsw′(t) exp(κsww′)− gsw′(t)hsw(t) (3.12)

8Note that the expression substantially simplifies when there are no within-job involuntary changes
(δss′

ww′ = 0).
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Evaluating the right hand side of Equation 3.12 at {w̃, w̃′} and differencing yields:

hsw(t)hsw′(t)(exp(κssww′ − 1))
gsw(t)hsw′(t) exp(κssww′)− gsw′(t)hsw(t)−

hsw̃(t)hsw̃′(t)(exp(κssw̃w̃′ − 1))
gsw̃(t)hsw̃′(t) exp(κssw̃w̃′)− gsw̃′(t)hsw̃(t) = 0 (3.13)

Denote the numerators of the two terms as Asww′(t) and Asw̃w̃′(t). These can be cal-
culated from the unemployment hazards and the previously calculated differences in
employed-side value functions. Making this substitution and rearranging the terms
in Equation 3.13 yields:

0 = Asw̃w̃′(t)hsw(t) exp(κssww′)gsw(t)− Asw̃w̃′(t)hsw(t)gsw′(t)

−Asww′(t)hsw̃′(t) exp(κssw̃w̃′)gsw̃(t) + Asww′(t)hsw̃(t)gsw̃′(t) (3.14)

This equation is linear in the unknowns, the gsw(t)’s. Constructing the non-redundant
equations by evaluating Equation 3.14 at the following set of wage tuples:

{(w,w′, w̃, w̃′) : w = 1, w′ = 2, w̃ < w̃′, (w̃, w̃′) 6= (1, 2)}

yields a linear system with W − 1 unknowns and W (W−1)
2 − 1 equations. When the

system of equations is of full rank, a closed-form solution exists for gsw(t).
Identification of the remaining unemployed-side parameters is then straightforward:

Lemma 5 Given Assumptions A1-A4, the offer arrival rates λs(t), the conditional
choice probabilities psw(t), the unemployment benefits b(t), the value functions out of
unemployment and their derivatives, V0(t) and V̇0(t), are identified.

An important implication of Lemma 5 is that the parameters φs, which from Lemma 3
above were only known up to V0(0), are also identified up to the normalization φ1 = 0.

We now prove Lemma 5. Identification of λs(t) follows directly from Equation 3.12
as all the terms on the right hand side are either taken from the data (hsw(t)) or
identified from a previous step (κssww′ and gsw(t)). Identification of psw(t) then follows
immediately from Equation 3.11.

To recover V0(t), we express the following log odds ratio by normalizing the future
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value of working relative to staying at the same job:

ln
(

psw(t)
1− psw(t)

)
= V s

w − V0(t)

=
(
uw + φs + δs0V0(0)−

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0)− V0(t) (3.15)

where the second line follows directly from Equation 3.8.

Evaluating the previous equation at t = 0 and solving for V0(0) yields:

V0(0) = 1
ρ

[
uw + φs −

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]

−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) ]
− ρ+ δs0

ρ
ln
(

psw(t)
1− psw(t)

)
(3.16)

Note that at this stage everything on the right hand side is known, so that this
equality identifies V0(0). Plugging V0(0) into Equation 3.15 then identifies V0(t) (for
all t ≥ 0), and thus also V̇0(t). It follows that one can directly identify b(t) using
Equation 2.4:

b(t) = ρV0(t) +
∑
w

∑
s

λs(t)gsw(t) ln (1− psw(t))− V̇0(t) (3.17)

A remarkable implication of these results is that, by exploiting the tight connection
between value functions and conditional choice probabilities, we are able to recover
the structural parameters of our nonstationary job search model without solving any
differential equation.

Finally, our main identification result follows from Lemmas 1 through 5:

Theorem 1 Given Assumptions A1-A4, all of the employed and unemployed-side
parameters are identified subject to a normalization of one uw and one φs and subject
to the rank conditions given in Lemmas 2 and 4.

16



3.4 Extensions

Our identification strategy can be extended to more general models than the one
described in Section 2. We consider two particular extensions here. The first extension
allows for aggregate shocks to the economy. In this case, the economy is in one of
K states, k ∈ {1, . . . , K}, with the transition rate from k to k′ denoted by qkk′ .
Different states of the economy then affect the job destruction rates, δsk, the within-
employer type and wage transitions, δss′ww′k, the offer arrival rates, λss′k , and the offer
distributions, f swk. Appendix A.2.1 shows that constructive identification holds in this
case as well, under the assumption that the econometrician observes the market state,
and therefore identifies qkk′ and the hazards in A1 through A4, but now by market
state. The key insight is that, on the employed side, the introduction of market states
has no effect on the identification proof for the offered wage distribution, offer arrival
rates, conditional choice probabilities, and switching costs. Given that, identification
of the remaining parameters follows trivially.

The second extension allows for the employed offer distribution to depend on the
current wage. This substantially increases the number of wage offer parameters for
each job type s, from W −1 to W (W −1). Nevertheless, we show that, when there is
an observed variable x ∈ {1, . . . X} that affects the job acceptance rates but not the
offer rates or the offered wage distribution, one may still recover all the parameters
of the model here as well. The exclusion restriction can operate through the costs
of switching jobs or through the value of amenities. Identification in this case is
discussed in Appendix A.2.2.

4 Application to job search in Hungary: back-
ground and data

4.1 Setup

We apply our method to a special case of the job search model described in Section 2,
in which there is one job type only (S = 1) and no involuntary wage transitions
(δss′ww′ = 0, for all (s, s′, w, w′)). While this model shares many of the features of
nonstationary job search models that have been estimated in the literature (see, in
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particular, van den Berg, 1990, Lollivier and Rioux, 2010), an important distinction
is that it incorporates preference shocks into the search framework.

4.2 Institutional background

Our analysis focuses on the period from January 2003 to October 2005. During this
period, Hungary had a two-tier unemployment insurance system. Only those were
eligible for second-tier benefits who had a sufficiently long work history, and benefit
payments in the second tier were lower than in the first. Those who exhausted
benefits in both tiers were eligible for social assistance. Tier 1 benefits expired in 270
days and Tier 2 benefits expired in an additional 90 days. We focus on unemployed
workers leaving unemployment in Tier 1, because Tier 2 benefits were very low (almost
identical to the amount of social assistance that anyone is eligible for, regardless of
prior work history), thus likely did not provide any further incentive to remain in
unemployment. In practice, we censor durations at 269 days as our data does not
track well those whose unemployment spells last longer than 269 days.

4.3 Data

We estimate the model using matched employer-employee data from Hungarian ad-
ministrative records, provided by the Center for Economic and Regional Studies at
the Hungarian Academy of Sciences (CERS-HAS). The dataset used in this analysis
combines data from five administrative sources: (i) the National Health Insurance
Fund of Hungary; (ii) the Central Administration of National Pension Insurance; (iii)
the National Tax and Customs Administration of Hungary; (iv) the Public Employ-
ment Service National Labor Office; and (v) the Educational Authority. This dataset
has been used in several recent papers, including DellaVigna, Lindner, Reizer, and
Schmieder (2017), Harasztosi and Lindner (2019), and Verner and Gyöngyösi (2020).

The sample consists of half of the population, i.e., 4.6 million individuals, linked
across 900 thousand firms. On the individual side, a de facto 50% random sample
of the Hungarian population are observed; every Hungarian citizen born on January
1, 1927 and every second day thereafter are included. A key distinctive feature of
the Hungarian data is their frequency: job spells are observed on a monthly basis,
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and unemployment spells are observed at a daily frequency. When working, one
individual can be present in at most two work arrangements: labor market measures
are observed separately for them. We also have information on demographics, total
earnings and days worked (i.e., including tertiary and further work arrangements),
as well as benefit payments. On the firm side, all firms are included at which any
sampled individuals are observed to have worked. From these data, we can infer the
length of their employment spells, as well as job-to-job transitions from changes in
firm identifiers.

For estimation we use a sample of employed and unemployed individuals from Jan-
uary 2003 to October 2005.9 We focus on males of age 18-40: we drop females from
our sample to abstract from differential labor market flows resulting from childbear-
ing decisions.10 Furthermore, we drop older males to abstract from differential search
behavior as retirement nears, with a retirement age of 43 for males in certain occu-
pations. Because of some recoding of jobs around the first of the year, for job-to-job
transitions we treat spells that go past December 31st of a particular year as right-
censored.

Table 1 shows summary statistics for employment spells. In a given year, almost
two-thirds of our sample have only one employment spell and about ten percent have
two or more employment spells. Seventy-seven percent of employment spells are
right-censored. Among those that are not right-censored, a little over one-third are
job-to-job transitions with the remaining entailing transitions to unemployment.

Table 1: Summary statistics, employment spells

1 2 3 4 5
No. spells (%) 66.13 23.84 7.66 1.91 0.38

JJ EU RC
Destination share (%) 7.8 14.9 77.3

Mean Min p25 p50 p75 Max
Duration (year) 0.754 0.077 0.468 1.000 1.000 1.000
Current wage (HUF) 3,681 1,644 1,874 2,541 4,243 24,643

9For the unemployed, we only have data from January 2004 onwards.
10The female labor force participation rate in Hungary was 54.0 percent in 2004, 5.8 percentage
points lower than the OECD average in the same time period.
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For the purposes of estimation we discretize wages into fifty bins. The first bin
contains wages around the minimum wage with the remaining bins set to evenly
distributed based on the current wage.11 For the purposes of describing the data, we
follow a similar procedure but discretize wages into ten bins.

Table 2 shows the number of job-to-job transitions to particular wage bins given the
current wage bin. Excluding transitions to the first bin, the most populous cells
are those that involve within-bin transitions, the second most populous cells are
ones involving a transition to one bin higher, and the third most populous cells are
ones involving a transition to one bin lower. There are also a number of transitions
involving substantial wages changes in both directions.

Table 3 takes this analysis one step further by looking at how often a job-to-job
transition resulted in wage increases or decreases of particular levels. Over 30% of
job-to-job changes involve a wage decrease of more than 5%; this number rises to over
34% if jobs that pay the minimum (which by definition cannot have a wage decrease)
are excluded. Over 42% of job-to-job transitions entail a wage increase of more than
5%; 27% of job-to-job transitions results in a wage change between negative five and
plus five percent.

The data in Tables 2 and 3 provide support both for and against the model described
in Section 2. On the one hand, there is clear evidence of individuals moving to jobs
that involve significant wage cuts. This is consistent with a model where individuals
value more than just the wage. On the other hand, the large number of transitions
along the diagonal in Table 2 suggests that the current wage may affect what wages
are offered. Hence in our empirical application we allow for the possibility that the
current wage affects the offered wage distribution.

11See Appendix B.3 for additional details on the discretization process.
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Table 2: Job-to-job transition counts by wage bins

Accepted wage
1 2 3 4 5 6 7 8 9 10

C
ur
re
nt

wa
ge

1 18,092 3,066 2,226 2,037 1,615 1,429 1,279 1,100 807 563
2 3,749 2,077 1,179 939 682 602 545 408 287 162
3 2,317 1,261 1,992 1,279 915 713 528 376 268 139
4 1,790 743 1,057 1,853 1,226 904 618 466 285 145
5 1,476 455 600 969 1,570 1,139 798 577 363 158
6 1,097 332 411 507 807 1,475 1,113 754 441 238
7 962 282 305 388 463 740 1,345 1,110 690 269
8 733 215 214 253 299 377 627 1,364 1,229 544
9 569 156 126 187 232 262 345 618 1,788 1,482
10 433 81 104 117 141 233 220 348 757 4,465

Table 3: Summary statistics, job-to-job transitions

Overall By wage change
Less than −5% −5 to 5% More than 5%

Share (%)
All E spells 7.8 30.6 27.2 42.2
Cur. wage is min. (21.1) 4.3 – 48.1 51.9
Cur. wage above min. (78.9) 8.7 34.6 23.9 41.4

Mean wage change (%)
All E spells 19.5 −30.1 −0.3 68.2
Cur. wage is min. (21.1) 40.7 – 0.5 84.0
Cur. wage above min. (78.9) 16.7 −30.1 −0.5 65.8

Notes: Job-to-job transitions, current and accepted wages recoded as w = max(w,wmin).

On the unemployment side, almost 43% of unemployment spells end in employment;
most of the remaining spells are right-censored. Figure 1 shows the distribution of
unemployment durations for those who exited unemployment. The mean duration is
108.8 days. We divide those who exited unemployment to a job into four quartiles
based on their unemployment duration. Summary statistics for accepted wages for
those who exited unemployment in each of these quartiles are presented in Table
4. Consistent with unemployed workers willing to take lower wage offers over time,
longer durations are associated with lower accepted wages and higher probabilities of
accepting a job at the minimum wage. Those whose durations were in the bottom
25% (so they exited the fastest) were a little over half as likely to exit to a job paying
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the minimum wage as those whose durations were in the top 25%.

Figure 1: Distribution of unemployment durations

0 50 100 150 200 250
Unemployment duration (days)

Notes: Unemployment spells that end in exiting to employment. Spells censored
from the right at 269 days.

Table 4: Summary statistics, unemployment-to-job transitions

Overall By unemployment duration percentiles
0–10 10–25 25–50 50–75 75–90 90–100

Range (days) [2–268] [2–27] [27–50] [50–93] [93–161] [161–216] [216–268]
Mean U duration (days) 108.8 18.9 38.8 71.1 124.2 189.1 242.0
Mean acc. wage (HUF) 3,044 3,357 3,314 3,072 2,994 2,814 2,719
Share min. wage (%) 19.3 13.0 14.2 18.1 19.2 24.7 29.1

Notes: Unemployment-to-job transitions, accepted wages recoded as w = max(w,wmin).

5 Estimation

We estimate our model using a flexible parametric specification. We do this for
two reasons. First, the model is heavily over-identified. The flexible parametric
specification allows us to incorporate all the information in a disciplined fashion.
Second, the model requires data on job-to-job transitions conditional on the current
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wage and unemployed-to-job transitions to specific wages at each moment in time.
These transitions are inherently noisy.

Consider a workforce populated byN individuals, indexed by n. Workers may differ in
their productivities in ways unobserved to the econometrician but possibly observed
by the market. We allow for unobserved heterogeneity in the following manner. Each
individual belongs to one of R unobserved types with probability qnr; the population
probability of type r is given by πr. In practice, r = 2. Each individual experiences
Sn employment spells indexed by s and S̃n unemployment spells indexed by s̃. The
corresponding likelihoods for these spells for individual n of type r are given by
LEnsr(θE) and LUns̃r(θE, θU), respectively, where θE are the employed-side parameters
{δ, λ, fw, uw, c} and θU are the unemployed-side parameters {λ(t), gw(t), b(t)}. Note
that the employed-side parameters enter the likelihood for the unemployment spells
but the reverse is not true. We further specify uw = α ln(w).

To apply our identification arguments in the case with unobserved heterogeneity
requires identifying the type-specific hazard functions, along with the distribution of
heterogeneity types. In practice, one can use in an initial step the identification results
from Heckman and Singer (1984) for duration models with unobserved heterogeneity
but without covariates to recover the distribution of unobserved types along with
the type-specific hazards associated with the job-to-job transitions. One can then
identify the distribution of the type-specific hazards out of unemployment, taking as
given the distribution of heterogeneity types, and assuming that type-specific hazard
functions belong to a known parametric family. The previous identification arguments
then still apply, resulting in point identification of the structural parameters (arrival
rates, switching costs, and wage offer distributions) that are now also a function of
unobserved heterogeneity.

For estimation, the unobserved type must be integrated out of the likelihood func-
tion. Note that there is an initial conditions problem here as the initial wage and
employment state will be affected by the type. These initial conditions, described
in more detail in the next section, will depend on a vector of parameters θI . The
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log-likelihood function for the data is then:

∑
n

ln
∑

r

LInr(θI)
Sn∏
s=1
LEnsr(θE)

S̃n∏
s̃=1
LUns̃r(θE, θU)

 (5.1)

One way of estimating Equation 5.1 would be to use the Expectation-Maximization
(EM) algorithm. As pointed out by Arcidiacono and Jones (2003), this permits the
estimation of the parameters in stages. In particular, the EM algorithm treats the
unobserved type as known at the maximization stage and weights the log-likelihoods
of each observation by the conditional probability of being n being of unobserved type
r, qnr. The conditional probability follows directly from Bayes rule:

qnr = LInr(θI)
∏Sn
s=1 LEnsr(θE)∏S̃n

s̃=1 LUns̃r(θE, θU)∑
r LInr(θI)

∏Sn
s=1 LEnsr(θE)∏S̃n

s̃=1 LUns̃r(θE, θU)
(5.2)

The maximization step could then proceed in stages, estimating θI followed by θE.
Then, taking the estimates of θE as given, estimating θU .

Arcidiacono and Miller (2011) extend this approach further by noting that the struc-
ture of the model need not be imposed on the employed and unemployed likelihoods.
Rather, one can use their empirical counterparts to recover, in this case, θI and the
qnr’s in a first step. Given the qnr’s, estimation of the θE’s and θU ’s can be done in
(separate) maximization steps. The key difference between this approach and that of
Arcidiacono and Jones (2003) is that this last maximization step would only be done
once instead of at each EM iteration. In the next subsections, we describe the details
of our iterative approach.

5.1 Step 1: recovering the posterior type distribution

We use the initial wage and the job-to-job transitions to estimate the conditional
probabilities of being each unobserved type, qnr. We specify the job-to-job transitions
as the hazard rate out of a job that pays w times the probability that the accepted
wage is w′ given that the current was w′. The exact specification is given in C.1.

We specify the likelihood of the initial wage as following a tobit structure. Denote
wIn as individual n’s initial wage level. Let XI

n denote the characteristics that affect
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this initial wage. The likelihood contribution of initial wages is

LInr =
[
Φ
(

ln(w)−XI
nθ

I
r

σIr

)]
1{wIn=w}

·
[

1
σIr
φ

(
ln(wIn)−XI

nθ
I
r

σIr

)]
1{wIn>w}

(5.3)

We specify XI
n as a function of the individual’s type and year indicators where the

effects of the year indicators are fixed across types:

XI
nθ

I
r = θI1r + θI21{yn = 2004}+ θI31{yn = 2005} (5.4)

Given these parameters and the reduced form parameters governing the job-to-job
transitions, we can recover the qnr’s.

5.2 Step 2: recovering the employed-side parameters

With the estimated conditional probabilities (the qnr’s) in hand, we now proceed
with the estimation of the employed-side parameters. Estimation proceeds as in the
case without unobserved heterogeneity but where the qnr’s are used as weights. In
each employment spell s we observe its duration ts and the wage ws. Let ws+1 = 0
when individual n transitions to unemployment during their sth employment spell.
Estimation of the type-r job separation rate δ0r then directly follows from count-
ing the number of transitions to unemployment and dividing by the time spent in
employment:

δ0r =
∑N
n=1 qnr

∑Sn
s=1 1{ws+1 = 0}∑N

n=1 qnr
∑Sn
s=1 ts

(5.5)

We estimate the other employed-side parameters via maximum likelihood. We con-
struct the type-r structural hazard from moving from a job that pays w to one that
pays w′ using:

hww′r = λrfww′rpww′r (5.6)

The wage offer distribution, fww′r, is parameterized using an ordered logit structure
that depends on current wages. First, we specify the wage cutoffs as having the
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following recursive structure:

φw =


θφ1 if w = w

φw− + exp(θφ2 + θφ3 ln(w) + θφ4 ln(w)2) if w > w
(5.7)

where w− denotes the preceding support point of the pmf. These cutoffs then specify
how the large the latent index needs to be to reach a particular wage bin.

We then define the distribution of offered wages using the wage cutoffs as well as
current wages w:

fww′r =


Λ(φw +Xfθfr ) if w′ = w

Λ(φw′ +Xfθfr )− Λ(φw′− +Xfθfr ) if w < w′ < w

1− Λ(φw− +Xfθfr ) if w′ = w

(5.8)

Xfθfr = θf1 ln(w) + θf21{w = w}+ θf3r (5.9)

where Λ(·) denotes the logistic function. The log of the current wage then shifts the
latent index. Note that unobserved types affect the offered wage distribution only
through a level shift given by θf3r.

The conditional choice probabilities that enter Equation 5.6 can be written as:

pww′r = exp (Vw′r − Vwr − c)
1 + exp (Vw′r − Vwr − c)

(5.10)

We iterate the differenced value function in Equation 5.10 to a fixed point using the
following contraction mapping: in the (m+ 1)th step,

(λr + δ0r + ρ)
(
V

(m+1)
w′r − V (m+1)

wr

)
= α(ln(w′)− ln(w)) + λr

(
V

(m)
w′r − V (m)

wr

)
+
∑
w̃

λrfw′w̃r ln
[
1 + exp

(
V

(m)
w̃r − V

(m)
w′r − c

)]
−
∑
w̃

λrfww̃r ln
[
1 + exp

(
V

(m)
w̃r − V (m)

wr − c
)]

(5.11)

It follows that the likelihood contribution of a job spell s for a type-r worker n is
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given by

LEnsr =
∏
w,w′

[
(hww′r)1{ws=w,w

′
s=w′} exp(−hww′rts)

]
1{ws=w} (5.12)

We then estimate the remaining parameters
(
λr, α, c, θ

f
r

)
using:

max
λr,α,c,θ

f
r

LE =
N∑
n=1

R∑
r=1

Sn∑
s=1

qnr ln
(
LEnsr

)
(5.13)

5.3 Step 3: recovering the unemployed-side parameters

In the third and final step, we estimate the distribution of offered wages out of
unemployment, gwr(t), and the offer arrival rates, λr(t), using maximum likelihood.
We then use the constructive identification strategy to recover the flow utility of
unemployment.

Note that the type-r structural hazard of leaving unemployment at duration t to wage
w is given by:

hwr(t) = λr(t)gwr(t)pwr(t) (5.14)

In the next subsections, we show how each of these terms are specified.

5.3.1 Specification of pwr(t)

We focus first on expressing pwr(t) in a way consistent with the structure of the model.
Note that we can write κww′r = Vwr − Vw′r, thus exp(κww′r) = exp(Vwr)/ exp(Vw′r).
Using this identity, we can express the ratio of the conditional choice probabilities as:

pwr(t)
pw′r(t)

= exp(Vwr)/[exp(V0r(t)) + exp(Vwr)]
exp(Vw′r)/[exp(V0r(t)) + exp(Vw′r)]

= exp(κww′r) [1− pwr(t){1− exp(−κww′r)}] (5.15)

We can therefore express all conditional choice probabilities relative to one other
conditional choice probability, say the one associated with the minimum wage pwr(t),
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and the corresponding κwwr terms:

pwr(t) = pwr(t) exp(κwwr)
1− pwr(t)

[
1− exp(κwwr)

] (5.16)

Furthermore, we express the CCPs of accepting an offer from the first wage bin
in terms of a parameterized hazard rate out of unemployment to the first bin (the
minimum wage):

pwr(t) = hwr(t)
λr(t)gwr(t)

(5.17)

where12

hwr(t) = exp(P hθhr ) with (5.18)

P h =
[
1 t−1 t2 t2 ln t t3

]
(5.19)

That is, we can express the CCPs as

pwr(t) =


hwr(t)

λr(t) gwr(t) if w = w

hwr(t) exp(κwwr)
λr(t) gwr(t)−hwr(t)[1−exp(κwwr)] if w > w

(5.20)

5.3.2 Specification of λr(t)

We parametrize the offer arrival rates λr(t) as

λr(t) = exp(P λθλνλr + ψλr ) where (5.21)

P λ =
[
1 t t2 t3

]
(5.22)

νλ1 = 1 and ψλ1 = 0 (5.23)

The type-specific parameters provide a scale and location shift of the common Type
1 profile.

12We chose this polynomial because it fits the nonparametric Nelson–Aalen hazard estimates best.

28



5.3.3 Specification of gwr(t)

We parametrize the offered wages gwr(t) using a similar ordered logit structure to that
used in the employed offer distribution. We take the wage cutoffs φ as given from the
employed side in Equation 5.7, and add a type-specific variance-scale parameter βr.
Note that the cutoffs are common across types. We allow the wage offer distribution
to vary over time where we specify the offered wage distribution out of unemployment
as:

gwr(t) =


Λ
(
βrφw + Er + Ar ln(t)

)
if w = w

Λ (βrφw + Er + Ar ln(t))− Λ
(
βrφw− + Er + Ar ln(t)

)
if w < w < w

1− Λ
(
βrφw− + Er + Ar ln(t)

)
if w = w

(5.24)

Note that the only (type-specific) parameters to estimate are βr, Er, and Ar.

5.3.4 Estimation of pwr(t), λr(t), and gwr(t)

Putting the three components together, the structural hazards are

hwr(t) =


hwr(t) if w = w

hwr(t) gwr(t)
gwr(t)

exp(κwwr)
λr(t) gwr(t)−hwr(t)[1−exp(κwwr)] if w > w

(5.25)

We estimate these structural parameters in a maximum likelihood procedure, strati-
fied by types. First, we estimate the parameters (θλ, θh1 , β1, E1, A1) for Type 1. Then,
given these estimates we estimate the parameters (νλr , ψλr , θhr , βr, Er, Ar) for the re-
maining types. In both cases, we impose that the CCPs are monotonically increasing
in t.13

The likelihood contribution of a type-r individual n’s spell s is

LUnsr =
∏
w

{
[hwr(ts)]1{ws=w} exp

(
−
∫ ts

0
hwr(u) du

)}
. (5.26)

13Appendices C.2.1 and C.2.2 show these constraints simplify.

29



We maximize the likelihood for Type 1 as

max
θλ,θh1 ,β1,E1,A1

LU1 =
N∑
n=1

qn1

Sn∑
s=1

ln
(
LUns1

)
(5.27)

s.t. p11(t) ≤ p11(t+ 1) for 1 ≤ t < T − 1 (5.28)

pW1(T ) ≤ 1− ε (5.29)

for some small ε

Taking the shape of the offer arrival process as given, we then maximize the likelihood
for type r = 2 as

max
νλ2 ,ψ

λ
2 ,θ

h
2 ,β2,E2,A2

LU2 =
N∑
n=1

qn2

Sn∑
s=1

ln
(
LUns2

)
(5.30)

s.t. p12(t) ≤ p12(t+ 1) for 1 ≤ t < T − 1, (5.31)

pW2(T ) ≤ 1− ε (5.32)

for some small ε.

5.3.5 Recovering the flow utility of unemployment

For the last remaining parameter, we need to calculate the value function and its first
derivative. We calculate V0r(t) pointwise at each duration t as14

V0r(t) =


α ln(w)−

∑
w′ λrfww′r ln(1−pww′r)

ρ
− δ0r+ρ

ρ
ln
(

pwr(t)
1−pwr(t)

)
if t = 0

α ln(w)−
∑

w′ λrfww′r ln(1−pww′r)+δ0rV0r(0)
δ0r+ρ − ln

(
pwr(t)

1−pwr(t)

)
if t > 0

(5.33)

From the time trajectory of the value function, we calculate its first difference as

V̇0r(t) = V0r(t+ ∆τ)− V0r(t)
∆τ (5.34)

where ∆τ is an arbitrarily small time interval.

14This expression would appear as though V0r(t) is overidentified as the expression holds for all w.
However, we have already imposed the structure of the model prior to this stage so each value of
w leads to the same value of V0r(t).
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Using these pieces, we estimate the flow utility of unemployment as

br(t) = ρV0r(t) +
∑
w

λr(t)gwr(t) ln(1− pwr(t))− V̇0r(t) (5.35)

6 Estimation results

We now discuss our estimation results. Table 5 shows the point estimates of the
employed side structural parameters, along with standard errors from 500 bootstrap
repetitions. Roughly 85% of workers are classified as Type 1. These workers begin
with lower wages, receive offers at a lower rate, draw from a worse wage offer dis-
tribution, and have higher job destruction rates. Type 1 workers receive a job offer
once in every 3.7 years (0.271 annually) and have a 22.5% chance of separating from
their current job per annum. On the other hand, Type 2 workers receive offers more
frequently (one in every 2.7 years or 0.373 per annum) and separate from their jobs
less frequently (6.3% probability per annum). It follows that the index of search
frictions, which corresponds to the average number of job offers received during any
given employment spell (Ridder and Van den Berg, 2003), is substantially higher for
this group of individuals (5.9 vs. 1.2 for type 1 individuals) who also tend to have
higher initial wages. The mean index of search frictions across types is equal to 1.9,
a value which fits in the range of the estimates obtained by Ridder and Van den
Berg (2003) using French Labor Force Survey data, but substantially lower than the
estimates obtained using US data. The parameter associated with the flow utility of
log wages is equal to 0.403, which is very close in magnitude to the cost of switching
jobs.
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Table 5: Structural parameter estimates, employed side

Parameter Estimate
Type 1 Type 2

λ Offer arrival rate 0.271 0.373
(0.004) (0.015)

δ Job separation rate 0.225 0.063
(0.001) (0.001)

λ/δ Search friction index 1.201 5.906
(0.018) (0.225)

α Flow utility of log wages 0.403
(0.018)

c Job switching cost 0.400
(0.026)

π Type probability 0.851 0.149
(0.002) (0.002)

Notes: Bootstrap standard errors in parentheses
(500 replications).

As wage offers are allowed to depend on the wage in the current job, Figure 2 shows
the offer distributions for workers currently in wage bin 1, 10, 20, 30, 40, and 50.
At any current wage, Type 1’s face a worse wage offer distribution. However, as the
current wage rises, the distribution of offered wages shifts to the right for both types.
Hence a Type 1 worker currently working in the 40th wage bin faces a better offer
distribution than a Type 2 worker currently making the minimum wage.
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Figure 2: Wage offer distribution, employed side

Current wage 30 Current wage 40 Current wage 50

Current wage 1 Current wage 10 Current wage 20

1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50

0%

2%

5%

8%

0%

2%

5%

8%

0%

20%

40%

60%

0%

20%

40%

60%

Accepted wage bin

P
ro

ba
bi

lit
y 

m
as

s
P

robability m
ass (bin 1)

Type 1 2

Notes: Distributions are conditional on the current wage bin. The probability mass of bin 1 offers
are represented on the secondary vertical axis (right). Error bars represent 95% bootstrap confidence
intervals (500 replications).

Turning to our unemployed side results, our model allows for nonstationarities along
multiple dimensions. Figure 3 shows one of these dimensions, revealing how unem-
ployed offer arrival rates evolve over time. For both types, increased unemployment
durations are associated with fewer offers. For Type 1’s, offers come in at a rate of
3.5 per year at the beginning of the unemployment spell but fall to a rate of 1 per
year by the end. Type 2’s receive offers at a much higher rate, beginning at a rate of
almost 15 per year and falling to around 5.
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Figure 3: Offer arrival rates out of unemployment
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Notes: Shaded regions represent 95% bootstrap confidence intervals (500 repli-
cations).

A second source of nonstationarity, shown in Figure 4, is in the offered wage distri-
bution for unemployed workers. Panels (a) and (b) show stark differences in the offer
distributions between offers at day 1 of unemployment and day 269. At t = 1, Type
2’s face a much better offer distribution that Type 1’s. But as also shown in Panel
(d), this advantage disappears near benefit expiration. As unemployment duration
increases, the offer distributions for both types become much worse. Panel (c) shows
that this deterioration of the offered wage distribution is much stronger than the
selection effect: Type 1’s at t = 1 face a substantially better wage offer distribution
than Type 2’s at t = 269.
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Figure 4: Wage offer distribution, unemployed side
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(b) t = T
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(c) (r = 1, t = 1) vs. (r = 2, t = T )
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(d) Bin 1 mass over time

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

0 100 200
Unemployment duration (days)

P
ro

ba
bi

lit
y 

m
as

s

Type 1 2

Notes: Distributions are conditional on unemployment duration t. Panel (c) contrasts the Type 1
distribution at duration t = 1 to the Type 2 distribution at duration t = T . Panel (d) compares the
evolution of the probability mass of wage offers from the first bin between types. The probability
mass of bin 1 offers are represented on the secondary vertical axis (right). Error bars represent 95%
bootstrap confidence intervals (500 replications).

A third source of nonstationarity is unemployment benefits. The evolution of these are
displayed in Figure 5. The flow value drops sharply upon entering unemployment and
then remains relatively flat. However, for Type 1 individuals, the flow value decreases
again close to benefit expiration. In Appendix D we show how these three sources of
nonstationarity—offer arrival wages, wage offers, and unemployment benefits—affect
the value function and the job acceptance probabilities. As unemployment duration
increases, the value function for unemployment falls and, correspondingly, the job
acceptance probabilities rise.
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Figure 5: Flow utility of unemployment benefits (normalized)
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Notes: Flow utility normalized w.r.t. the flow value at t = 0 for each type.
Shaded regions represent 95% bootstrap confidence intervals (500 replications).

Figure 6: CCPs, unemployment-to-job transitions
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Notes: Shaded regions represent 95% bootstrap confidence intervals (500 repli-
cations).

With job acceptance probabilities rising, the ratio of average accepted wages to aver-
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age offered wages falls over time. This is displayed in Figure 7. Like with unemploy-
ment benefits, we see a sharp drop in the accepted/offered wage ratio immediately
after entering unemployment. But now as duration increases, workers become less
and less selective over which jobs they accept. By the time benefits are about to
expire, Type 1’s find almost all jobs acceptable. This is not the case for Type 2’s
even though the offered wage distribution is similar between the two types at benefit
expiration. As benefits near expiration, Type 2’s still accept jobs that pay on average
25% more than the average offer. The reason for this is that, as shown in Figure 3,
Type 2’s receive offers at a much higher rate than Type 1’s even at benefit expiration.

Figure 7: Offered vs. accepted wages out of unemployment
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Notes: Dashed lines: mean level of offered wages. Solid lines: mean level of
accepted wages.

Table 6 summarizes the unemployment-side findings. The first row shows that, be-
cause Type 2’s receive offers at a much higher rate than Type 1’s, Type 2’s who exit
unemployment do so faster than their Type 1 counterparts, making up 17% of those
who leave in the shortest durations but only 10.6% of those who leave in the longest
durations. As shown in the first column, this translates to Type 2’s who exit to a job
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having unemployment durations that are on average 10 days shorter than their Type
1 counterparts.

Type 2’s also exit unemployment to higher wage jobs. Overall, Type 2’s who exit
unemployment do so to jobs that pay 70% more than their Type 1 counterparts. For
both types, however, we see sharp drops in accepted wage over time.

Table 6: Summary statistics by type, unemployment-to-job transitions

Overall By unemployment duration percentiles
0–10 10–25 25–50 50–75 75–90 90–100

Pop. prob. of Type 2 (%) 12.1 17.0 14.3 11.5 11.0 10.2 10.6

Type 1
Range (days) [4–268] [4–28] [28–52] [52–95] [95–163] [163–217] [217–268]
Mean U duration (days) 110.0 19.6 40.4 72.7 125.8 189.8 241.9
Mean acc. wage (HUF) 2,805 2,968 3,007 2,830 2,790 2,646 2,551
Share min. wage (%) 21.0 15.2 15.9 19.5 20.9 26.3 30.5

Type 2
Range (days) [5–268] [5–24] [24–41] [41–82] [82–147] [147–211] [211–268]
Mean U duration (days) 99.8 16.5 32.1 60.6 111.6 178.7 238.8
Mean acc. wage (HUF) 4,781 5,322 5,176 4,917 4,798 4,211 4,096
Share min. wage (%) 7.5 4.0 5.3 7.6 4.8 10.0 17.2

Notes: Unemployment-to-job transitions, accepted wages recoded as w = max(w,wmin). Summary
statistics are weighted by type probabilities.
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7 Conclusion

In this paper, we extend the canonical continuous-time job search model with on-
the-job search to allow for preference shocks. Incorporating preference shocks and
using the insights from conditional choice probability methods results in constructive
identification of the model parameters even in nonstationary settings. Nonstationary
search models typically require solving a nonlinear differential equation within the
maximization routine. But in our setting no differential equation needs to be solved
to estimate the parameters of the model. As a result, the computational costs are
small for the class of nonstationary search models we consider.

We apply our methods to administrative data from Hungary. Nonstationarities when
unemployed operate through three sources: the offered wage distribution, the offer
arrival rates, and unemployment benefits. The estimates of the model show that
the wage offer distribution becomes worse and offer arrivals slow substantially as the
duration of unemployment increases. Workers then become less selective in the jobs
they are willing to accept as unemployment duration increases, implying that the gap
between accepted and offered wages shrinks with unemployment duration.
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A Mathematical appendix

A.1 Proof of Theorem 1

A.1.1 Proof of Lemma 2 (ii)

Akin to Equation 3.6, for any triple (w,w′, w̃) ∈ Ω3
w:ln
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′
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(A.1)

Note that now we exploit transitions across job types s and s′, thus we are able to
use the same wage in the old and new jobs. This nonlinear system of two equations
and two unknowns—λss

′ and λs′s—can be rewritten as follows:Bw′λ
ss′ + Cw′λ

s′s − Aw′λss
′
λs
′s

Bw̃λ
ss′ + Cw̃λ

s′s − Aw̃λss
′
λs
′s

 =
0

0

 (A.2)

where the A, B, C coefficients are defined in Lemma 2 (ii). Assuming Aw′ 6= 0
(Condition (a) from Lemma 2 (ii)) and replacing λss′λs′s in the second equation by
its expression from the first equation identifies the ratio of the arrival rates, with:

λs
′s =

(
Bw′Aw̃ −Bw̃Aw′

Aw′Cw̃ − Aw̃Cw′

)
λss

′

where Aw′Cw̃ − Aw̃Cw′ 6= 0 from Condition (c). Finally, substituting for λs′s in the
first equation identifies, under Condition (b), λss′ and then λs

′s, which admit the
following closed-form expressions:

λss
′ = Bw′Cw̃ −Bw̃Cw′

Bw′Aw̃ −Bw̃Aw′
and λs

′s = Bw′Cw̃ −Bw̃Cw′

Aw′Cw̃ − Aw̃Cw′
(A.3)

Having identified the arrival rates λss′ and the wage offer distribution f sw, identification
of the CCPs pss′ww′ follows. Then, we can identify css

′ + cs
′s, and together with the

assumption that switching costs are symmetric (i.e., css′ = cs
′s), css′ is identified.
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A.1.2 Proof of Lemma 3 (ii)–(iii)

(ii) Identification of CRRA preferences. We assume that workers are endowed
with CRRA preferences, such that:

u(w) = α
w1−θ

1− θ
From the prior identification result in Lemma 3 such that uw is identified up to a
constant, it follows that for w̃ > w′ > w, the following ratio is identified:

uw′ − uw
uw̃ − uw

= w′1−θ − w1−θ

w̃1−θ − w1−θ (A.4)

In order to establish identification of the risk aversion parameter θ, we show that the
function θ 7→ y1−θ−x1−θ

z1−θ−y1−θ , where z > y > x > 0, is monotonically increasing on (0,∞).

f(θ) = y1−θ − x1−θ

z1−θ − y1−θ (A.5)

f ′(θ) =
(
z1−θ − y1−θ

)−2
·
[(
x1−θ ln x− y1−θ ln y

) (
zθ − yθ

)
−
(
y1−θ − x1−θ

) (
y1−θ ln y − z1−θ ln z

)]
(A.6)

f ′(θ) > 0 (A.7)

⇔
(
x1−θ ln x− x1−θ ln y

) (
z1−θ − y1−θ

)
+
(
x1−θ ln y − y1−θ ln y

) (
z1−θ − y1−θ

)
>
(
z1−θ ln y − z1−θ ln z

) (
y1−θ − x1−θ

)
+
(
y1−θ ln y − z1−θ ln y

) (
y1−θ − x1−θ

)
(A.8)

⇔
[
x1−θ ln(x/y)

] (
z1−θ − y1−θ

)
>
[
z1−θ ln(y/z)

] (
y1−θ − x1−θ

)
(A.9)

⇔ ln(y/x)
[
1− (y/z)1−θ

]
< ln(z/y)

[
(y/x)1−θ − 1

]
(A.10)

⇔ (y/x)1−θ ln(z/y) + ln(y/x)(y/z)1−θ > ln(y/x) + ln(z/y) (A.11)

The above condition holds if and only if g(θ) > g(1), where, for all θ > 0, g(θ) ≡
(y/x)1−θ ln(z/y) + (y/z)1−θ ln(y/x). The derivative of g(·) is given by:
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g′(θ) = ln(y/x) ln(z/y)[(y/z)1−θ − (y/x)1−θ]

It follows that g′(θ) < 0 on (0, 1) and g′(θ) > 0 on (1,∞). Identification of θ follows.

Having identified θ, it follows that the utility coefficient α is identified and given by
the following closed-form expression:

α = uw̃ − uw
w̃1−θ − w1−θ (A.12)

which yields full identification of the flow utility of wages.

(iii) Identification of φs up to V0(0). We can express the log odds ratio in terms
of the structural parameters using Equation 3.8:

ln
(

pss̃ww̃
1− pss̃ww̃

)
= V s̃

w̃ − css̃ − V s
w

=
(
uw̃ + φs̃ + δs̃0V0(0)−

∑
w′

∑
s′
δs̃s
′

w̃w′

[
cs̃s
′ + ln

(
ps̃s
′

w̃w′

)
− ln

(
1− ps̃s′w̃w′

)]
−
∑
w′

∑
s′
λs̃s

′
f s
′

w′ ln
(
1− ps̃s′w̃w′

) )/
(ρ+ δs̃0)

−
(
uw + φs + δs0V0(0)−

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
+
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0)− css̃ (A.13)

Collecting all known terms on the left hand side, the equation can be rearranged as:

κss̃ww̃ = 1
ρ+ δs̃0

φs̃ − 1
ρ+ δs0

φs +
(

δs̃0
ρ+ δs̃0

− δs0
ρ+ δs0

)
V0(0) (A.14)
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where

κss̃ww̃ = ln
(

pss̃ww̃
1− pss̃ww̃

)
+ css̃

−
uw̃ −

∑
w′
∑
s′ δ

s̃s′
w̃w′

[
cs̃s
′ + ln

(
ps̃s
′

w̃w′

)
− ln

(
1− ps̃s′w̃w′

)]
−∑w′

∑
s′ λ

s̃s′f s
′
w′ ln

(
1− ps̃s′w̃w′

)
ρ+ δs̃0

+
uw −

∑
w′
∑
s′ δ

ss′
ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
−∑w′

∑
s′ λ

ss′f s
′
w′ ln

(
1− pss′ww′

)
ρ+ δs0

(A.15)

Now, since φ1 = 0, writing Equation A.14 for s = 1 yields:

κ̃1s̃
ww̃ = 1

ρ+ δs̃0
φs̃ +

(
δs̃0

ρ+ δs̃0
− δ1

0
ρ+ δ1

0

)
V0(0) (A.16)

Thus, we can write φs as a known linear function of V0(0). Furthermore, note that
when the job destruction rates are not specific to job types, i.e., δs0 = δ0 for all s, the
non-pecuniary payoffs φs are directly identified from Equation A.16.

A.2 Extensions

A.2.1 Aggregate shocks

One can extend our identification strategy to accommodate aggregate shocks. Specif-
ically, consider the case where the market economy can be in one of K different states,
where the job offer arrival rates, the job destruction rates, the rates of involuntary
wage mobility, the offered wage distributions, and the flow payoff of unemployment
are allowed to depend on the state of the economy. We further assume that the
econometrician perfectly observes the state of the economy. We denote the rate at
which the economy transitions from state k to k′ by qkk′ , which is identified from the
observed transition rates across market states.

On the employment side, identification of the state-specific offer arrival rates, destruc-
tion and involuntary wage mobility rates, offered wage distribution and conditional
choice probabilities, along with the switching cost all follow directly from the baseline
case, leaving the flow payoffs of employment as the only unknown parameters. The
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value function of employment V s
wk is given by:

(
ρ+

∑
k′
qkk′ + δs0k +

∑
s′
λss

′

k

)
V s
wk = uw + φs + δs0kV

(k)
0 (0) +

∑
k′
qkk′V

s
wk′

+
∑
w′

∑
s′
δss
′

ww′k

[
V s′

w′k − V s
wk

]
+
∑
s′
λss

′

k

∑
w′
f s
′

w′k ln
(
1− pss′ww′k

)
(A.17)

where V s′
w′k − V s

wk = ln
(
pss
′

ww′k

)
− ln

(
1− pss′ww′k

)
+ css

′ .

Subtracting off the corresponding expression for V s
w̃k (with w̃ 6= w) yields:

(
ρ+

∑
k′
qkk′ + δs0k +

∑
s′
λss

′

k

)
[V s
wk − V s

w̃k] = uw − uw̃ +
∑
k′
qkk′ [V s

wk′ − V s
w̃k′ ]

+
∑
w′

∑
s′

(
δss
′

ww′k

[
V s′

w′k − V s
wk

]
− δss′w̃w′k

[
V s′

w′k − V s
w̃k

])
+
∑
s′
λss

′

k

∑
w′
f s
′

w′k

(
ln
(
1− pss′ww′k

)
− ln

(
1− pss′w̃w′k

))
(A.18)

where the difference in value functions on the left and right-hand sides are given
by the sum of the log odds ratio and the switching cost. This identifies the wage
component of the flow utility payoffs up to a constant. Identification of the non-
pecuniary components φs then proceeds in a similar fashion, using instead the job-
to-job transitions across job types.

Identification of the unemployment-side parameters then follows from similar argu-
ments as in Section 3.3. The same strategy applies to a context with aggregate shocks,
after conditioning the hazard rates out of unemployment on the (observed) states of
the economy.

A.2.2 Current wage-specific wage offer distribution

One can extend our identification framework by allowing the on-the-job wage offer
distribution to depend on current wages. The important role played by Equation
3.4 extends beyond our baseline model. Namely, using these restrictions, along with
the existence of an observed taste (or switching cost) shifter, x, one may still jointly
identify in this case the offer arrival rates λss′ and of the offer wage distributions. Note
that we now observe hazard rates conditional on x, hss′ww′x. We use the within job-
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type transitions to recover the within job-type offer arrival rates, λss, as well as the
job-type specific offered wage distributions that now depend on the current wage w,
f sww′ . Assuming that x only affects job-to-job transition rates through the acceptance
probabilities, the following equality holds for any quadruple {w,w′, w̃, w̃′} ∈ Ω4

w and
any x ∈ {1, . . . , X}:

ln
(

hssww′x
λssf sww′ − hssww′x

)
+ ln

(
hssw′wx

λssf sw′w − hssw′wx

)
(A.19)

= ln
(

hssw̃w̃′x
λssf sw̃w̃′ − hssw̃w̃′x

)
+ ln

(
hssw̃′w̃x

λssf sw̃′w̃ − hssw̃′w̃x

)
(A.20)

The set of non-redundant wage tuples for which we can evaluate Equation A.19 is
given by:

{(w,w′, w̃, w̃′) : w = 1, w′ = 2, w̃ < w̃′, (w̃, w̃′) 6= (1, 2)}

Collecting all admissible tuples yields a linear system with 1+W (W−1) unknowns and
X
(
W (W−1)

2 − 1
)
equations. Therefore the system (over)identifies the offer arrival rate

λss and the wage offer probabilities (f sww′ , f sw′w, f sw̃w̃′ , f sw̃′w̃) if the following condition
holds:

2X + 2
X − 1 ≤ W (W − 1)

For example, with 3 support points for x, 4 wage support points are sufficient for
identification.

B Data appendix

B.1 Sample creation

We define our analysis sample as follows:

1. Flip primary and secondary work arrangements (PWAs, SWAs)

• In the raw data, PWA is defined as the arrangement with the highest
earnings in the month. This setup may result in PWAs and SWAs flipping
in the raw data, e.g. when a worker works only a few days in their PWA.
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• Solution: Looping through all worker-months, we flip variables related to
PWAs and SWAs as follows:

month firmid1 var1 firmid2 var2 month firmid1 var1 firmid2 var2
t− 1 A xt−1 B yt−1  t− 1 A xt−1 B yt−1
t B xt A yt t A yt B xt

2. Calculate durations

(a) Employed: we calculate or infer spell-year durations in PWA. See Ap-
pendix B.2 for details.

(b) Unemployed: we observe daily unemployment durations in the raw data.

3. Define JJ, EU, UE, EN, NE transitions

4. Calculate wages

(a) Calculate counterfactual minimum wage earnings: how much the worker
would have earned in a day working full time in a minimum-wage job

(b) Calculate daily wages as total earnings in a spell-year, divided by spell-year
durations

(c) Discretize wages: see Appendix B.3 for details

(d) Calculate accepted wages

5. Define covariates for population probabilities

6. Save analysis sample

B.2 Correcting employment spell durations

The raw data on employment spells are recorded at a monthly frequency. In each
month, the total number of days worked (days) and total earnings are known. Fur-
thermore, days worked and earnings at PWAs and SWAs (days_1, days_2) are known
if the arrangement was ongoing on the 15th of the month. We focus on PWAs only.
Table 7 summarizes the possible ways in which JJ transitions show up in the raw
data when observations on PWAs are not missing. When days equals days_1, we
know with certainty that the transition happened on the boundary of the month: we
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label this as a clean JJ transition (see Panel a). When days does not equal days_1,
we need to make some assumptions about the uncovered days: Panels b-d illustrate
these cases that we label fuzzy. The bottom tables summarize our assumptions on
the number of days worked in each PWA.

Table 7: JJ scenarios in raw data, no missing PWAs
(a) Clean JJ

days days_1 firmid1
31 31 A
30 30 A
31 31 B

⇓
no assumption needed

(b) Fuzzy JJ 1

days days_1 firmid1
31 31 A
30 16 A
31 31 B

⇓
31 A
16 A
14 B
31 B

(c) Fuzzy JJ 2

days days_1 firmid1
31 31 A
30 16 B
31 31 B

⇓
31 A
14 A
16 B
31 B

(d) Fuzzy JJ 3

days days_1 firmid1
31 31 A
30 16 B
31 31 C

⇓
31 A

a < 14 A
16 B

30− 16− a C
31 C

Table 8 summarizes our assumptions when PWA data are missing.

Table 8: JJ scenarios in raw data, missing PWAs
(a)

days days_1 firmid1
31 31 A
25 . .
31 31 A

⇓
31 A
25 A
31 A

(b)

days days_1 firmid1
31 31 A
25 . .
31 31 B

⇓
31 A

d < 15 A
25− d B
31 B

(c)

days days_1 firmid1
31 31 A
10 . .
7 . .
30 30 B

⇓
31 A
10 A
7 B
31 B

(d)

days days_1 firmid1
31 31 A
20 . .
25 . .
31 31 B

⇓
31 A

a < 15 A
20− a+ 25− b X

b < 15 B
31 B

B.3 Discretizing wages

We discretize the continuously observed wages in the data into W bins, with W = 50
for our main results. Figure 8 demonstrates our discretization method. The first bin
contains wages between 75 and 107 percent of the effective minimum wage.15 We drop
wage observations below 75 percent of the effective minimum wage because we cannot

15During our sampling period, Hungary had a simple minimum wage policy: 53,000 HUF in 2004
and 57,000 HUF in 2005. (1 USD was worth around 200 HUF in 2005.)
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distinguish between full-time and part-time earners in the data. Furthermore, we add
a 7 percent padding to the right cutoff of the first bin to ensure that we include all
minimum wage earners in the first bin. We then split the other wage observations,
censored at the 99th percentile, evenly across the remaining W − 1 bins.

Figure 9 plots the resulting discrete distribution of current wages. Current wages for
employment spells that lead to a job-to-job transition, on the left panel, have a mean
of 3,459 HUF (percentiles: 25th 1,857 50th 2,356 75th 3,741). Current wages for all
employment spells, on the right panel, have a mean of 3,667 HUF (percentiles: 25th
1,859 50th 2,541 75th 4,243). Similarly, Figure 10 plots the discrete distribution of ac-
cepted wages for job-to-job and unemployment-to-employment transitions. Accepted
wages for job-to-job transitions have a mean of 3,696 HUF (percentiles: 25th 1,863
50th 2,549 75th 4,169). The accepted wages out of unemployment are right-tailed,
with a mean of 2,689 HUF (percentiles: 25th 1,856 50th 2,099 75th 3,036), in line
with the notion that the unemployed tend to move to lower-paying jobs.
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Figure 8: Discretizing observed wages
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(c) Accepted wages (unemployment-to-job trans.)
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Notes: Histograms of daily wage rates with 50 HUF bin width, truncated at the
95th percentile. Vertical lines denote selected wage bin cutoffs. Panel a: current
daily wages for employment spells that lead to a job-to-job transition. Panel b:
accepted daily wages for employment spells after a job-to-job transition. Panel
c: accepted daily wages for unemployment spells after an unemployment-to-job
transition.
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Figure 9: Discrete distribution of current wages

(a) Spells with job-to-job transitions
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Notes: Panel a: discrete distribution of current wages for employment spells
that lead to a job-to-job transition. Panel b: discrete distribution of current
wages for all employment spells.

Figure 10: Discrete distribution of accepted wages

(a) Job-to-job transitions
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(b) Unemployment-to-employment transitions

0%

5%

10%

15%

20%

25%

30%

1 10 20 30 40 50
Accepted wage bins

Notes: Panel a: discrete distribution of accepted wages for employment spells
that lead to a job-to-job transition. Panel b: discrete distribution of accepted
wages for unemployment spells that lead to an employment spell.

C Estimation appendix

This appendix details our estimation procedure, outlined in Section 5.
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C.1 Posterior type distribution

Rather than imposing the structure of the model when classifying types, we instead
choose a flexible functional form for the likelihood of job-to-job transitions. In par-
ticular, we obtain estimates of θI by maximizing an alternative objective function:

∑
n

ln
(∑

r

LInr(θI)
Sn∏
s=1
L̃Ensr(θ̃E)

)
(C.1)

where LInr(θI) was defined in Equation 5.3 and where specify the reduced-form like-
lihood associated with employment spell s below.

We break the hazard of going from w to w′ into two parts: (i) the hazard of leaving
w-paying job for any other job, and (ii) the probability that the accepted job pays w′.
We specify the reduced-form hazard of n leaving a w-paying job given the individual
is of type-r as:

h̃wr = exp(θ̃h1r + θ̃h2r ln(ws) + θ̃h3r1{ws = w}+ θ̃h4r1{ys = 2004}+ θ̃h5r1{ys = 2005})
(C.2)

where ys refers to the calendar year of spell s.

Conditional on moving to a new job, for the reduced form we model the accepted
wage as a tobit like in Equation 5.3 but where one of the conditioning variables is the
log of the current wage. L̃Enr is then given by:

L̃Enr(θ̃h, θ̃E) =
Sn∏
s=1

[∏
w

h̃wr exp(−h̃wrts)
]
1{ws=w}

(C.3)

×
[
Φ
(

ln(w)− X̃E
s θ̃

E
r

σ̃Er

)]1{ws+1=w}

·
[

1
σ̃Er

φ

(
ln(ws+1)− X̃E

s θ̃
E
r

σ̃Er

)]1{ws+1>w}

where X̃sθ̃
E
r is given by:

X̃E
s θ̃

E
r = θ̃E1r + θ̃E2 ln(ws) + θ̃E3 1{ys = 2004}+ θ̃E4 1{ys = 2005} (C.4)
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We then estimate the parameters
(
θI , θ̃h, θ̃E

)
using:

max
θI ,θ̃h,θ̃E

∑
n

ln
(∑

r

LInr(θI)L̃Enr(θ̃h, θ̃E)
)

(C.5)

and recover the conditional type probabilities using:

qnr = LInr(θI)L̃Enr(θ̃h, θ̃E)∑
r LInr(θI)L̃Enr(θ̃h, θ̃E)

(C.6)

C.2 Unemployed-side structural parameters

C.2.1 Optimization constraints for Type 1

The first set of constraints in Equation 5.28 simplify to the following nonlinear con-
straints:

p11(t) ≤ p11(t+ 1) (C.7)
h11(t)

λ1(t) g11(t) ≤
h11(t+ 1)

λ1(t+ 1) g11(t+ 1) (C.8)

exp(P λ
t+1θ

λ)
exp(P λ

t θλ)
Λ (β1φ1 + E1 + A1 ln(t+ 1))

Λ (β1φ1 + E1 + A1 ln(t)) ≤
exp(P h

t+1θ
h
1 )

exp(P h
t θ

h
1 ) (C.9)(

P λ
t+1 − P λ

t

)
θλ −

(
P h
t+1 − P h

t

)
θh1

+ ln [1 + exp (−β1φ1 − E1 − A1 ln(t))]

− ln [1 + exp (−β1φ1 − E1 − A1 ln(t+ 1))] ≤ 0 (C.10)

The second constraint simplifies as follows:

pW1(T ) ≤ 1− ε (C.11)
h11(T ) exp(−κ1W1)

λ1(T ) g11(T )− h11(T )[1− exp(−κ1W1)] ≤ 1− ε (C.12)

exp(P h
T θ

h
1 )
[
1 + ε

1− ε exp(−κ1W1)
]
≤ exp(P λ

T θ
λ) Λ (β1φ1 + E1 + A1 ln(T ))

(C.13)

P h
T θ

h
1 + ln

[
1 + ε

1− ε exp(−κ1W1)
]
≤ P λ

T θ
λ − ln[1 + exp(−β1φ1 − E1 − A1 ln(T ))]

(C.14)
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C.2.2 Optimization constraints for Type r = 2

The first set of constraints in Equation 5.31 simplify to the following nonlinear con-
straints:

p12(t) ≤ p12(t+ 1) (C.15)
h12(t)

λ2(t) g12(t) ≤
h12(t+ 1)

λ2(t+ 1) g12(t+ 1) (C.16)

exp(P λ
t+1θ

λνλ2 + ψλ2 )
exp(P λ

t θλν
λ
2 + ψλ2 )

Λ (β2φ1 + E2 + A2 ln(t+ 1))
Λ (β2φ1 + E2 + A2 ln(t)) ≤

exp(P h
t+1θ

h
2 )

exp(P h
t θ

h
2 ) (C.17)(

P λ
t+1 − P λ

t

)
θλνλ2 −

(
P h
t+1 − P h

t

)
θh2

+ ln [1 + exp (−β2φ1 − E2 − A2 ln(t))]

− ln [1 + exp (−β2φ1 − E2 − A2 ln(t+ 1))] ≤ 0 (C.18)

The second constraint which ensures that the CCPs are less than one simplifies to
the following nonlinear constraint:

pW2(T ) ≤ 1− ε (C.19)
h12(T ) exp(−κ1W2)

λ2(T ) g12(T )− h12(T )[1− exp(−κ1W2)] ≤ 1− ε (C.20)

exp(P h
T θ

h
2 )
[
1 + ε

1− ε exp(−κ1W2)
]
≤ exp(P λ

T θ
λνλ2 + ψλ2 ) Λ (β2φ1 + E2 + A2 ln(T ))

(C.21)

P h
T θ

h
2 + ln

[
1 + ε

1− ε exp(−κ1W2)
]
≤ P λ

T θ
λνλ2 + ψλ2 − ln[1+ exp(−β2φ1 − E2 − A2 ln(T ))]

(C.22)

Table 9: Computation time

Step Elapsed time
Estimate posterior probabilities 44.03 min
Estimate job-to-job structural parameters 7.38 min
Estimate unemployment-to-job hazards 7.02 sec
Estimate unemployment-to-job structural parameters 28.61 sec

Notes: Benchmarked on a 32-core Intel® Xeon® Gold 6134 3.20GHz CPU with
96GB RAM, running MathWorks® MATLAB® R2018b (9.5.0.1033004).
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D Additional results

Table 10: Type probabilities

Initial wage bin Type probability
Type 1 Type 2

1 99.7% 0.3%
(1.4e-06%) (1.4e-06%)

10 98.7% 1.3%
(2.0e-05%) (2.0e-05%)

20 95.1% 4.9%
(2.0e-04%) (2.0e-04%)

30 83.2% 16.8%
(1.5e-03%) (1.5e-03%)

40 55.7% 44.3%
(4.7e-03%) (4.7e-03%)

50 1.6% 98.4%
(1.9e-04%) (1.9e-04%)

Notes: Bootstrap standard errors in parentheses
(500 replications).

Figure 11: Value function of employment (normalized)
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Notes: Value function normalized w.r.t. the value of a job in the first wage bin
for each type. Error bars represent 95% bootstrap confidence intervals (500
replications).
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Figure 12: Structural unemployment-to-job hazards
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59



Figure 13: Value function of unemployment (normalized)
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Notes: Value function normalized w.r.t. the value of unemployment at t = 0 for
each type. Shaded regions represent 95% confidence intervals.
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