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Abstract

We consider the case in which the number of seats in a program is limited, such as a
job training program or a supplemental tutoring program, and explore the implications
that peer effects have for which individuals should be assigned to the limited seats.
In the frequently-studied case in which all applicants are assigned to a group, the
average outcome is not changed by shuffling the group assignments if the peer effect
is linear in the average composition of peers. However, when there are fewer seats
than applicants, the presence of linear-in-means peer effects can dramatically influence
the optimal choice of who gets to participate. We illustrate how peer effects impact
optimal seat assignment, both under a general social welfare function and under two
commonly used social welfare functions. We next use data from a recent job training
RCT to provide the first evidence of large peer effects in the context of job training for
disadvantaged adults. Finally, we combine the two results to show that the program’s
effectiveness varies greatly depending on whether the assignment choices account for or
ignore peer effects.
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I Introduction

Understanding how individuals are impacted by their peers has long fascinated academics,

policy makers, and the wider public. It is therefore unsurprising that despite the difficulty in

identifying the effect of an individual’s peers on her own outcomes, a large body of research

has aimed to estimate the magnitude of these peer effects in a number of different settings

and on a number of different outcomes. For example, Mas and Moretti (2009) uses data

from a large supermarket chain to show how the productivity of workers’ peers affects their

own productivity; Sacerdote (2001) looks at how Dartmouth undergraduates’ roommates’

and dorm-mates’ high school GPA impacts their own college GPA; and Opper (2019) shows

that the impact that teachers have on their students spills over to impact their students’

future peers.

Despite the different contexts, all three of these papers share a common feature: all use

a linear-in-means specification, in which the impact of an individual’s peers on her outcome

can be summarized by the average of the peers’ relevant characteristic. While the linear-

in-means specification is the most commonly used specification, an important implication

of the linear-in-means specification is that even in contexts where peer effects are large,

the average outcome across individuals is not impacted by how individuals are sorted into

groups; moving an individual who is a positive influence on her peers from Group A to

Group B will increase the average outcome in Group B by the exact same amount as it will

decrease the average outcome in Group A. This has led many researchers to focus on more

complex forms of peer effects, which are asserted to have more policy relevance.1

This conclusion, that the magnitude of linear-in-means peer effects do not impact the

average outcome of individuals, no longer holds when only a subset of the individuals in

a population get a treatment. For example, suppose that a school has enough resources

1This sentiment is stated succinctly in Hoxby and Salyer (2006): “The focus on establishing existence and
the linear-in-means model in particular have been problematic because neither educational policy-makers
nor economists would care much about peer effects if they merely existed and were linear in means. If peer
effects were linear in means, then regardless of how peers were arranged, society would have the same average
level of outcomes.”
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to give five students extra group tutoring after school, that students who have low initial

achievement are helped the most by the tutoring, and that there is a linear-in-means peer

effect in which the tutoring is more effective for an individual when her peers in the program

have high initial achievement. In this set-up, there is now a tension over whom to give the

spots to. To see why, suppose that four students are assigned to the group tutoring and a

principal who cares only about her students’ average outcomes is in charge of assigning the

last student. Giving the last spot to the lowest achieving remaining student helps him more

than giving it to a highest achieving remaining student helps her; however, the students

already assigned to the group would benefit more if the last slot was given to the highest

achieving student than if it was given to the lowest achieving student. To whom, then,

should the last spot be given? The magnitude of the peer effects now has potentially large

implications for the efficiency of the tutoring program and impacts the optimal allocation

of individuals to the program.

In this paper, we start by formalizing the question described in the paragraph above. To

do so, we consider a social planner who can assign individuals to treatment and explore how

the magnitude of linear-in-means peer effects influences the optimal treatment assignment.

Regardless of planner’s utility function, we show that increasing the magnitude of the peer

effects will increase the average ability of individuals assigned to treatment in the optimal

allocation.2 We then focus on two specific social planner utility functions, one in which she

only cares about the average outcome of the population and one in which she only cares

about the minimum outcome in the population. We characterize the optimal treatment

assignment under these utility functions and discuss in more detail how the presence of

peer effects influences this allocation.

We then turn our attention to the empirical analysis. For all the research into peer effects

in education, the literature largely neglects an important part of the American education

system: the adult learning/job training sector. This is despite the fact that the sector is

a large component of the United States education system; in 2016, for example, over one-

2Here we use “ability” to refer to the characteristics that generates the peer effects.
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quarter of adults in the United States held a non-degree credential (Cronen et al. (2017)).

Furthermore, job training programs are arguably one of the more important settings for

peer effects, as these programs often are tasked with not only teaching specific job skills

but also with shaping the participants’ relationship to work and the labor market. Finally,

training programs are an ideal context to study for our purposes, as they differ from many

other educational settings in that they are not universal and instead are often a scarce

resource, with limited slots given only to a fraction of the individuals who are interested.

In our empirical analysis, we use a randomized control trial (RCT) in which applicants

were randomly assigned slots in a job training program in Louisiana funded by the United

States Department of Labor Workforce Innovation Fund (WIF), authorized by the Work-

force Innovation and Opportunity Act, and its predecessor, the Workforce Investment Act

(WIA). We match participants in the study to administrative data on individuals’ earnings

and employment both before and after the training program. We then use this random

assignment to show compelling evidence that the average labor market history of other in-

dividuals in the class has a statistically significant and economically meaningful impact on

the future job prospects of individuals who attend the training. For example, we find that

an individual trained in a cohort with average labor market history one standard deviation

above the average is 15 percentage points more likely to be employed in the six quarters

post-training than an identical individual trained in a cohort with average labor market

history one standard deviation below the average. Similarly, we find that the program’s

impact on the individual trained in a cohort with peers who have higher than average labor

market history is approximately $900 more per quarter than the program’s impact on the

individual trained in a cohort with peers who have lower than average labor market history.

As a comparison, $900 is around 25% of the average baseline earnings of participants and

roughly equal to the average treatment effect across all cohorts.

In our last section, we conclude by combining the theoretical results with the empirical

estimates to determine the optimal allocation of individuals to the program. We show that

the average impact of the program would be more than double if the slots were allocated
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optimally rather than randomly. Even more stark is the comparison between a social planner

who optimally assigned individuals to treatment compared to one who attempted to assign

individuals to the program optimally, but mistakenly ignored the peer effects when doing

so. The impact of the program under the social planner who accounted for the peer effects

would be tenfold the impact under the social planner who did not account for them.

I.A Related Literature

The idea that peer effects can impact the optimal allocation of individuals to a limited

number of treatment slots is not a new one; however, the papers that do explore this gen-

erally assume that the network itself is exogenous to treatment.3 In these models, treating

the well-connected individuals in the network will cause more spillovers than treating the

poorly connected individuals (e.g. Cai et al. (2015); Banerjee et al. (2013)).4 In contrast,

we consider the optimal treatment allocation in the opposite extreme, where the treatment

assignment completely determines an individual’s peers and the effect of the treatment it-

self depends on who is in the treatment group. While seemingly similar to the network

literature, our paper therefore focuses on a separate mechanism and so is only superficially

related to it.

As a consequence, in many ways our paper is more related to the literature on how

non-linear peer effects impacts the optimal grouping of individuals in a more reduced-form

model, e.g. Bhattacharya (2009); Hoxby and Salyer (2006); Duflo et al. (2011); Carrell et al.

(2013). By considering a model in which not all individuals are assigned a group, we show

that even linear-in-mean peer effects can have important efficiency implications in addition

3There are papers that allow for the possibility that the treatment impacts the network, however, they are
more concerned with estimation than with determining the optimal targeting of treatment (e.g. Goldsmith-
Pinkham and Imbens (2013); Johnsson and Moon (Forthcoming); Comola and Prina (Forthcoming)).

4Defining “connected” is quite subtle and determining the precise optimum in the canonical diffusion
models is an NP-hard problem (Kempe et al. (2003)). The economic literature generally focuses on centrality
measures in the network and studies, among other things, the game theoretic motivation behind the centrality
measures (Galeotti et al. (2020); Demange (2017); Bloch et al. (2020)) and how the the centrality measures
themselves can be approximated without full knowledge of the network structure (Banerjee et al. (2019);
Breza et al. (2020)). Other common research questions include the importance of treating the central
individuals in the network (Akbarpour et al. (2020); Belhaj et al. (2020)) and how measurement error and
empirical uncertainty impact the efficacy of and approach to optimal targeting (Viviano (2020)).
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to equity implications and often impacts which individuals should be assigned to the group.

Our empirical results also speak to the literature on the effectiveness of job training

programs. Most recent studies of adult job training programs in the United States have

found them to be relatively effective, but with qualifications. Van Horn et al. (2015) provide

a useful review of this literature. Fortson et al. (2017) evaluate an RCT design similar to our

context, across 28 DOL-funded training programs. They estimate statistically significant

increases of more than $600 a quarter in earnings, which is similar to the average treatment

effect we estimate. Heinrich et al. (2013) evaluate WIA training programs using quasi-

experimental design methods across 12 states, and find positive and statistically significant

treatment effects on employment and earnings, with $591 higher quarterly earnings for

women and $419 for men, and a six percentage point increase in employment. These

results are for the general adult training programs. They find no returns in the WIA

Dislocated Worker programs, open to those that had been laid off. Andersson et al. (2013)

investigate a different set of WIA programs, but find similar effects: for the general adult

training program, earnings effects were between $300-$600 increase in quarterly earnings,

and $1,300-$1,700 in the third year after training, along with a 2 percentage point increase in

probability of employment. Similar to Heinrich et al. (2013), they find a worse outcome for

dislocated workers trained, with significant earnings losses in the first three years (although

with gains in the third year).

Non-WIA job training programs have also been found to be effective. The Center for

Employment and Training in San Jose, California, provided three to six months of vocational

training to disadvantaged youths and adults and saw gains in sustained earnings of about

40 percent per year (Heckman (2000)). Hollenbeck et al. (2012) find a postsecondary CTE

training program yielded around a $1,500 increase in quarterly earnings.

While there has been a large amount of research both on the question of peer effects

in traditional colleges and universities and on the question of how effective job training

programs are, the question of whether there are peer effects in the job training programs in
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the United States has not been explored.5 We combine the two literatures and show both

that there are large peer effects in the vocational education setting and that these peer

effects mean that the programs’ effectiveness depends crucially on the peer composition of

the program.

II Conceptual Framework

II.A Model Specification

We now formally define our model. In it, there is a finite set of N agents, each endowed

with an observable attribute that we denote θi. Each individual can be assigned to either

a treatment condition or control condition. Their assignment is captured by a variable Ti,

which equals one if individual i is assigned to the treatment condition and equals zero if

individual i is assigned to the control condition. We focus here for simplicity on the case

where there is a single treatment group; however, the conclusions do not change if those

who are treated are then assigned to smaller groups.

This treatment assignment is important as it affects each individual’s outcome, which we

denote as yi for individual i. We define yi(0) as individual i’s outcome when she is assigned

to the control condition. If individual i is instead assigned to the treatment condition

her outcome is yi(0) + τi. Given our notation, we can parsimoniously define individual i’s

outcome as:

yi = yi(0) + τi · Ti (1)

We will assume that the individual treatment effect τi depends on both i’s own attributes

and on the attributes of the other individuals who are assigned to the treatment condition

5There are a handful of papers that estimate peer effects in “vocational” settings in countries other than
the United States; however, in these countries vocational education is structured quite differently and more
akin to high school or traditional college in the United States. These papers are also aimed at answering
questions about different types of peer effects than the one we study. For example, Frattini and Meschi
(2019) use vocational training institutions in Italy to investigate the effect of having immigrants in the
classroom on native Italians’ achievement and Ramirez-Espinoza (2019) looks at gender peer effects.
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(i.e. peer effects). More formally, we will assume that:

τi = τ(θi) + γ · 1

T

∑
∀j
θjTj (2)

where τ(θi) is independent of who else is assigned to the treatment and T is the number of

individuals assigned to the treatment.6 Note that the main assumption here is that while

we allow for there to be peer effects, we restrict them to be linear-in-means peer effect.

In the above specification, we also assume that the individual component of treatment

effect heterogeneity is a function of θi; however, this is not a critical assumption and the

main conclusions hold even when allowing for additional dimensions of treatment effect

heterogeneity.

For the theoretical results, we do not make any further assumptions about the relation-

ship between θi and yi(0) or about the shape of the τ(θi) function. In many peer effects

models, it is assumed that an individual’s effect on their classmates is proportional to their

“ability,” for example, to their untreated outcome yi(0). It might also be tempting to as-

sume that a person’s contribution to their classmates’ learning is related to their own ability

to learn in isolation, that is, to their own τ(θi). For the theoretical analysis, we leave open

both possibilities and define the contribution to classmates’ learning as a distinct attribute

θi, which may or may not be related to yi(0).

Given this model, we consider the perspective of a social planner who must assign exactly

T < N individuals to the treatment. For example, this could be a principal who decides

which T students attend an after-school tutoring program, a public agency selecting which

applicants will receive job training (as in our application), or more generally any case where

there is oversubscription to a treatment in which treated individuals affect each others’

outcomes. Formally, denoting the vector of treatment assignments as T and writing the

6The fact that the peer effect term includes an individual’s own characteristic is innocuous, as we could
re-write this as τi = τ(θi) + γ · 1

T−1

∑
∀j 6=i θjTj for a slightly different value of τ(θi) and γ. We opt for this

specification in the theory section as it simplifies the algebra.
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social planner’s utility function7 as: U(y1, y2, ..., yN ), we get that her optimal decision is:

Topt = arg max
T

U
(
y1, y2, ..., yN

)
(3)

= arg max
T

U
(
y1(0) + τ1T1, y2(0) + τ2T2, ..., yN (0) + τNTN

)
(4)

We first consider the impact of peer effects on treatment assignment under a general

social welfare function and then consider in more detail how the social planners’ decision

depends on the presence of peer effects under two extreme circumstances, one in which she

cares only about the average outcome of the individuals and the other in which she only

cares about the minimum outcome.

II.B General Result

We start with a general social welfare function, in which our only assumption is that

U
(
y1, y2, ..., yN

)
is weakly increasing in each of the yi’s. We then ask how the optimal

treatment allocation changes as peer effects become more important. To do so, we need to

formally define what is meant by the peer effects becoming “more important.” One natural

approach is to consider what happens when γ in Equation (2) increases. However, increas-

ing γ affects the optimal treatment allocation in two ways: it both increases the importance

of peer effects and directly impacts yi for those who are treated; this is similar to the idea

that changing prices affects the buyers’ decision via both an income effect and a substitu-

tion effect. To isolate the increasing importance of peer effects, we consider a compensated

change in γ, in which as γ increases a constant is added to τ(θi) such that yi is constant

for everyone if there is no change in assignment.

To formally define a compensated change, we add a bit more notation by using T opti (γ)

to indicate whether individual i is treated under the optimal allocation when the peer effect

parameter is γ and Topt(γ) to indicate the optimal vector of treatment assignments under

7We use the term “social welfare function” and “social planners’ utility function” interchangeably through-
out the paper.
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γ.8 We then make the following definition:

Definition. In a compensated change of size ∆ from a baseline γ of γ̃, individual i’s

treatment effect changes from:

τi = τ(θi) + γ̃ · 1

T

∑
∀j
θjTj

to

τi = τ(θi) + (γ̃ + ∆) · 1

T

∑
∀j
θjTj − C

where C is a constant equal to ∆ · 1T
∑
∀j θjT

opt
j (γ̃).

Thus there are two changes to τi: first, γ̃ increases to γ̃ + ∆; second, a constant equal

to ∆ · 1
T

∑
∀j θjT

opt
j (γ̃) is subtracted from τ(θi), ensuring that τi does not change for any

individual if the treatment assignment remains at Topt(γ̃).

In a compensated change of size ∆, the outcomes stay constant for each individual

absent a change in treatment assignment; however, the increased importance of peer effects

impacts the social planner’s trade-offs when considering alternative treatment assignments

and so the optimal treatment assignment can change. In the following theorem, which we

prove in Appendix A, we formalize the idea that if the treatment assignment does change,

it changes in a way that raises the average value of θi among individuals assigned to the

treatment.

Theorem 1. For a compensated change from any γ to γ + ∆ with ∆ > 0, the average θi

of the treated individuals after the change is no lower than before the change, i.e.:

1

T

∑
∀j
θjT

opt
j (γ + ∆) ≥ 1

T

∑
∀j
θjT

opt
j (γ) (5)

In other words, if we assume θi to be a measure of underlying ability, then the proof

8Throughout we will assume that there is a unique choice of treatment assignment that is optimal. Doing
so allows us to write the comparison more easily, without requiring us to define set ordering. We highlight
in the proof where we use this assumption and how the proof could be adjusted without this assumption.
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states that the average ability of the optimally chosen set of treated individuals will increase

in situations where peer effects have a greater impact on treatment effects. While quite

intuitive and straightforward to prove, it is worth emphasizing the generality of the result.

We placed no meaningful restrictions on the social welfare function, so the result is true

regardless of the social planner’s preferences. Similarly, while the mechanism that generates

the peer effects have many interesting policy implications, the general result that larger peer

effects imply that a social planner should assign individuals with higher baseline ability to

treatment is true regardless of the mechanisms generating the peer effects.

II.C Maximizing the Average Outcome

We next consider a case when the social planner cares only about maximizing the average

outcome of the population, or:

U
(
y1, y2, ..., yN

)
=

1

N

∑
∀i
yi (6)

Since the yi(0) terms are unaffected by the allocation, maximizing the average outcome

of the population is equivalent to maximizing the total treatment effect (TTE). Using

Equation (2), we can write the TTE of a particular allocation as:

TTE(T) =
∑
∀i
τi · Ti (7)

=
∑
∀i

(
τ(θi) + γ · 1

T

∑
∀j
θjTj

)
Ti (8)

Finally, noting that the peer effect term γ · 1T
∑
∀j θjTj is identical for all individuals, we

can make one final re-write to show the total treatment effect of a particular allocation is:

TTE(T) =
∑
∀i

(
τ(θi) + γ · θi

)
· Ti (9)

This simple expression in Equation (9) implies the most efficient allocation is therefore
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to give the treatment to the T individuals with the highest values of τ(θi)+γ ·θi irrespective

of their outcome in absence of treatment (yi(0)). An important nuance is that although the

allocation decision only depends on τ(θi)+γ ·θi, the two terms impact different individuals;

the size of τ(θi) affects the degree to which the treatment impacts individual i directly, while

the size of γ · θi impacts how effective the treatment is on the other treated individuals.

Among other things, this means that designing revelation techniques to determine the

optimal assignment of individuals to treatment is complex. For example, using an auction

to allocate slots will no longer necessarily provide the most efficient allocation. This is

beyond the scope of this paper, however, and we will assume the social planner has complete

knowledge of τ(θi) and γ · θi.

In Appendix A, we explore the optimal allocation decision further by showing how the

treatment slots should be allotted under a few simple restrictions on the individual-level

treatment effect heterogeneity, i.e. the τ(θi) function. For example, we discuss there the

optimal allocation if τ(θi) is linear in θi or convex in θi. Here, we simply use the total

treatment effect expression to emphasize the following remark:

Remark 1. A social planner who cares only about maximizing the average outcome will

allocate the limited number of spots to the T individuals with the largest values of τ(θi)+γ ·θi.

The impact of the allocation on the TTE thus depends both on variation in how individuals

themselves respond to the treatment and on the linear-in-means peer effects.

For example, imagine that the social planner is deciding whether to assign individual j

or individual k to the treatment. From Equation (9), it is clear that the difference in the

ATEs between assigning j to the treatment rather than individual k is:
(
τ(θj)− τ(θk)

)
+(

γ · (θj − θk)
)

. Thus, the difference in how the individuals impact the overall level of

peer effects, i.e. γ · (θj − θk), affects the TTE of the allocation by the same amount as

the difference in how they respond to the treatment themselves, i.e. τ(θj) − τ(θk). Note

that this means that although there is often considerable attention given to the possibility

that individual-level heterogeneity can generate differences in program effectiveness, even

linear-in-means peer effects can generate substantial differences as well.
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II.D Maximizing the Minimum Outcome

Finally, we consider a case where the social planner is interested in more than the average

outcome and has equity concerns as well. As our framework here, we will consider the

extreme example where the social planner is a Rawlsian, in that she only cares about the

worst-off individual. Formally, her utility function is:

U
(
y1, y2, ..., yN

)
= min{y1, y2, ..., yN} (10)

We can then plug in Equation (2) into the expression to get that her utility function is:

U
(
y1, y2, ..., yN

)
= min{y1(0)+

(
τ(θ1)+γ·

1

T

∑
∀j
θjTj

)
T1, ..., yN (0)+

(
τ(θN )+γ· 1

T

∑
∀j
θjTj

)
TN}

(11)

From this, it because clear that the substitutability of τ(θi) and γ · θi breaks down

given that equity concerns are involved. In addition, the treatment assignment decision

depends not only on how individuals respond to the treatment, but on how well they would

do without the treatment, i.e. on yi(0). While it is impossible to precisely determine who

would get the treatment, we can make the following remark:9

Remark 2. If there are no peer effects and the treatment effects are large enough, a Rawl-

sian social planner would give the treatment to the T individuals with the lowest values of

yi(0), assuming that the value of the treatment to them is positive. With peer effects, how-

ever, this is no longer necessarily the case and a Rawlsian social planner may assign some

of the treatment slots to high yi(0) individuals if they also have high θi.

As a concrete example, imagine that the social planner is a school principal who is

deciding which students to assign to an after-school learning program and, for this decision,

9The assumption that treatment effects are large enough is done in order to ensure that the social planner
is not indifferent in who to give treatment to. Specifically, if y1(0) + τ1 < y2(0), where the individual’s are
ordered by the value of yi(0), a Rawlsian would be indifferent who she assigns the treatment to beyond
individual 1. We could relax this assumption and merely that the effects are strictly positive if we instead
considered a social planner who has lexicographic preferences, i.e., she cares first about the individual with
the lowest yi, then about the individual with the second lowest yi, etc.
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only cares about how well her worst student does. If there are no peer effects, she would

clearly assign the lowest achieving students to the tutoring program. With peer effects,

however, she might instead allocate a few of these scarce seats to the highest achieving

students, as a way to make the program more impactful for the lowest achieving students

enrolled. This idea that the treatment goes to two types of individuals: those with the

lowest values of yi(0) and those with the highest θi is formalized in the following theorem,

which is proved in Appendix A.

Theorem 2. Suppose that a social planner chooses T to maximize Equation (11). Then the

optimal allocation of treatment slots involves assigning the treatment to the K individuals

with the lowest values of yi(0) and the T −K individuals with the highest values of θi.

III Context and Data

III.A Workforce Innovation Fund Randomized Controlled Trial

We test these models on a set of adult learning job training programs for disadvantaged

workers. Specifically, we investigate peer effects and their implication for optimal allotment

of training using the Career Pathways training program run by the New Orleans Office of

Workforce Development (OWD), and funded by a US Department of Labor (DOL) Work-

force Innovation Fund (WIF) grant starting in 2014. This setting provides an instructive

application of the theory for two reasons: first, the intervention was implemented as a ran-

domized controlled trial (RCT), which allows for clean identification both of the treatment

effect and the peer effect; second, the setting is one in which peer effects were reasonably

likely to happen, with small group sizes (in our sample, average cohort size was below 12

people). In addition, there is a paucity of research on peer effects in the adult learning

settings, and so beyond being an application of the theory the peer effect estimates are

themselves interesting and informative.

The training targeted lower-income workers in New Orleans interested in job training

in one of three pathways: advanced manufacturing, health care, and information technol-
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ogy. For each pathway, there was around 20 hours of training time per week for two to

four months. The program was constituted of four distinct stages: recruitment, screening,

randomization, and training. We describe the four stages of the program here.

Stage 1: Recruitment OWD recruited potential trainees using several methods: (1)

local One-Stop Centers provided program information to individuals using government as-

sistance programs (i.e., SNAP, UI, etc.) who are required to partake in career readiness and

reporting activities under the federal funding mandate; (2) fixed tablet stations were placed

in targeted local hotspots throughout the city (i.e., community centers, public assistance

offices, etc.) to provide program information and collect information on interested appli-

cants; (3) a communications firm hired by OWD provided general program outreach as well

as target particular populations via paid advertising and online marketing campaigns, via

Facebook, Craigslist, Twitter, and radio ads; and (4) OWD used their existing community

partnerships to distribute information about the training program by co-hosting a series of

workshops, open to both referrals and members of the general public.

Stage 2: Screening One objective of the Career Pathways program was to access

a population of disadvantaged jobseekers (unemployed, underemployed, discouraged, and

other interested workers) who had potential to succeed in both the training and subsequent

work situations. OWD sought to screen the applicant pool to select individuals who were

well-informed about the available career pathways, the rigor of the training program and

the employment possibilities post-completion.

In order to do so, OWD screened interested candidates before placing them into the ran-

domization pool. The screening process typically included four components: (1) attendance

at a mandatory orientation, (2) drug testing, (3) completion of a relevant assignment or test

to determine basic literacy and numeracy (such as the Test of Adult Basic Education, or

TABE) and (4) completion of a structured and scored 45-minute interview with OWD about

their capacity. Those deemed likely to succeed were placed into the randomization pool,

while those deemed unlikely to succeed were directed to other government programs and

benefits. While selection of trainees is always a consideration of any training program, this
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rigorous level of determination and selection is uncommon. In Fortson et al. (2017) review

of 28 WIF programs, they found that sites used assessment tools, including the TABE, but

did so for information on how to support the trainee and not as a strict selection mechanism.

Stage 3: Randomization Individuals who pass the screening and consented to par-

ticipate in the study were then placed into the randomization pool for each cohort. Within

that group, half of the persons were randomly selected to be invited to the training program,

and half were not. Randomization was done using random numbers within strata defined

by gender, baseline income, current employment status, and age.

Stage 4: Training The training program represented a coordinated effort between the

OWD and the training providers, which included a local community college, established

professional training providers, and firms. Training was typically offered through twenty

hours across five days per week. The first round of training was around two months long.

At the completion of the first round of training, candidates in most were cohorts invited

to enter an additional subsequent “stackable” credit program, which would comprise an

additional two months of training within their career pathway. Training would involve

the opportunity to obtain various industry-based credentials along the way, conditional on

attendance and success on a set of tasks or tests.

III.B Data

We define a cohort as a group of individuals entering the same randomization pool to

enter a specific training program together at the same time. There were 25 total cohorts

in the Career Pathways program. The first cohort was not randomized, and significant

programmatic changes to the stages were made after the third cohort. Thus, following

Baird et al. (2019), we do not include in our analysis these three cohorts. There are an

additional two cohorts at the end of the program for which no data was available, and so

we do not include them in our analysis either. Our final sample thus uses 20 cohorts for

this paper.

Our data for this paper comes from two sources. First, in order to enter a randomization
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pool, individuals had to fill out a brief survey (the baseline survey) with questions about

their demographics and current employment and earnings. They also provided their social

security numbers and consented to researchers obtaining data from the state of Louisiana.

This enabled the second data source: the history of employment, earnings, and industry

records were obtained from the Louisiana Workforce Commission (LWC) for each individual

for each job they held that was reported to the state. This data is at the quarterly level,

between and including the first quarter of 2014 and the first quarter of 2019, for 21 total

consecutive quarters of data for each individual. Most of these quarters were before the

start of training.

Table 1 presents information regarding the training program enrollments. After restrict-

ing to the 20 cohorts as described above, there were nearly 500 individuals in the study, with

over 2,000 post-training quarterly observations. Advanced manufacturing had the largest

number of participants, driven by having larger cohorts on average. Health care was the

smallest pathway, both in terms of number of cohorts and participants.

Table 2 presents the baseline characteristics of the sample we use for this analysis, as well

as the outcomes from the LWC data for a period of two years prior to training. The sample

is relatively low-income, with average earnings of a little more than $3,500 per quarter

(or around $14,000 per year). 53% of the sample had a job at time of randomization.

Approximately 90% of the sample are Black individuals and half of the sample are over

age 35. We find that there is no statistical difference between the treatment and control

group on any of these dimensions and the differences are quite small relative to the pooled

standard deviations. Thus, there is good balance between the two groups.

III.C Labor Market History

We now construct a measure that captures individuals’ labor market history, which serves

as our measure of θi as defined in the above conceptual framework for our empirical analysis.

We start by standardizing four measures, so all are mean zero and have a standard deviation

of one. These measures are: a) the number of quarters employed in the two years before
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randomization; b) the total earnings in the two years before randomization; c) total earnings

in the year before the screening occurs; d) an indicator for whether individuals are working

at the time of screening. The choice of these measures reflects our assumption that the

individuals who will be most helpful classmates are those who have had positive labor

market experiences, and therefore can share experiences of job search and job success. It

is also plausibly related to underlying ability, which means individuals with positive labor

market experiences may also be better able to help other classmates learn difficult material.

We then average these standardized measures to calculate a measure of each individual’s

labor market history. To construct our measure of an individual’s peers’ average labor

market history, we calculate a leave-one-out average for each individual in which we calculate

the average labor market history for all individuals who apply, are accepted, and are assigned

to the same arm (i.e., treatment or control) in the same cohort as individual i. Importantly,

this highlights the fact that the average value of θi of an individuals’ peers is largely random,

as it depends on whether the individuals who were well-connected to the labor market are

the ones that were randomly assigned to the treatment or to the control group within a

cohort.

Figure 1 shows the distribution of both individual labor market history and the peer

average labor market history. As can be seen, individual values of θi range from around

-2.75 to about 1.75, and has a standard deviation of around 1.38. As would be expected,

variation in the peer average labor market history is smaller than variation in individual

labor market history. However, Figure 1 shows that there is still a reasonable variation in

the peer average labor market history, with values ranging from approximately -1.5 to 1,

and has a standard deviation of 0.32. Thus, as measured by the standard deviation, there

is approximate 25% as much variation in peer average labor market history as there is in

individual labor market history.
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IV Empirical Strategy

We now discuss the empirical specification that we use to estimate the average treatment

effect, the degree of individual-level treatment heterogeneity, and the size of the peer effect.

Given the relatively small sample size and large number of potential explanatory covariates,

we first use a random forest regression to residualize the outcome and reduce the variance

of the error term. More specifically, we use as our main outcome:

ri,k,t = yi,k,t − ĝ(Zi) (12)

where yi,k,t is the outcome of interest, Zi are covariates described below, and

ĝ(Zi) =
1

2
Ê[yi,k,t|Zi, Ti = 1] +

1

2
Ê[yi,k,t|Zi, Ti = 0] (13)

As the covariates Zi, we use: information on individual i’s gender, race, and age at random-

ization; employment status and total wages received in each of the twelve quarters prior to

randomization; information used to determine eligibility at screening (discussed in Section

III); and time period post-training. Since all of the covariates are not impacted by the

treatment, residualizing the outcome by any function g(Zi) would not change the estimated

coefficients. See Appendix B for a short proof of this statement and more discussion about

the motivation both behind this residualization approach as well as the form of g(Zi) we

use. Finally, we estimate Ê[yi,k,t|Zi, Ti = 1] and Ê[yi,k,t|Zi, Ti = 0] using all the cohorts

except for k, which ensures that the estimation of ĝ(Zi) is independent of individual i’s

treatment status (Opper (2020)).

To estimate the size of the peer effect and degree of individual treatment heterogeneity,

we then run the following regression:

ri,k,t = αθi +
[
τ + βθi + γθi,k

]
Ti + δk + νi + ηt + εi,k,t (14)

where:
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• ri,k,t is the residualized outcome for individual i who applied to cohort k in period t;

• θi is individual i’s labor market history, described in the section above;

• θi,k is the average labor market history for individuals in the same cohort k and

treatment status as individual i;10

• Ti is an indicator for whether individual i was randomly assigned treatment;

• δk is a fixed effect indicating which cohort individual i applied for;

• νi is a vector of strata fixed effects, indicating which strata individual i is in; the

strata are defined by gender, income, employment status, and age all measured at the

time of randomization;

• ηt are period fixed effects;

• εi,k,t is an individual error term.

In the main specification, the empirical model restricts the theoretical model developed

above by assuming that τ(θi) is linear in θi, i.e. τ(θi) = τ + β · θi. Thus, τ is the average

treatment effect, β̂ is the estimate of the amount of individual-level treatment heterogeneity

and γ̂ is the estimate of the size of the peer effects.11

When estimating we allow for correlation of the εi,k,t error terms both within-individuals

and within-treatment groups by clustering at the individual-level for individuals not ran-

domly assigned to the treatment and at the cohort-by-treatment-level for those randomly

assigned to the treatment.12

Finally, it worth discussing how the random assignment of individuals to treatment

within-cohorts allows us to credibly estimate the magnitude of the peer effects, despite the

10Formally, we define θi,k as Ti

Tk−1

∑
∀j 6=i θjTjA

k
j + 1−Ti

Ck−1

∑
∀j 6=i θj(1 − Tj)A

k
j , where T k is the number of

individuals assigned to treatment in cohort k, Ck is the number of individuals assigned to the control in
cohort k, and Ak

i is an indicator for whether individual i applied for cohort k.
11The fact that τ identifies the average treatment effect follows from the fact that both θi and θi,k are

defined to be mean-zero.
12Results are similar when we cluster at the cohort-by-treatment level for all individuals.
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many difficulties that peer effect estimation entails (e.g., Manski (1993); Angrist (2014);

Feld and Zölitz (2017)). Informally, estimating the true causal effect on an individuals’

peers on her outcome requires variation in the ability of the individuals’ peers that is

uncorrelated with her own ability.13 Normally, this is quite challenging as similar individuals

endogenously group together, making it difficult to tease apart the impact of an individual’s

own ability on her outcome as opposed to the impact of the individual’s peers’ average

ability. In our case, however, the assignment of individuals to treatment is what generates

most of the variation in an individual’s peers’ labor market history; since this assignment

is random, it clearly cannot be correlated with an individual’s own labor market history or

any other characteristics of the individual.

Furthermore, in contrast with other work that uses the random assignment of individuals

to groups within a larger cohort (e.g., Sacerdote (2001); Guryan et al. (2009)), in this

context there exists a control group of individuals who are not assigned to groups. The

presence of this control groups allows us to control for the one potential source of selection,

of individuals into cohorts. In our main regression, we do so by including cohort fixed

effects in the specification to account for potentially endogenous selection into cohorts. We

could augment this by including the average labor market history of the control individuals’

“peers’”, i.e., the individuals that applied to the same cohort and were not assigned to the

treatment. In doing so, the specification would be nearly identical to the one suggested by

Caeyers and Fafcamps (2020), for example, with the only difference that we allow for the

impact of ones’ peers and own labor market history to matter more or less in the treatment

groups than the control groups. While we leave this specification to Appendix A4, we find

nearly identical results in this specification as in our main specification and, reassuringly,

we find no evidence than controls individuals’ “peers’” labor market history are related to

their own outcomes. Thus, both the random assignment of individuals to treatment and the

presence of a control group allow us to credibly estimate the causal impact of an individual’s

13This definition is informal in part because it ignores important differences between “observed” ability
and “unobserved” ability at both the individual and group level.
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peers on her outcomes without the strong assumptions often necessary.

V Peer Effect Estimates

We now present evidence that the effectiveness of the job training programs on an individual

depended in part on the labor market history of the individuals they took the training with.

The estimated peer effects are shown in Table 3, which also shows the average impact of

the training and the how the impact of the training depends on the individuals’ own labor

market history. Note that the “average impact of the training” and “average treatment

effect,” as it is reported in the table, is a bit of a misnomer and corresponds to the effect

on an individual with average labor market history and whose peers have average labor

market history. This also corresponds to the average effect if everyone in the sample was

treated or the expected average effect given random assignment, but will not necessarily

be the observed average effect for a given assignment of individuals to slots. That it does

not necessarily correspond to the average effect regardless of treatment is in fact one of the

main points of this paper.

The four columns pool all quarters post-training and include fixed effects for the training

cohort, for the strata used during randomization, and the time period. The four columns

differ only in the outcome they show: the first two shows the impact on total wages (in logs

and levels respectively), the third on whether an individual was employed or not, and the

fourth on conditional wages, i.e. it restricts the sample to those employed after the training

period and shows the impact on their total wages.

As seen in the third row of the first three columns of Table 3, the average treatment

effect of the program on both wages and employment was positive. Since the fourth column

conditions on an endogenous variable, the coefficient should be interpreted with caution.

The fact that average treatment effect is positive here too, however, does provide some

suggestive evidence that not all of the wage effect shown in columns (1) and (2) are due
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to the employment effect shown in column (3).14 While the third row suggests that the

average effect is positive, the second row of Table 3 shows that the program has a larger

effect on individuals who themselves have a poor labor market history; that is, those who

were less connected to the labor market before the randomization saw a larger benefit of

attending the program than individuals with a better labor market history. Finally, the top

row shows that the effectiveness of the program on a particular individual is larger when the

other individuals attending the job training program have a good labor market history, i.e.

there are peer effects in the program. This result is statistically significant at the 1% level

if the outcome of interest is total wages earned (when measured in logs) or employment

probability and statistically significant at the 10% level if the outcome of interest is total

wages earned (when measured in levels).

To interpret the size of the coefficients, consider an individual who has an average labor

market history herself and who attends a training session where the peer average labor

market history is one standard deviation below the mean. Given that the standard deviation

of peer average labor market history is 0.32, the coefficients from Table 3 suggest that she

benefits from attending the program. By attending the program she sees an increase in her

total wages of approximately $490 per quarter, or $935 - $1390*0.32. Contrast this with

another individual who also had an average labor market history herself, but who attended

a training session where the peer average labor market history is one standard deviation

above the mean. The benefit from attending the training session for this individual is around

$1,380 more per quarter, or $935 + $1390*0.32. Thus, while both individuals benefit from

the attending the training program, the benefit for the individual who attended the training

session with peers who had above average labor market history is about $900 more than

the individual who attended the training session with peers who had below average labor

market history.

It is worth dwelling on this magnitude and putting it in context. Perhaps the most

14For much more information about the average effect of the program, see the RAND Report written by
two of the authors of this paper (and others): Baird et al. (2019)
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natural comparison is to compare the differential effect the program had on these two

hypothetical individuals and to the average effect of the program. We find that the average

effect of the program is $935, so the impact of a one-standard deviation change in the

group average labor market history on the program’s effect is around half of the average

treatment effect.15 Put differently, imagine a two-step randomization procedure in which

the first coin flip determined whether an individual was treated or not and the second, if she

was assigned to treatment, determined whether she was assigned to a group with average

labor market history one standard deviation above the average or one standard deviation

below; our results suggest that both coin flips have approximately the same impact on her

eventual earnings and employment probability.

Finally, we note that while hypothetical, these calculations do not involve extrapolating

outside of the sample variation. In other words, the calculations do not consider a hypothet-

ical group where each individual has a labor market history one-standard deviation above

the mean, with the standard deviation measured using the distribution of individuals’ labor

market history. Instead, we consider a group where the group average labor market history

is one-standard deviation above the mean, with the standard deviation measured using the

observed group average labor market history.

The above analysis pools all quarters post-training session. We next explore how the

importance of peers evolves over time. To do so, we separately estimate Equation (14), first

restricting the sample to the quarter in which the training takes place and then restricting

the sample to each of the six quarters after the training ended. These results are shown in

Figure 2, with Panel 2(a) showing the results for total wages and Panel 2(b) showing the

results for employment status. The results are similar for both outcomes: for the period in

which the training takes place, the labor market history of the peer individuals taking the

training with an individual do not affect her total earnings or employment status. This result

serves as a placebo test of sorts, adding further credence to the identification approach. In

15Specifically, 1,390×0.32
935

= 0.48 so the effect on the treatment effect of a one-standard deviation change in
the group average labor market history is 47% as large as the average treatment effect.
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the quarters after the training program ends, however, the effect of the program becomes

increasingly dependent on the individuals’ peers within the program.16 This suggests that

the results in Table 3 understate the importance of an individuals’ peers on the long-run

effectiveness of the training program.

In short, we find evidence of peer effects in this program and that these peer effects are

large relatively to the average treatment effect. We next consider how these results affect

the optimal assignment of individuals to the program; however, it is worth emphasizing

again that these results are important in-and-of themselves as this result fills a gap in the

literature by illustrating the existence of large peer effects in an adult learning context.

VI Optimal Treatment Allocation

In Section V, we considered as fixed the random assignment of individuals to treatment.

We now use the empirical results to once again consider the decision of the social planner,

as discussed in Section II.

VI.A Average Treatment Effect Calculations

To start, we will focus on a social planner who cares only about maximizing the total wages

earned by the study participants. As we showed above, we can write the total treatment

effect (TTE) of a particular allocation as:

TTE(T) =
∑
∀i

(
τ(θi) + γ · θi

)
· Ti (15)

which also can be thought of as the aggregate benefit of the program on the specific outcome

examined.

We can now go further than in Section II and explicitly calculate the aggregate benefit

16For the cohorts that started late, we do not have data for all cohorts for a full six periods post-training.
Thus, there is some sample attrition in the later periods, which explains the larger standard errors in the
later periods. Note, however, that there is no selective attrition within cohorts and instead all the attrition
is due to our data ending in the fall of 2019.
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of the training program for any given T, i.e. for any assignment of individuals to treatment.

We do so using the fact that Section III discusses how we estimate θi for each individual

and Table 3 reports that we find: τ(θi) ≈ 935 − 431θi and γ ≈ 1390. We can then use

these values to calculate four values: a) the aggregate benefit of the program under the

optimal allocation of individuals to treatment; b) the aggregate benefit of the program

under the allocation that a social planner who ignores the presence of peer effects would do;

c) the expected aggregate benefit of the program under random assignment of individuals to

treatment; and d) the actual aggregate benefit of the program under the realized assignment

of individuals to treatment.

For our calculations, we restricted the social planner by: a) only allowing the social

planner to assign individuals to treatment within the cohort they applied and b) keeping the

number of individuals per program fixed. Given Equation (15), calculating the most efficient

and least efficient allocation is straightforward. The first step is to calculate τ(θi) + γ · θi

for each individual. For each cohort k which has Tk treatment slots, the most efficient

allocation then assigns the treatment to those individuals with the Tk largest values of

τ(θi)+γ ·θi. Similarly, a naive social planner who ignores the presence of peer effects would

instead assign the treatment to those individuals with the Tk largest values of τ(θi).

The results are shown in the first column of Table 4. It shows that the overall benefit

of the program can vary widely, depending on who is assigned to the treatment. Under

the optimal allocation the program increases the wages of participating individuals by over

$1,823 per quarter. While attempting to assign the slots optimally, a social planner who

ignores the presence of peer effects, on the other hand, would lead to a program that is

ineffective and only increases participants’ per-quarter earnings by $124 per quarter. This

difference demonstrates the discussion under the assumption of linear treatment effect het-

erogeneity described in Appendix A.B. That is, disregarding peer effects (Naive Optimal)

leads the social planner to select the T individuals with the lowest θi in each cohort, given

the negative estimated relationship between own labor market history (θi) and outcomes

(Table 3). However, the true optimal allocation is to assign treatment to the highest θi
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individuals, given the stronger and positive impact of peer effects compared to own labor

market history. Thus, the “Naive Optimal” assignment is actually the least efficient alloca-

tion of individuals to treatment. The results shown here are not dependent on the linearity

assumption, however; we obtain very similar estimates when we allow τ(θi) to be a higher

order polynomial. We also note that since the peer effect is much larger than the own labor

history impact in this context, the social planner could incorrectly assume smaller peer

effects and still make the optimal assignment.

Naturally, this analysis relies strongly on the assumption of linear-in-means peer effects

and involves extrapolating that linear relationship outside the range that it was estimated

on. Furthermore, as Carrell et al. (2013) show, exploiting peer effects is fraught with

challenges. We therefore do not view these estimates as proof positive that the job training

program we study would have had a negligible impact on participants had all the individuals

with the lowest labor market history in a cohort been the ones assigned to the program nor

that the effect of the program would be twice as large had the individuals been assigned

optimally, rather than randomly. Instead, we view this result as indicative of our main

conclusion, that the presence of peer effects - even linear-in-means peer effects - can have a

large impact of the efficacy of a program.

VI.B Equity Calculations

Like in Section II, we next consider a Rawlsian social planner who wants to choose the

treatment allocation to maximize the worst-off individual. An additional challenge here is

that the optimal allocation decision depends in part on yi(0), which is unobservable. We

have, however, generated predictions of yi(0) when we conducted the residualization. We

therefore use these predictions to approximate yi(0).17

Furthermore, the complex nature of the Rawlsian social planner’s utility function makes

maximizing the utility function more computationally challenging than maximizing Equa-

17Another approach is to use as our approximation of yi(0) the baseline wages that individuals received,
which we observe. We get similar results when we use their baseline wages as our approximation of yi(0),
rather than the machine learning predictions.
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tion (15). However, we can leverage the unique form of the optimal allocation as discussed

Theorem 2 to make this maximization possible. Specifically, the results means we can con-

sider only Tk−1 possible optimal treatment allocations for each cohort rather than consider

each of the Nk!
(Nk−Tk)!Tk! total number of possible treatment allocations; here Tk is the number

of treated individuals in each cohort and Nk is the total number of individuals in the cohort.

Like before, we require the planner to exactly fill the number of slots that were available

and only allow them to allocate an individual to a training program if they applied to the

program, i.e. if the individual was in the cohort. We then consider the utility of the social

planner under the optimal assignment, the assignment they she would choose if she ignored

peer effects, the expected utility under random assignment, and the actual utility under the

realized assignment.

When calculating the social planner’s utility, we assume a form of narrow-framing by

the social planner (Barberis et al. (2006)). More specifically, we assume that while she cares

only about the individual with the minimum outcome within each cohort, her overall utility

is the average of this utility across the cohorts. We make this assumption to ensure that

the treatment assignment of each cohort has impact to the overall utility. An alternative

interpretation is that a different Rawlsian social planner makes the treatment allocation

decision for each cohort.

These results are shown in the second column of Table 4. Again, a social planner who

naively ignores the presence of peer effects does much worse than the social planner who

accounts for peer effects. In the job training program estimation here, the social planner can

incorrectly assume very small peer effects and still arrive at a minimum realized earnings

that is very close to the optimal level, albeit with a different allocation decision. This is

because of Theorem 2, wherein under peer effects, the social planner may begin switching

out medium yi(0) individuals, who will still fare better in absence of treatment than the

lowest outcome, and switching in the highest θi individuals, whose peer effects will pull

up the outcome for the lowest trainee. Given the smaller size of many of these cohorts,

switching only a few such individuals can have dramatic effects on the average labor history
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of the cohort, and thus yield significant peer effects.

VII Conclusion

In job training programs, as in many other contexts, there are a limited number of seats

into which a policy maker must assign individuals. This leads to the question of who should

be admitted to training programs if peer effects are large. Is it optimal to only train those

most in need or should some less needy individuals be admitted in order to capture the

positive impact they have on other participants? Does the answer depend on the policy

makers’ utility function?

Our theoretical analysis first shows that the presence of peer effects generally leads an

optimizing policy maker to assign seats to relatively more able individuals, regardless of

her utility function. For example, we show that even a policy maker who cares only about

equity, while ensuring that some seats go to the most needy, will also potentially reserve

some seats for the relatively more able individuals.

Our empirical analysis demonstrates that these observations are not merely of academic

interest. The presence of a linear-in-means peer effect has a large impact on the efficiency

of job training programs and changes the optimal allocation of the limited training seats.

We use the random assignment of individuals to treatment groups to skirt many of the

issues prevalent in estimating peer effects and provide the first evidence of large peer effects

in the context of job training programs. Our estimates indicate that the heterogeneous

treatment effect due to peer effects is equivalent to roughly half of the average treatment

effect; formally, the relative effectiveness of two programs which differ in peer average

labor market history by a one-standard deviation is roughly half of the average treatment

effect. We then consider two types of social welfare functions: one that aims to maximize

the aggregate benefit of the program and another that emphasizes equity. In either case,

we show that the social planner’s utility could be greatly increased if she allocated slots

optimally and that accounting for peer effects is quite important when determining the
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optimal assignment.

The results from this study provide guidance to practitioners in the allocation of scarce

resources in many education and training settings. For example, who should be granted

access to extra-curricular programs that aim to supplement classroom learning? If seats in

these programs are scarce, whether the goal is to raise the outcomes of the lowest performing

students or to raise the outcome averaged over all students, our findings suggest that the

presence of peer effects may well make it optimal to implement an admission procedure that

ensures some participants are from each end of the academic spectrum. While assigning

scare resources to more affluent children should be done with care, our results suggest that

in some limited contexts that may well be the best way to improve outcomes for the most

disadvantaged children.

Finally, training and learning occurs in many settings, not all of which are formal. One

can imagine a manager who is tasked with deciding which of her employees are trusted to

work on solo projects and which should be grouped into teams. Our results suggest that

there may be some value in assigning the high ability workers to the team, as a way to

capture their peer effects and improve the ability of lower-performing members of the team.

Of course, whether this is optimal in the workplace is likely to depend on whether peer

effects function through explicit teaching or through example. If the peer effects from the

more productive members of a team require that they reduce their own output, then our

results might not generalize to the workplace. If, on the other hand, peer effects operate

through example, then peer effects can be realized at little cost.

Better understanding why we find such large peer effects in the job training program

is therefore of crucial importance if one is to consider how what our results imply about

similar decisions in alternative contexts. A more full understanding of the mechanisms may

also inform ways in which job training programs could be improved; for example, if the

peer effects are due to example, having participants in a job training program shadow high

ability individuals who previously participated in the training may be a way to improve

the effectiveness of the program. While not providing a clear answer on the mechanisms,

30



Baird, Engberg, and Opper

by showing both that there are large peer effects in job training programs and that these

can greatly impact the effectiveness of such programs, we highlight the importance of more

research into how individuals interact in these programs. More generally, our paper also

highlights that peer effects play a crucial and under-appreciated role in determining the

optimal assignment of individuals to programs and in explaining cross-program treatment

effect heterogeneity.
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VIII Tables and Figures

VIII.A Tables

Table 1: Description of training cohorts

Pathway Area Cohorts Number
Treatment

Number
Control

Observations

Advanced
manufacturing

Electrical 5 87 79 1011

Pipefitting 1 6 6 24
Welding 1 11 8 57

Health care Medical billing
and coding

4 42 37 208

Patient access
representative

1 19 20 195

Information
technology

Information
technology

8 72 68 757

Total 20 237 218 2252

*Note: The number of observations are post-training quarterly observations of outcomes,
while the number treatment and number control are the unique number of individuals.

Table 2: Baseline characteristics of sample

Control Treatment P-Value Difference
95% CI

Effect
Size

Male 0.556 0.566 0.949 [-0.267,0.286] 0.019
Over 35 years old 0.553 0.596 0.310 [-0.045,0.131] 0.088
Working 0.527 0.500 0.517 [-0.123,0.066] 0.055
Prior year’s income > $5,000 0.610 0.641 0.610 [-0.093,0.145] 0.065
Black 0.887 0.915 0.323 [-0.025,0.084] 0.092
Proportion of prior quarters
employed

0.611 0.600 0.802 [-0.096,0.074] 0.028

Average prior quarterly earn-
ings

3788.713 3522.633 0.531 [-1100.0,562.3] 0.066

*Note: The counts of the individuals who are included in the averages are shown in Table
1 above. The “P-Value” column reports the p-value of a null hypothesis that there is no

difference in the means of the treatment and control observations. The “Effect Size”
column reports Hedge’s g, i.e., the mean difference divided by the pooled standard

deviation.
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Table 3: Average Treatment Effect, Peer Effect, Individual-Level Treatment Heterogeneity

(1) (2) (3) (4)
Log Wage Total Wage Employed Total Wage

Conditional

Impact of Peers’ Avg. Labor Market
History on Treatment Effect

2.026*** 1390.8* 0.219*** 1142.9
(0.756) (777.3) (0.0811) (846.4)

Impact of Own Labor Market History
on Treatment Effect

-0.238 -430.9** -0.0254 -773.0***
(0.211) (217.7) (0.0231) (223.9)

Average Treatment Effect
0.866*** 935.9*** 0.0784** 1330.1***
(0.259) (265.3) (0.0323) (297.6)

Cohort Fixed Effects X X X X
Time Period Fixed Effects X X X X
Strata Fixed Effects X X X X

Number of Clusters 174 174 174 139
Observations 1632 1632 1632 1095
∗ ∗ ∗p < 1%, ∗ ∗ p < 5%, ∗p < 10%. An observation is an individual-time period. The standard

errors are clustered at the individual-level for the individuals not assigned to the treatment and
the training cohort for the individuals assigned to the treatment. While labeled “log wage”, we use

an inverse hyperbolic sine function to allow for zero value in the outcome. “Total Wage
Conditional” uses the total wage as the outcome, but only includes individuals with a positive

wage in the quarter.

Table 4: Impact of Treatment Assignment Mechanism on Social Planner’s Utility

Social Planner is Focused On:
Treatment Assignment Average Outcomes Minimum Outcomes

Optimal 1,823 1,329
Naive Optimal 124 388
Random 938 285
Realized 893 308
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VIII.B Figures

Figure 1: Labor Market History Distributions
0
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.8

 

-3 -2 -1 0 1 2
Labor Market History

Individual Distribution Peer Average Distribution

Note: This figure shows the distributions of individual labor market history and peer average
labor market history. See Section III.C for information on how this measure is constructed.
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Figure 2: Impact of Peers Over Time

(a) Effect on Total Wages
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(b) Effect on Employment Status
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Note: These figures show the how the importance of an individuals’ peers evolves in the quarter
during and quarters after completing a job training program. The coefficient is estimated using
Equation 14, when restricting the sample to the specific quarter; the coefficient being shown here
is γ in that expression. The vertical lines highlight the 95% confidence interval. See Section IV for
more details on the specification.
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A Further Exploration of the Model and Proofs

A.1 General Result

Theorem. 1 For a compensated change from any γ to γ + ∆ with ∆ > 0, the average θi

of the treated individuals after the change is no lower than before the change, i.e.:

1

T

∑
∀j
θjT

opt
j (γ + ∆) ≥ 1

T

∑
∀j
θjT

opt
j (γ) (16)

Proof. Our approach to the proof is to consider any assignment where the average θi of the

treated individuals is lower than the optimal assignment before the compensated change,

which we refer to as the “initial optimal assignment.” We then show that the social planner

gains more from switching from this assignment to the initial optimal assignment after

the compensated change than before the compensated change. Since the initial optimal

assignment is optimal before the compensated change, it follows that none of the treatment

assignments where the average θi of the treated individuals is lower than in the initial

optimal assignment can be optimal after the compensated change.

To show this formally, denote the social planner’s utility under treatment assignment T

before the compensated change as U(T, γ) and after the compensated change as U(T, γ+∆).

Next, consider any T′ such that:18

1

T

∑
∀j
θjT

opt
j (γ) >

1

T

∑
∀j
θjT

′
j (17)

18Without the assumption that Topt is unique, we would consider a T′ that satisfies the constraint below
for every choice in Topt. The logic below shows that the minimum value of 1

T

∑
∀j θjT

opt
j (γ + ∆) is weakly

larger than the minimum value of 1
T

∑
∀j θjT

opt
j (γ). To show that 1

T

∑
∀j θjT

opt
j (γ) is increasing in the strong

set order, we would also need to show that the maximum value of 1
T

∑
∀j θjT

opt
j (γ) is weakly increasing.

Considering a T′ that satisfies the constraint below for at least one choice in Topt and following the same
logic below is sufficient to conclude that.
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We then get that:

[
U(T′, γ + ∆)− U(Topt(γ), γ + ∆)

]
−
[
U(T′, γ)− U(Topt(γ), γ)

]
= (18)[

U(T′, γ + ∆)− U(T′, γ)
]
−
[
U(Topt(γ), γ + ∆)− U(Topt(γ), γ)

]
= (19)

U(T′, γ + ∆)− U(T′, γ) ≤ 0 (20)

The first equality is just a re-arrangement and the second comes from the fact that un-

der the compensated change utility is unaffected if the treatment choice does not change

from the initial optimal choice, i.e. U(Topt(γ), γ + ∆) = U(Topt(γ), γ). Finally, the last

inequality comes from the fact that the τi post-compensation change under treatment as-

signment T′ minus τi pre-compensation change and treatment assignment T′ is equal to:

∆ ·
[
1
T

∑
∀j θjT

′
j − 1

T

∑
∀j θjT

opt
j (γ)

]
< 0. Since everyone’s τi is lower, and hence all the

treated individuals’ yi is lower, we get that U(T′, γ + ∆)− U(T′, γ) ≤ 0.

Thus, we have that
[
U(T′, γ + ∆) ≤ U(Topt(γ), γ + ∆)

]
<
[
U(T′, γ)−U(Topt(γ), γ)

]
.

However, we further know that U(T′, γ) < U(Topt(γ), γ), since Topt is the optimal treat-

ment assignment and we assume that the optimal treatment assignment is unique. Thus, it

must be that U(T′, γ+∆) < U(Topt(γ), γ+∆), and so T′ cannot be the optimal treatment

assignment post-compensated change. Since this is true for any T′ that lowers the average

θi of the treated individuals, the optimal treatment choice post-compensated change must

weakly increase the average θi of the treated individuals.

Finally, we note that without the assumption that Topt is unique, we could consider a T′

that satisfies the constraint in Equation (17) for every choice in Topt. The logic above shows

that the minimum value of 1
T

∑
∀j θjT

opt
j (γ + ∆) is weakly larger than the minimum value

of 1
T

∑
∀j θjT

opt
j (γ). To show that 1

T

∑
∀j θjT

opt
j (γ) is increasing in the strong set order,

we also need to show that the maximum value of 1
T

∑
∀j θjT

opt
j (γ) is weakly increasing.

Considering a T′ that satisfies the constraint in Equation (17) for at least one choice in

Topt and following the same logic below is sufficient to conclude that.
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A.2 Maximizing the Average Outcome

In Remark 1, we show that a social planner who cares only about maximizing the average

outcome will give assign the treatment slots to the T individuals with the largest values of

τ(θi) + γθi. We now add more structure to τ(θi), which allows us to more explicitly define

which individuals receive the treatment.

Homogenous Treatment Effects. Suppose that all individuals are affected equally by the

treatment, i.e. that τ(θi) = τ for some τ . Then a social planner who the maximizes average

outcome will assign the T individuals with the largest values of θi to the treatment.

Linear Treatment Effect Heterogeneity. Suppose that τ(θi) = αθi + τ for some τ

and α. Then a social planner who maximizes the average outcome will assign either the T

individuals with the largest values of θi or the T individuals with the smallest values of θi

to the treatment.

Convex Treatment Effect Heterogeneity. Suppose that τ(θi) is such that the treatment

effect is most beneficial for those with low values of θi, i.e. ∂τ(θi)
∂θi

< 0, and that this

differential impact lessens as θi increases, i.e. ∂2τ(θi)
∂θ2i

> 0. Then there exists a K such

that the social planner who maximizes the average outcome assigns the treatment to the K

individuals with the lowest values of θi and the T −K individuals with the largest values of

θi.

Proof. The lemmas all follow directly from the fact that the social planner will assign the

treatment slots to the T individuals with the largest values of τ(θi) + γθi.

A.3 Maximizing the Minimum Outcome

Theorem 2 in Section II states that there are two types of individuals who receive treatment:

those with the lowest values of yi(0) and those with the highest θi. Below, we re-state the

formal theorem and prove the result.
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Theorem. 2 Suppose that a social planner chooses T to maximize Equation (11). Then the

optimal allocation of treatment slots involves assigning the treatment to the K individuals

with the lowest values of yi(0) and the T −K individuals with the highest values of θi.

Proof. Let individual L be any individual that is untreated under the optimal allocation.

We will then show that if individual K is treated in the optimal allocation and θL > θK , it

must be the case that yK(0) ≤ yL(0), which is sufficient to prove the theorem.

To do so, we will add a bit of notation. First, we will denote yi(T) as individual

i’s allocation under treated assignments T. Similarly, we will denote the Rawlsian social

planner’s utility under an allocation T as U(T) ≡ min
{
y1(T), y2(T), ..., yN (T)

}
. We will

then compare the optimal allocation, denoted as Topt, to the the allocation that is identical

to Topt except for the fact that K is not treated and L is; we denote the second allocation

as T′.

To do so, we start by showing that if θL > θK , then K must be the individual with the

minimum value of yi under the treatment assignment T′. To do so, we first note that:

yi(T
opt)− yi(T′) =


γ 1
T−1

(
θK − θL

)
· Ti if i 6= K,L

τ(θK) + γ 1
T−1

∑
∀j 6=K θjTj if i = K

−τ(θL)− γ 1
T−1

∑
∀j 6=J θjTj if i = L

(21)

This comes from the fact that the treatment assignment for all individuals other than K

and L is the same between Topt and T′, which allows us to write this without clarifying

whether Ti refers to the i’s assignment under Topt or T′, unless i = K or L.

Denoting M as the individual with the minimum value of yi in T′, we next note that

yM (Topt) − yM (T′) ≥ U(Topt) − U(T′). This follows from the fact that U(T′) = yM (T′)

and yM (Topt) ≥ U(Topt). We can then conclude that yM (Topt) − yM (T′) ≥ 0, since by

definition of optimal it must be the case that U(Topt) ≥ U(T′). Finally, Equation (21)

shows that individual K is the only individual whose yi increases when moving from T′ to
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Topt and so individual K must be the one with the minimum value of yi in T′.19

Importantly, the fact that individual K is the individual minimum value of yi in T′ and

the fact that by assumption individual K is not assigned to the treatment in T′, we know

that U(T′) = yK(0). We also know that U(Topt) ≤ yL(0), since individual L is untreated

in Topt. Thus, yL(0) − yK(0) ≥ U(Topt) − U(T′). Since Topt is the optimal assignment,

it follows that U(Topt)− U(T′) ≥ 0 and so yL(0) ≥ yK(0).

B Residualization Motivation

Here we discuss the motivation behind our residualization approach, which stems in part

from the following theorem.

Theorem 3. Let Ti be an indicator that denotes whether individual i was assigned to

treatment. Further, suppose that all Zi and Xi are not affected by the treatment and that

treatment is randomly assigned. Consider two OLS regressions:

yi = α̂0 + β̂0Xi + τ̂0Ti + γ̂0Xi · Ti (22)

yi − g(Zi) = α̂1 + β̂1Xi + τ̂1Ti + γ̂1Xi · Ti (23)

Then under standard assumptions, both τ̂0 and τ̂1 converge to the same τ and, similarly,

both γ̂0 and γ̂1 coverage to the same γ regardless of the function g(Zi).

Proof. Given the linearity, it is sufficient to show that in a regression of the form:

g(Zi) = α̂2 + β̂2Xi + τ̂2Ti + γ̂2Xi · Ti (24)

we get that τ̂2 → 0 and γ̂2 → 0. Next we define a and b as the linear projection parameters

of g(Zi) onto Xi and a dummy, i.e. g(Zi) = a+ bXi + ei where E[ei] = 0 and E[eiXi] = 0.

Note that the assumption that Xi and Zi are unaffected by treatment and Ti is randomly

19The fact that individual L’s outcome decreases relies on the assumption that τi > 0 for all i.
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assignment, ensures that E[f(Xi, Zi)|Ti = 1] = E[f(Xi, Zi)|Ti = 0] for any function of Xi

and Zi.
20 Since ei is a function of Zi and Xi and E[ei] = 0 and E[eiXi] = 0, it therefore

follows that E[eiTi] = 0 and E[eiXiTi] = 0. Thus, under the standard assumptions: α̂2 → a,

β̂2 → b, τ̂2 → 0, and γ̂2 → 0.

We next turn our attention to the question of what function g(Zi) is optimal. Given

that we want to minimize the variance of our estimated peer effect we want to choose g(Zi)

to minimize X′ΣX where Σ is the variance-covariance matrix of the error terms εi,k,t in

Equation (14) and X is the matrix of covariates from Equation (14). However, we cannot do

this directly without knowing the parameters we aim to estimate or the correlation structure

between outcomes. One could push harder on this approach and potentially develop a

feasible generalized least squares, in which one iteratively: a) estimates Equation (14)

inefficiently, b) uses these coefficients to approximate Σ; c) use this to determine the optimal

g(Zi); d) estimate ĝ(Zi); and then re-estimate Equation (14) using the resulting residuals.

Instead, we opt for a simpler approach and note that setting g(Zi) = 1
2E[yi,k,t|Zi, Ti =

1] + 1
2E[yi,k,t|Zi, Ti = 0] minimizes V

(
yi − g(Zi)

)
. We therefore estimate 1

2 Ê[yi,k,t|Zi, Ti =

1] + 1
2 Ê[yi,k,t|Zi, Ti = 0] and use this to residualize the outcome which, while not optimal,

significantly reduces the variance of the estimated peer effects.

Note finally that while not strictly necessary, doing the residualization in a separate

step than the regression allows us to easily estimate a non-linear function ĝ(Zi), which we

do using a random forest regression, while sticking with a linear specification to estimate

the main effects.

20Note that this omits some technical details required to ensure that the expectations exist.
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C Robustness Checks

C.1 IV Regressions

As in most experiments, compliance was not perfect in this study. For the main results, we

ignore this complication and use “assigned to treatment” in place of “attended treatment.”

Since we observe whether an individual attended treatment, we can use the average labor

market history of those assigned to treatment as an instrument for the average labor market

history of those who actually attended the training. The results, shown below in Table A1,

show that doing so increases the magnitude of the estimated peer effects. These changes

are all relatively small in magnitude, however, and the IV method does not change the

statistical significance or economic interpretation of the empirical results. This is due to

the fact that compliance was relatively high (∼85% of those assigned treatment attended

the training and none assigned control attended) and is the reason why we ignore imperfect

compliance in the main specification.

C.2 Residualization Alternatives

The motivation for our residualization approach is discussed above; here we show that

alternative approaches provide a similar story. First, instead of residualizing the outcome

here we include the prediction from the random forest regression as a covariate in the final

regression. This is shown in the first four columns of Table A2. The results illustrate that

including the prediction as a residual leads to identical conclusions as using it to residualize

the outcome. In addition, we show the results when no additional covariates are added.

The results are next four columns of Table A2. The standard errors of both approaches

are larger than in our main specification, and the point estimate of the peer effect on total

wages is lower when no covariates are included than when the outcome is residualized or

when the prediction is used as a covariate. However, in all specification we find evidence of

peer effects on the probability that an individual is employed and on her log wage.
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C.3 Interacting the Fixed Effects

In our main specifications, we include cohort, strata, and time fixed effects. In Table A3,

we show that interacting the cohort and strata fixed effects gives similar results. In fact,

the estimated magnitude of the peer effects increases in this specification across all four

outcomes. We also get broadly similar results with interacting all three sets of fixed effects,

i.e., including cohort-by-strata-by-time period fixed effects.

C.4 Alternative Specification

As discussed in Section IV, we also estimate a specification that is more similar to the

traditional specification that estimates exogenous peer effects, e.g., see discussion in Section

4.1 in Caeyers and Fafcamps (2020) on exogenous peer effect specifications. However, we

need to account for the fact that, unlike most peer effect contexts, not all groups within the

cohort are identical, as some were assigned to the treatment group and some were assigned

to the control group. We account for this by: a) allowing for the mean to be different in

the treatment group and control group, i.e., allowing for an average treatment effect; b)

interacting the individuals’ own labor market history with a treatment dummy to allow for

heterogeneous treatment effects; c) interacting the individuals’ peers’ labor market history

with a treatment dummy to allow for the impact of the peers to differ depending on whether

the individual is assigned to the treatment group or control group. More specifically, in this

alternative specification we run the following regression:

ri,k,t = τTi +
(
β0θi + β1θiTi

)
+
(
γ0θi,k + γ1θi,kTi

)
+ νi + δk + ηt + εi,k,t (25)

where again:

• ri,k,t is the residualized outcome for individual i who applied to cohort k in period t;

• Ti is an indicator for whether individual i was randomly assigned treatment;

• θi is individual i’s labor market history, described Section III;
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• θi,k is the average labor market history for individuals in the same cohort k and

treatment status as individual i, defined in more detail in Section IV

• δk is a fixed effects indicating which cohort individual i applied for;

• νi is a vector of strata fixed effects, indicating which strata individual i is in; the

strata are defined by gender, income, employment status, and age all measured at the

time of randomization;

• ηt are period fixed effects.

• εi,k,t is an individual error term.

Note that while motivated differently, the only difference between this regression and

our main specification is that this includes θi,k rather than only including the interaction

term. The logic for only including the interaction term is that the control groups’ “peers”

are not peers in the sense that there is in fact no interaction between them. We should

therefore expect the effect of θi,k on the control group to be zero. In fact, this can serve as a

nice placebo effect. The results can be seen in Table A4. The top three rows show that the

main coefficients do not change much in this specification than in the main specification,

with the estimated peer effect actually increasing slightly across all four outcomes. Further-

more, the fourth row shows that the effect of θi,k on the control group is not statistically

significant in any of the outcomes. This provides additional evidence that the peer effect

estimates reported in this paper are indeed the impact of the peer group composition on

the effectiveness of the job training program.

C.5 Labor Market History Components

Finally, in our main measure of an individuals’ labor market history we average four compo-

nents into one summary measure. As mentioned in Section ??, these measures are: a) the

number of quarters employed in the two years before randomization; b) the total earnings

in the two years before randomization; c) total earnings in the year before the screening
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occurs; d) an indicator for whether individuals are working at the time of screening. Here,

we estimate the main model separately for each component of our summary measure as

well as varying whether wages are measured in levels or logs. Specifically, we re-estimate

Equation (14), this time using each of the five potential measures of labor market history as

our measure of θi, rather than their average. The results are shown in Table A5, which also

includes in the last column the estimate when using the summary measure as our proxy for

θi. As can be seen, the point estimates are broadly similar across all measures, although

the peer effect estimate is often not statistically significant due in part to larger standard

errors when θi is approximated using a single measure instead of the multiple measures.

D Simulation with Added Noise to Variable

As discussed in Feld and Zölitz (2017) and Angrist (2014), measurement error in the co-

variates can increase the peer effect estimates when the peer groups are not formed under

random assignment. Of course, in our context the peer groups are in large part formed by

the random assignment of individuals to treatment, at least within cohort. Since there is

non-random assignment of individuals to cohort, however, we follow Feld and Zölitz (2017)’s

suggestion and conduct a Monte Carlo simulation to ensure that measurement error does

not bias upward the coefficient estimates.

We start the simulation by adding an extra error term to each individual’s labor market

history, with the error term drawn from a normal distribution with mean zero and standard

deviation that varies from zero to one. We use this noisy measure of each individual’s

labor market history as the new measure of θi. Given this, we then estimate the regression

specified in Equation (14) to generate new parameter estimates.

We repeat this procedure 250 times for each standard deviations ranging from 0.25 to

1. Figure A1 shows the average peer effect estimate of these simulations for each standard

deviation. As the standard deviation of the error term increases, the size of the estimated

peer effect decreases.
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E Appendix Tables and Figures

E.1 Appendix Tables

Table A1: IV Regressions

(1) (2) (3) (4)

Log Wage Total Wage Employed Total Wage Conditional 
on Employment

2.275*** 1561.9* 0.246*** 1254.6
(0.867) (882.9) (0.0929) (925.0)

-0.299 -452.0** -0.0287 -782.5***
(0.221) (209.8) (0.0230) (216.8)

Average Treatment Effect 0.859*** 895.7*** 0.0721** 1272.6***
(0.248) (268.2) (0.0323) (302.8)

Cohort Fixed Effects X X X X
Time Period Fixed Effects X X X X
Strata Fixed Effects X X X X
Estimator IV Regression IV Regression IV Regression IV Regression
Sample Post-Training Post-Training Post-Training Post-Training
Number of Clusters 174 174 174 139
Observations 1632 1632 1632 1095

(1) (2) (3) (4) (5) (6) (7) 8)

Log Wage Total Wage Employed
Total Wage Conditional 

on Employment Log Wage Total Wage Employed
Total Wage 

Conditional on 
Employment

1.959** 1240.4 0.214** 623.1 1.568* 708.0 0.180* -89.54
(0.763) (780.2) (0.0823) (806.6) (0.884) (948.0) (0.0933) (1014.5)

-0.246 -436.8** -0.0216 -602.4*** -0.0116 -352.8 0.00545 -764.6***
(0.212) (186.1) (0.0227) (168.6) (0.288) (263.7) (0.0305) (254.7)

Treatment Effect at Averages 0.707** 788.2*** 0.0675** 976.6*** 0.529 729.3** 0.0468 1016.9***
(0.291) (256.9) (0.0322) (264.4) (0.347) (326.3) (0.0382) (329.7)

Cohort Fixed Effects X X X X X X X X
Time Period Fixed Effects X X X X X X X X
Strata Fixed Effects X X X X X X X X

Other Controls
Predicted Outcome if 

Control
Predicted Outcome if 

Control
Predicted Outcome if 

Control
Predicted Outcome if 

Control
None None None None

Sample During Training During Training During Training During Training During Training During Training During Training During Training
Number of Clusters 174 174 174 139 174 174 174 139
Observations 1632 1632 1632 1095 1632 1632 1632 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period.  The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training cohort for the individuals assigned to 
the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome. Unlike the main specification, these outcomes are not resididualized prior to the regression.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals
not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse
hyperbolic sine function to allow for zero value in the outcome. In this regression, we use the assigned treatment assignment as an IV for the realized
treatment assignment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect
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Table A2: Residualization Alternatives

(1) (2) (3) (4)

Log Wage Total Wage Employed Total Wage Conditional 
on Employment

2.275*** 1561.9* 0.246*** 1254.6
(0.867) (882.9) (0.0929) (925.0)

-0.299 -452.0** -0.0287 -782.5***
(0.221) (209.8) (0.0230) (216.8)

Average Treatment Effect 0.859*** 895.7*** 0.0721** 1272.6***
(0.248) (268.2) (0.0323) (302.8)

Cohort Fixed Effects X X X X
Time Period Fixed Effects X X X X
Strata Fixed Effects X X X X
Estimator IV Regression IV Regression IV Regression IV Regression
Sample Post-Training Post-Training Post-Training Post-Training
Number of Clusters 174 174 174 139
Observations 1632 1632 1632 1095

(1) (2) (3) (4) (5) (6) (7) 8)

Log Wage Total Wage Employed
Total Wage Conditional 

on Employment Log Wage Total Wage Employed
Total Wage 

Conditional on 
Employment

1.940** 1293.1* 0.212** 911.7 1.568* 708.0 0.180* -89.54
(0.763) (781.0) (0.0818) (852.4) (0.884) (948.0) (0.0933) (1014.5)

-0.220 -419.7* -0.0195 -771.4*** -0.0116 -352.8 0.00545 -764.6***
(0.223) (219.4) (0.0227) (220.2) (0.288) (263.7) (0.0305) (254.7)

Treatment Effect at Averages 0.760** 906.3*** 0.0724** 1257.3*** 0.802*** 729.3** 0.0608* 942.0***
(0.294) (266.3) (0.0326) (305.2) (0.234) (326.3) (0.0320) (358.1)

Cohort Fixed Effects X X X X X X X X
Time Period Fixed Effects X X X X X X X X
Strata Fixed Effects X X X X X X X X
Other Controls Predicted Outcome Predicted Outcome Predicted Outcome Predicted Outcome None None None None
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training
Number of Clusters 174 174 174 139 174 174 174 139
Observations 1632 1632 1632 1095 1632 1632 1632 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period.  The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training cohort for the individuals assigned to 
the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome. Unlike the main specification, these outcomes are not resididualized prior to the regression.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals
not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse
hyperbolic sine function to allow for zero value in the outcome. In this regression, we use the assigned treatment assignment as an IV for the realized
treatment assignment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect
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Table A3: Interacting Fixed Effects

(1) (2) (3) (4)

Log Wage Total Wage Employed Total Wage Conditional 
on Employment

3.128*** 2561.9*** 0.324*** 1938.6*
(0.969) (965.6) (0.105) (1139.3)

-0.310 -409.0** -0.0272 -685.6***
(0.233) (206.4) (0.0240) (207.3)

Average Treatment Effect 1.018*** 1156.9*** 0.0939*** 1789.8***
(0.294) (279.2) (0.0330) (287.7)

Cohort-by-Strata Fixed Effects X X X X
Time Period Fixed Effects X X X X
Sample Post-Training Post-Training Post-Training Post-Training
Number of Clusters 164 164 164 129
Observations 1618 1618 1618 1076

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals
not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse 
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Table A4: Alternative Specification

(1) (2) (3) (4)

Log Wage Total Wage Employed Total Wage Conditional 
on Employment

2.730*** 1992.0** 0.299*** 1161.7
(0.926) (947.8) (0.0995) (1088.8)

-0.266 -429.5* -0.0252 -772.8***
(0.224) (217.6) (0.0230) (224.2)

Average Treatment Effect 0.864*** 978.7*** 0.0841*** 1331.1***
(0.290) (267.0) (0.0320) (294.2)

-1.053 -898.2 -0.120 -27.08
(0.849) (732.3) (0.0948) (824.8)

Cohort Fixed Effects X X X X
Time Period Fixed Effects X X X X
Strata Fixed Effects X X X X
Sample Post-Training Post-Training Post-Training Post-Training
Number of Clusters 174 174 174 139
Observations 1632 1632 1632 1095

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals
not assigned to the treatment and the training cohort for the individuals assigned to the treatment. Cohort-by-Treatment Group Ave. Labor Market
History is the average labor market history of an individuals' peer group, defined as their cohort-by-treatment group. The "Impact of Peers' Ave. Labor
Market History on Treatment Effect" is the coefficient of this measure interacted with a treatment dummy. While labeled "log wage," we use an
inverse hyperbolic sine function to allow for zero value in the outcome.

Cohort-by-Treatment Group Ave. Labor 
Market History
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Table A5: Labor Market History Components

(a) Total Wages

(1) (2) (3) (4) (5) (6)
Log Wage Log Wage Log Wage Log Wage Log Wage Log Wage

2.811*** 1.303 2.030** 1.417 1.438 2.026***
(0.860) (1.047) (0.823) (0.955) (0.947) (0.756)

-0.120 -0.210 -0.0990 -0.301 -0.167 -0.268
(0.357) (0.510) (0.103) (0.301) (0.316) (0.225)

Average Treatment Effect 0.866*** 0.719** 1.449* 0.752** 0.755** 0.814***
(0.293) (0.304) (0.802) (0.302) (0.301) (0.293)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Total Wage Total Wage Total Wage Total Wage Total Wage Total Wage

1921.1** 804.2 1300.3 921.2 1082.5 1390.8*
(880.2) (1021.3) (815.7) (910.3) (902.3) (777.3)

-287.9 -431.8 -164.6 -439.3 -323.6 -430.9**
(305.7) (454.0) (101.4) (310.0) (327.4) (217.7)

Average Treatment Effect 908.6*** 2043.1*** 899.9*** 911.7*** 935.9*** 0.0838**
(275.3) (729.7) (276.5) (274.9) (265.3) (0.0324)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Employed Employed Employed Employed Employed Employed

0.301*** 0.150 0.218** 0.163 0.160 0.219***
(0.0905) (0.110) (0.0886) (0.104) (0.104) (0.0811)

-0.0101 -0.0196 -0.00927 -0.0305 -0.0143 -0.0254
(0.0379) (0.0550) (0.0105) (0.0319) (0.0335) (0.0231)

Average Treatment Effect 0.0838** 0.0677** 0.137 0.0720** 0.0721** 0.0784**
(0.0324) (0.0335) (0.0833) (0.0331) (0.0331) (0.0323)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage 
Conditional on 
Employment

1110.5 602.2 1073.0 633.0 883.5 1142.9
(1080.3) (959.1) (879.3) (929.8) (948.7) (846.4)

-824.2*** -727.1* -299.8*** -665.1* -626.6 -773.0***
(302.2) (369.8) (103.5) (377.5) (411.8) (223.9)

Average Treatment Effect 1292.3*** 1274.2*** 3348.6*** 1241.9*** 1235.7*** 1330.1***
(299.3) (296.9) (810.3) (319.0) (317.4) (297.6)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 139 139 139 139 139 139
Observations 1095 1095 1095 1095 1095 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. 

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

(b) Log Wages

(1) (2) (3) (4) (5) (6)
Log Wage Log Wage Log Wage Log Wage Log Wage Log Wage

2.811*** 1.303 2.030** 1.417 1.438 2.026***
(0.860) (1.047) (0.823) (0.955) (0.947) (0.756)

-0.120 -0.210 -0.0990 -0.301 -0.167 -0.268
(0.357) (0.510) (0.103) (0.301) (0.316) (0.225)

Average Treatment Effect 0.866*** 0.719** 1.449* 0.752** 0.755** 0.814***
(0.293) (0.304) (0.802) (0.302) (0.301) (0.293)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Total Wage Total Wage Total Wage Total Wage Total Wage Total Wage

1921.1** 804.2 1300.3 921.2 1082.5 1390.8*
(880.2) (1021.3) (815.7) (910.3) (902.3) (777.3)

-287.9 -431.8 -164.6 -439.3 -323.6 -430.9**
(305.7) (454.0) (101.4) (310.0) (327.4) (217.7)

Average Treatment Effect 908.6*** 2043.1*** 899.9*** 911.7*** 935.9*** 0.0838**
(275.3) (729.7) (276.5) (274.9) (265.3) (0.0324)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Employed Employed Employed Employed Employed Employed

0.301*** 0.150 0.218** 0.163 0.160 0.219***
(0.0905) (0.110) (0.0886) (0.104) (0.104) (0.0811)

-0.0101 -0.0196 -0.00927 -0.0305 -0.0143 -0.0254
(0.0379) (0.0550) (0.0105) (0.0319) (0.0335) (0.0231)

Average Treatment Effect 0.0838** 0.0677** 0.137 0.0720** 0.0721** 0.0784**
(0.0324) (0.0335) (0.0833) (0.0331) (0.0331) (0.0323)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage 
Conditional on 
Employment

1110.5 602.2 1073.0 633.0 883.5 1142.9
(1080.3) (959.1) (879.3) (929.8) (948.7) (846.4)

-824.2*** -727.1* -299.8*** -665.1* -626.6 -773.0***
(302.2) (369.8) (103.5) (377.5) (411.8) (223.9)

Average Treatment Effect 1292.3*** 1274.2*** 3348.6*** 1241.9*** 1235.7*** 1330.1***
(299.3) (296.9) (810.3) (319.0) (317.4) (297.6)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 139 139 139 139 139 139
Observations 1095 1095 1095 1095 1095 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. 

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect
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(c) Employed

(1) (2) (3) (4) (5) (6)
Log Wage Log Wage Log Wage Log Wage Log Wage Log Wage

2.811*** 1.303 2.030** 1.417 1.438 2.026***
(0.860) (1.047) (0.823) (0.955) (0.947) (0.756)

-0.120 -0.210 -0.0990 -0.301 -0.167 -0.268
(0.357) (0.510) (0.103) (0.301) (0.316) (0.225)

Average Treatment Effect 0.866*** 0.719** 1.449* 0.752** 0.755** 0.814***
(0.293) (0.304) (0.802) (0.302) (0.301) (0.293)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Total Wage Total Wage Total Wage Total Wage Total Wage Total Wage

1921.1** 804.2 1300.3 921.2 1082.5 1390.8*
(880.2) (1021.3) (815.7) (910.3) (902.3) (777.3)

-287.9 -431.8 -164.6 -439.3 -323.6 -430.9**
(305.7) (454.0) (101.4) (310.0) (327.4) (217.7)

Average Treatment Effect 908.6*** 2043.1*** 899.9*** 911.7*** 935.9*** 0.0838**
(275.3) (729.7) (276.5) (274.9) (265.3) (0.0324)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Employed Employed Employed Employed Employed Employed

0.301*** 0.150 0.218** 0.163 0.160 0.219***
(0.0905) (0.110) (0.0886) (0.104) (0.104) (0.0811)

-0.0101 -0.0196 -0.00927 -0.0305 -0.0143 -0.0254
(0.0379) (0.0550) (0.0105) (0.0319) (0.0335) (0.0231)

Average Treatment Effect 0.0838** 0.0677** 0.137 0.0720** 0.0721** 0.0784**
(0.0324) (0.0335) (0.0833) (0.0331) (0.0331) (0.0323)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage 
Conditional on 
Employment

1110.5 602.2 1073.0 633.0 883.5 1142.9
(1080.3) (959.1) (879.3) (929.8) (948.7) (846.4)

-824.2*** -727.1* -299.8*** -665.1* -626.6 -773.0***
(302.2) (369.8) (103.5) (377.5) (411.8) (223.9)

Average Treatment Effect 1292.3*** 1274.2*** 3348.6*** 1241.9*** 1235.7*** 1330.1***
(299.3) (296.9) (810.3) (319.0) (317.4) (297.6)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 139 139 139 139 139 139
Observations 1095 1095 1095 1095 1095 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. 

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

(d) Conditional Wages

(1) (2) (3) (4) (5) (6)
Log Wage Log Wage Log Wage Log Wage Log Wage Log Wage

2.811*** 1.303 2.030** 1.417 1.438 2.026***
(0.860) (1.047) (0.823) (0.955) (0.947) (0.756)

-0.120 -0.210 -0.0990 -0.301 -0.167 -0.268
(0.357) (0.510) (0.103) (0.301) (0.316) (0.225)

Average Treatment Effect 0.866*** 0.719** 1.449* 0.752** 0.755** 0.814***
(0.293) (0.304) (0.802) (0.302) (0.301) (0.293)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Total Wage Total Wage Total Wage Total Wage Total Wage Total Wage

1921.1** 804.2 1300.3 921.2 1082.5 1390.8*
(880.2) (1021.3) (815.7) (910.3) (902.3) (777.3)

-287.9 -431.8 -164.6 -439.3 -323.6 -430.9**
(305.7) (454.0) (101.4) (310.0) (327.4) (217.7)

Average Treatment Effect 908.6*** 2043.1*** 899.9*** 911.7*** 935.9*** 0.0838**
(275.3) (729.7) (276.5) (274.9) (265.3) (0.0324)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)
Employed Employed Employed Employed Employed Employed

0.301*** 0.150 0.218** 0.163 0.160 0.219***
(0.0905) (0.110) (0.0886) (0.104) (0.104) (0.0811)

-0.0101 -0.0196 -0.00927 -0.0305 -0.0143 -0.0254
(0.0379) (0.0550) (0.0105) (0.0319) (0.0335) (0.0231)

Average Treatment Effect 0.0838** 0.0677** 0.137 0.0720** 0.0721** 0.0784**
(0.0324) (0.0335) (0.0833) (0.0331) (0.0331) (0.0323)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 174 174 174 174 174 174
Observations 1632 1632 1632 1632 1632 1632

(1) (2) (3) (4) (5) (6)

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage Conditional 
on Employment

Total Wage 
Conditional on 
Employment

1110.5 602.2 1073.0 633.0 883.5 1142.9
(1080.3) (959.1) (879.3) (929.8) (948.7) (846.4)

-824.2*** -727.1* -299.8*** -665.1* -626.6 -773.0***
(302.2) (369.8) (103.5) (377.5) (411.8) (223.9)

Average Treatment Effect 1292.3*** 1274.2*** 3348.6*** 1241.9*** 1235.7*** 1330.1***
(299.3) (296.9) (810.3) (319.0) (317.4) (297.6)

Cohort Fixed Effects X X X X X X
Time Period Fixed Effects X X X X X X
Strata Fixed Effects X X X X X X
Sample Post-Training Post-Training Post-Training Post-Training Post-Training Post-Training

Labor Market History Measure
Employed At Screening Total Wage at Screening Log Wage at Screening

Wage in Two Years Prior 
to Screening

Fraction of Quarters 
Employed in Two Years 

Prior to Screening

Average Labor 
Market History

Number of Clusters 139 139 139 139 139 139
Observations 1095 1095 1095 1095 1095 1095

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. 

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training
cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome.

Impact of Peers' Ave. Labor Market History on 
Treatment Effect

Impact of Own Labor Market History on 
Treatment Effect
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E.2 Appendix Figures

Figure A1: Measurement Error Simulation
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Note: The above figure shows the results of a simulation, where additional measurement
error was added to each individuals’ labor market history and then estimation was conducted
in the same manner as is done in the main analysis. The x-axis shows the standard deviation
of the added measurement error, while the y-axes show the estimated coefficients.
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