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Abstract

We apply the synthetic control approach in a setting with multiple cases and continuous
treatments. Using minimum wage changes as an application, we propose a simple distribution-free
method for pooling across cases using mean percentile ranks, which have desirable small sample
properties. We invert the mean rank statistic in order to construct a confidence interval for the
pooled estimate, and we test for the heterogeneity of the treatment e�ect using the distribution
of estimated ranks. We also o�er guidance on model selection and match quality—issues that are
of practical concern in the synthetic control approach generally and when pooling across many
cases. Using 32 cases of state minimum wage increases between 1979 and 2013, we do not find a
statistically significant e�ect on teen employment, with the mean elasticity close to zero. There
is also no indication of heterogeneous treatment e�ects. Finally, we discuss some important
practical challenges, including the ability to find close matches and the choice of predictors used
for constructing a synthetic control.
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1 Introduction

The synthetic control o�ers a data driven method for choosing control groups that is valuable
for individual case studies (Abadie, Diamond and Hainmueller, 2010, hereafter ADH). This in-
creasingly popular technique generalizes the di�erence-in-di�erence approach and also provides
a semi-parametric version of the lagged dependent variables model, o�ering a way to control for
time-varying heterogeneity that complicates conventional regression analysis. For a single state that
receives a policy treatment, the synthetic control is the weighted average of untreated units that
best predicts the treated state in the pre-treatment period, and the estimator is the post-treatment
di�erence between the treated state and its synthetic control. Whereas conventional regression
designs equally weight all units (conditional on covariates), units comprising the synthetic control
typically receive unequal weights. Matching on pre-treatment outcomes allows the synthetic control
approach to provide unbiased estimates for case studies even when there are multiple unobserved
time factors, unlike the conventional di�erence-in-di�erence model which imposes a single factor
assumption.

A growing number of papers have used the synthetic control approach to study topics as diverse
as the impacts of anti-smoking legislation (ADH), immigration laws (Bohn, Lofstrom and Raphael
2013), and minimum wages (Sabia, Burkhauser and Hansen 2012). However, to date the applications
have largely been restricted to estimating the e�ect of individual treated cases or to presenting
numerous such estimates separately. For example, Billmeier and Nannicini (2013) use synthetic
controls to investigate the e�ects of 30 country-level episodes of trade liberalization on their GDP.
While the authors helpfully organize their presentation of synthetic and actual GDP trends by
region and time period, the presentation of 30 individual pictures obscures their argument that
later episodes of liberalization failed to boost GDP. Some episodes appear to raise, lower, or have
no e�ect on growth, and it becomes di�cult for the reader to gauge the magnitude of estimates or
to draw statistical inference. Perhaps due to issues of space, for only 16 of the 30 case studies do
the authors display figures relating to statistical inference, perhaps due to issues of space. Using
synthetic controls, Campos et al. (2014) estimate a mean e�ect of EU integration on GDP, but the
authors do not perform statistical inference on either the mean or individual case study estimates.

In this paper, we present a method for pooling synthetic control estimates in a setting with
continuous and recurring treatment: state-level minimum wage changes. Because the intensity of the
treatment varies across cases, we convert the estimates to elasticities by scaling them by the sizes of
the minimum wage changes and then average these elasticities across events. A key contribution of
the paper shows how the mean of the percentile ranks of the e�ects in the treated states vis-à-vis
donor (or potential control) states can be used to judge the statistical significance for a pooled
estimate, the Hodges Jr. and Lehmann (1963) point estimate. Pooling the estimates using their
ranks is particularly useful since the exact distribution of the sum (or mean) of the ranks under the
null is known, enabling us to perform exact inference that is valid for small samples. Additionally,
we invert the mean rank statistic to construct the confidence interval for the pooled estimate. Our
approach of pooling across treated units is closely related to the van Elteren (1960) stratified rank
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sum test. It is also a natural extension of the placebo-based inference used by ADH for a single
case study, where the distribution of a test statistic under the null is constructed by randomly
permuting the treatment status of the donor units. Our inferential procedure has some similarity
to Conley and Taber (2011); operating under the classic di�erence-in-di�erence context, they also
use information from control units to form an empirical distribution under the null, and invert the
test statistic to construct confidence intervals that are valid with a small number of treated cases.
Finally, Dube, Kaplan and Naidu (2011) also use a average rank-based test that is valid for small
samples in the context of financial market event studies.

Since percentile ranks of the estimates have a known distribution under the null hypothesis, exact
inference is feasible not only for the mean but also distributional statistics as well. In this paper we
use the Kolmogorov-Smirnov and Anderson-Darling tests to determine whether the distribution of
ranked e�ects indicates heterogeneous treatment e�ects. One concern when pooling across events
is that the quality of match between the treated and synthetic control unit may be poor in some
instances. We assess the role of match quality by trimming on pre-intervention goodness of fit
as determined by the mean squared prediction error (MSPE). A final contribution of the paper
concerns the choice of predictor variables, since there is little guidance on this issue in the existing
literature. We use a cross-validation criterion of minimizing MSPE among donor units to choose
between alternative sets of predictors.

The minimum wage o�ers an interesting setting for applying the synthetic control estimator,
since states receiving treatment have important di�erences that appear to vary over time, thereby
confounding the standard fixed e�ects panel estimator (Allegretto, Dube, Reich and Zipperer, 2013).
Since the synthetic control method depends on isolated treatment events with well-defined pre- and
post-treatment periods, the approach can only utilize a limited amount of minimum wage variation
available to conventional regression techniques. We select those events with no minimum wage
changes two years prior to treatment and with at least one year of post-treatment data, which
we consider to be the minimal requirement for measuring the policy’s impact. Of the 215 state
minimum wage changes during our 1979-2013 study period, only 32 meet our minimal criteria; on
average these events have a 20 quarters of data prior to the intervention and 9 quarters afterward.
While this is a limited number of events, we show that pooling across these 32 cases provides us
with su�cient statistical power to detect economically relevant e�ects posited in the literature.

Our results show that the minimum wage changes were binding: 27 out of the 32 cases have
positive e�ects on average teen wage, with a median elasticity of 0.22 and mean of 0.32. The pooled
estimate is statistically significant at the one percent level using our mean rank test. Turning to
teen employment, we find 15 positive elasticities and 17 negative ones. Both the median (-0.019)
and mean (-0.039) estimates are small in magnitude. The mean percentile rank is 0.497 and the
associated pooled Hodges-Lehman elasticity is -0.029. With a 5 percent confidence interval, we rule
out a pooled employment elasticity more negative than -0.153. We also show that the distribution
of the ranked employment estimates is consistent with the sharp null of zero e�ect everywhere, as
opposed to an averaging of true positive and true negative e�ects across events. To address concerns
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about match quality, we show that our results are similar after trimming our case studies to those
with better pre-treatment fit. We do note that the treated states are generally some of the highest
wage areas, making it di�cult to find a convex combination of donors to closely match the average
wage level in the pre-intervention period. However, this does not a�ect our ability to match their
overall employment dynamics prior to the intervention.

Three papers in the minimum wage literature have particular relevance to the application
of synthetic controls. An early precursor to synthetic controls is the study of California’s 1988
minimum wage change by Card (1992). Card compares California with an aggregate control formed
by four southern states and one metro area that failed to raise their minimum wages during the
1987-1989 period. Similar to the synthetic control approach, the aggregated control in Card (1992)
roughly matches California on several pre-treatment labor market and demographic characteristics.
However, Card’s selection of the donor states is heuristic and not based on a solution to the explicit
optimization problem underlying the contemporary synthetic control approach.

More recently, Sabia et al. (2012) uses the synthetic control approach to study the impact of the
2005 New York minimum wage increase. They ignore four other candidate treatment events that
also began the same year in Florida, Minnesota, New Jersey, and Wisconsin. It is not clear what
guided the authors’ selection of New York as the sole case; in our results for these five states, we
find that the New York event is associated with the most negative employment estimate. Sabia
et al. (2012) also crucially fail to use any pre-treatment outcomes as predictors. Although any
characteristics una�ected by the policy treatment are valid predictors under the synthetic control
approach, some combination of pre-intervention outcomes should be included. Intuitively, if the
synthetic control fits a su�ciently large set of pre-intervention outcomes, it is able to account for
any number of time-varying factors.1 As a result of omitting pre-intervention outcomes, the authors
obtain an invalid synthetic control: specifically, employment paths for actual and synthetic New
York never coincide during the entire 2000-2004 pre-treatment period.2

Neumark, Wascher and Salas (2013) use a matched panel estimator loosely based on the synthetic
control method. They do not actually pool synthetic control estimates: rather, they use weights
calculated using synthetic control to create matches and then estimate a panel regression with this
sample. Allegretto et al. (2013) discusses in detail the serious problems with this approach. Most
fundamentally, as the authors acknowledge, there is no econometric basis for this estimator. For
example, they use residuals from an OLS regression of employment on the minimum wage as the
predictor for calculating synthetic control weights. However, these are not valid predictors for a
synthetic control study.3 Additionally, their donors are sometimes themselves receiving treatment,

1Formally, the unbiasedness of the synthetic control estimator relies specifically on pre-treatment outcome balance
between the treated unit and the weighted combination of donors (see Appendix B of ADH). The choice of exactly
which pre-treatment outcomes and other characteristics to select as predictor variables is not obvious, a priori. We
provide guidance for these decisions in section 3.2.

2See Figure 3 of Sabia et al. (2012). Relatedly, the authors try to account for the poor pre-intervention fit by
using a di�erence-indi�erence with respect to the synthetic control. However, this is quite di�erent from the synthetic
control estimator, which requires the pre-intervention values in the treated and synthetic control units to be close.

3Besides being ad hoc, the use of OLS residuals as predictor variables does not have a heuristic justification. In
the best case scenario, if the OLS estimates are unbiased, then the true and estimated residuals are uncorrelated with
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violating a key assumption of the synthetic control approach. They also use a very short pre-
intervention window (4 quarters) to calculate synthetic control matches, which makes finding a
good match di�cult. Finally, they use only a single quarter of post-intervention data to measure
the policy impact—making this the shortest-run estimate in the minimum wage literature of which
we are aware.

In contrast to these prior applications, we select 32 di�erent events using clear (and reasonable)
criteria for case selection, estimate synthetic controls for each treatment using a data-driven choice
of predictors, and pool across these estimates using rigorous statistical procedures that are valid for
small samples.

The rest of the paper is structured as follows. Section 2 reviews the synthetic control method
and explains our proposed rank-based inference for the pooled estimate. Section 3 discuss our
sample and the choice of predictor variables. Section 4 presents our findings, including the mean
e�ect and the test of heterogeneity, as well as issues of match quality. Section 5 concludes.

2 Synthetic controls and multiple case studies

2.1 Synthetic control estimators

Consider the case of a single treated state (i = 1) that raises its minimum wage at time t = tÕ,
where the outcome of interest Y

it

is teen employment. Denoting the intervention as D, the synthetic
control approach assumes a data generating process such that the observed outcome Y
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Like the standard fixed e�ects model, there is a common time factor ”
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. However, there is an
additional ⁄
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term as well. Here ⁄
t

is a vector of unobserved time-varying factors and µ
i

are the
unknown factor loadings. Since the factor loadings can vary across states, treatment and control
states need not follow parallel trends, conditional on observables. If we knew the true factor loadings
µ1 for the treated state, we could construct an unbiased control by taking untreated “donor” states
whose factor loadings average to µ1. Since we do not observe the factor loadings, the synthetic
control procedure constructs a vector of weights W over J donor states such that the weighted
combination of donor states closely matches the treated state in pre-intervention outcomes. This
weighted combination of donors is called the synthetic control; as shown in ADH, the average factor
loadings of the synthetic control thus constructed matches the loadings of the treated state.

Formally, for the treated state, define the (k ◊ 1) vector of pre-treatment characteristics as

all covariates—making them uninformative as variables to construct a reliable control group. In contrast, if the OLS
estimates are biased, so are the estimated residuals, making them potentially worse than uninformative.
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donor states. The synthetic control procedure chooses donor weights W to minimize the distance
between pre-treatment characteristics X1 and X0 of the treated state and untreated states. The
distance equals the mean square prediction error (MSPE)
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When the intensity of treatment varies across events, elasticities o�er a simple way of comparing
across events. Moreover, the use of elasticities also connects our findings with other estimates in the
minimum wage literature. For this reason, our key estimates of interest are the employment or wage
elasticities of the minimum wage, defined as follows. For a single treatment event, we construct the
synthetic control
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Writing the percent minimum wage increase as

�MW = MW
t

Õ ≠ MW
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Õ≠1
MW
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Õ≠1

we define the post-treatment elasticity ÷1 to be the ratio

÷̂1 = —̂1
�MW

.

As we describe below, it will be useful for placebo-based inference to construct analogous elasticities
÷

j

for each of the donor states. Specifically, for each of the donor states j = 2, . . . , N we calculate
the post-treatment di�erence —

j

, this time using the remaining N ≠ 2 donor states as donors for
the synthetic control of state j. The placebo elasticity ÷

j

is scaled by the actual minimum wage
increase in treated state: ÷

j

= —
j

/�MW .4
4As we discuss in Section 3, since some states change their minimum wage multiple times during the post-treatment
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When there are multiple treatment events, we calculate separate event-specific elasticities
÷

e1 = —
ej

/�MW
e

for the events e = 1, . . . , E. Note that this construction of elasticities allows us
to incorporate the fact that treated states vary both in their outcome levels and in their minimum
wage treatment intensities. To aggregate across events we simply take the mean or median of these
estimated elasticities. The mean treatment e�ect, for example, is equal to the mean elasticity

÷ =
q

e

÷̂
e1

E
.

2.2 Inference using the rank test with single and multiple events

We follow ADH in using placebo-based inference from randomly permuting the treatment status
in donor states in order to assess the statistical significance of a single treated state’s estimated
elasticity. For each event, we estimate ÷

ej

for every donor state j (excluding the actually treated
state but using the same minimum wage change) and determine whether the elasticity ÷

e1 for the
treated state lies in the tails of the resulting placebo distribution formed by ÷̂

ej

for j = 2, . . . , N
e

.
Equivalently, we summarize the relative position of the treated state’s elasticity among the

placebo distribution by using the percentile rank statistic p
e1 = F̂

e

(÷
e1), where F̂

e

is the empirical
CDF of the elasticities ÷̂

ej

from event e.5 Since the percentile rank is (approximately) uniformly
distributed on the unit interval, we determine whether the rank of the treated state p

e1 lies in the
tails of the uniform distribution. Using a statistical significance level of five percent, we reject the
null of ÷

e1 = 0 precisely when p
e1 < 0.025 or p

e1 > 0.975. We note that the number of available
donors limits the range of confidence levels we can implement for a single treated event. For example,
many of our events have only twenty donors; in these cases we can only assess a ten percent level of
significance. Using multiple events allows us to assess stronger levels of statistical confidence.

The above approach suggests a natural way of conducting inference in a pooled case study
approach by constructing a test statistic p which is the the mean of the percentile ranks of individual
events:

p =
q

E

e=1 p
e

E
.

The exact distribution of p can be calculated using the Irwin-Hall distribution of the sum of E

independent uniform random variables. The sum of the ranks, s = E · p, has the the CDF

period, we simply define the minimum wage change to be the largest percent change between the post- and pre-
treatment periods. We define the elasticity ÷1 using the ratio of means in —1 rather than the post-treatment mean of

the percent changes 1
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3
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q
j
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j Yjtq

j
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4
to avoid the possibility that the resulting elasticity has a di�erent sign

than the post-treatment mean of level changes in the numerator of —1.
5To calculate the percentile pei of the ranked position rei of the estimated elasticity ÷ej for state i in event e, we

use the Weibull-Gumbel rule (see Hyndman and Fan, 1996): pe = re1/(Ne + 1), where Ne equals one plus the number
of donor states, ensuring that the median e�ect within an event receives the rank 0.50 when the total number of states
Ne is odd.
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where Â.Ê is the floor function.6 Under the sharp null hypothesis of zero e�ect everywhere, the
average of E ranks, p, is distributed with mean 0.5. If G(x; E) = �(x · E; E) denotes the CDF of the
mean of E uniformly distributed variables random variables, then for a statistical significance level of
five percent, we reject the null hypothesis ÷ = 0 precisely when G(p; E) < 0.025 or G(p; E) > 0.975.

While the central limit theorem tells us that the distribution of the mean rank will converge
to an appropriately scaled normal distribution, for small E we should prefer to use the exact
distribution. Table A1 shows various percentiles of this distribution for E = 1, . . . , 35. At 32
treatment events—the maximum number of case studies we will have in our study—a two-sided
5% significance test requires the mean rank to fall below 0.400 or above 0.600. We note that this
method is closely related to the van Elteren (1960) stratified rank sum test, where the rank of each
treatment is estimated using placebos associated with the stratum (i.e., event). The only substantive
di�erence is that we use the percentile ranks of each treatment from each stratum, p

e1, instead of
the ranked position r

e1, for transparency of the calculations; this choice potentially impacts the
critical values when the number of observations (states) varies across strata (events) and the number
of observations is also small. However, in practice, there is very little di�erence if we calculate the
critical values taking into account the number of observations in each stratum used to calculate
the ranks.7 For concision, in the rest of this paper we will often we refer to the percentile rank as
simply the “rank.”

While there are alternative ways of doing pooled inference, we note some advantages to our
approach. First, the rank-based pooling is a natural generalization of the single-case study based
inference in ADH, who use the rank of the treatment e�ect for individual events. Second, the mean
(or sum of) ranks has a known distribution under the sharp null, allowing for exact inference. This
avoids reliance on large sample properties, and also avoids the empirical estimation of distribution of
the statistic under the null—as would be the case were we, for example, to conduct inference for the
mean elasticity. Third, and relatedly, the use of the mean rank p diminishes the impact of outliers
as compared to the mean elasticity ÷, which may be a particular concern given a small number of
events. Fourth, within the class of rank sum tests, the ranks could be estimated without regard
to strata, as in the case of the Wilcoxon (1945) rank sum test. However, stratification accounts
for event-wise heteroscedasticity, which may be of particular concern given varying window lengths
across events.

In section 4.5, we relax the approximation that the event ranks are independently and uniformly
distribution by accounting for the finite number of donors, some of which overlap across events.

6See http://en.wikipedia.org/wiki/Irwin-Hall_distribution.
7Simulations of the mean of 32 percentile ranks calculated by the Weibull rule (with the appropriate number of

donors for each event) result in 95% critical values 0.403 and 0.597, in contrast to 0.400 and 0.600 from the mean
of 32 continuous uniforms. The associated rejection rate using the Weibull-rule-based distribution with continuous
uniform critical values is 4.3 percent instead of 5.0 percent. See Table 10 for details.

8

http://en.wikipedia.org/wiki/Irwin-Hall_distribution


We show that in our case this makes little di�erence to the calculation of the critical values, or
the resulting confidence intervals for the treatment e�ect. For comparison, we also calculate the
confidence interval using randomization inference on the mean e�ect (elasticity), as opposed to the
mean rank; this too produces similar results.

One limitation of our approach is that we are testing the sharp null that e�ect is zero everywhere,
as opposed to the average e�ect being zero. However, we address this concern in Section 4.3 by
testing for heterogeneous treatment e�ects.

2.3 Inverting the rank test to form confidence intervals

We also invert the individual-event and mean rank statistic to estimate confidence sets.8 These
confidence sets show values of the elasticities which imposed as the null cannot be rejected as being
equal to the estimated e�ect. For a single treatment event with estimated elasticity ÷̂

e1, we use the
percentile rank p

e1 = F̂
e

(÷̂
e1) as the test statistic to determine statistical significance: we cannot

reject the null hypothesis ÷
e1 = 0 at the five percent level precisely when 0.025 Æ F̂

e

(÷
e1) Æ 0.975.

Inverting this test, we ask for what values of · does the adjusted response ÷
e1 ≠ · appear free from

treatment: when does 0.025 Æ F̂
e

(÷̂
e1 ≠ ·) Æ 0.975? The 95 percent confidence interval is the set of

· not rejected using the critical values 0.025 and 0.0975.
In the framework of multiple treatment events, we can apply a similar procedure to construct

Hodges Jr. and Lehmann (1963) confidence intervals for the pooled e�ect, using the mean rank p

as the test statistic to be inverted. We first calculate the adjusted responses ÷
e1 ≠ · for all events

e = 1, ..., E, and re-calculate event-specific ranks F̂
e

(÷̂
e1 ≠ ·). Define the mean adjusted rank

p(·) =
q

e

F̂
e

(÷
e1 ≠ ·)

E
.

The 95 percent confidence interval for the pooled e�ect is the set of · such the mean adjusted rank p(·)
lies within the critical values given by the mean of E uniform distributions. In other words, we find
values · such that 0.025 < G(p(·); E) < 0.975. Figure 1 illustrates this procedure for the estimated
mean elasticity ÷ = c. The confidence interval is (c ≠ b, c + a) because G(p(c ≠ (c + a)); E) = 0.05
and G(p(c ≠ (c ≠ b)); E) = 0.95.

Collapsing these confidence intervals yields the Hodges-Lehman point estimate, which we also
refer to as the pooled estimate. In the case of a single event, the mean, median, and pooled e�ects
are trivially the same, and so are the confidence intervals. In the case of multiple events, the mean,
median and Hodges-Lehman point estimate and confidence intervals need not correspond. This is
especially the case when outlying estimates of individual treatment events heavily influence the mean
estimate. The robustness to outliers is one reason we prefer using the Hodges-Lehman confidence
interval, as it is ultimately based on ranked location. Our primary estimates report the mean
percentile rank, the pooled Hodges-Lehman point estimate, and the Hodges-Lehmann confidence

8Although ADH do not explicitly construct these confidence sets in the case of their single treatment event, they
follow directly from their inferential procedure.
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intervals. We also report the median and mean elasticities because of their natural interpretations.
Our inference assumes that the ranks of the treated states across events are independent draws.

There are two potential concerns with this assumption, but overall we do not believe they represent
major problems in our case. First, some events are from the same state, which may bring up a
concern that the ranks of the events are not independent draws. However, while Y

it

may be serially
correlated, the same need not be true for ÷̂

eit

across two events eÕ and eÕÕ from the same state i in
time periods tÕ and tÕÕ. If the synthetic control estimator is unbiased, and it successfully matches
pre-treatment outcomes of both events, the post-treatment gap would from the two events are (by
construction) uncorrelated: E(÷̂

e

Õ1, ÷̂
e

ÕÕ1) = 0.
The second and more serious concern is that the because the minimum wage increases often

occur around the same time, two states with minimum wage increases may share many of the
same potential donors. As a result, the ranks determined by the placebo distributions are not
truly independent across treatment events. For two events eÕ and eÕÕ, the set of placebo estimates
÷̂

e

Õ
qt

Õ and ÷̂
e

Õ
qt

ÕÕ from donor q may be correlated, in particular when tÕ = tÕÕ. In the extreme case,
the donors and hence the placebo estimates –̂

e

Õ
qt

Õ may be identical. This induces a correlation in
the ranks F̂

e

Õ(÷̂
e

Õ1) and F̂
e

ÕÕ(÷̂
e

ÕÕ1) even though E(÷̂
e

Õ1, ÷̂
e

ÕÕ1) = 0 . However, in reality the overlap
in donor pool is only partial, which mitigates this problem. As a way to bound the bias in our
inference, we calculate critical values using placebo-law interventions that match the timing and
donor overlap patterns of the actual 32 treatments in our sample. The results suggest that donor
overlap has no substantial impact on critical values, justifying our use of the mean of independent
uniform distributions.9

3 Minimum wage treatment events and empirical specification

3.1 Sample periods and timing of treatment

The synthetic control estimator requires a set of untreated or donor units for each treatment event.
Since the vast majority of states were a�ected by the federal minimum wage increases, federal
increases are not suitable for use with the synthetic control method: there are very few untreated
donors that can be drawn from to construct a synthetic control for a�ected states. For example, 45
states changed their minimum wage at some point during the year of the 2007 federal minimum
wage increase, leaving only 5 states as potential donors to form synthetic controls.

To maximize the number of treatment events, we consider the entire 1979-2013 period available
using Current Population Survey (CPS) data. We focus on teen employment and wages, as many
16- to 19-year olds have wages near the minimum. During this period, almost 38 percent of teens
received wages within 10% of the statutory minimum wage, compared with about 5% of workers
aged 20 to 64. While there is considerable debate regarding the size of teen employment e�ects, we

9A Monte Carlo simulation of placebo-law interventions obtains 95% critical values for the mean percentile rank
of 32 events of 0.392 and 0.607, in contrast to 0.400 and 0.600 using the mean of 32 independent uniform random
variables. Using the latter critical values with the placebo-law simulation distribution implies a rejection rate of 6.9
percent instead of 5.0 percent. See Appendix for details.
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expect to find significantly positive e�ects on teen wages. The high incidence of minimum wage
workers among teens makes them the most frequently studied group in the minimum wage literature
(e.g., Neumark et al. 2013, Allegretto et al. 2013). For outcome variables we calculate quarterly
state-level teen employment-to-population ratios and average wages using the CPS.10 Although
annual state means would contain less noise, they would correspondingly limit the number of pre-
and post-treatment observations; moreover, not all minimum wage increases occur during the same
part of the calendar year.

The top panel of Figure 2 shows all quarterly minimum wage changes during the study period.11

During this period the federal minimum wage increased nine times, indicated by the vertical lines
in the Figure. Aside from federal minimum wage changes, 33 states in this period raised their
minimum wage 215 times. Many states increase their minimum wage frequently, often on an annual
basis. To utilize the synthetic control method, we limit the sample of usable treatment events to
those with well-defined pre- and post-treatment periods. We select those events with no minimum
wage changes two years prior to treatment and with at least one year of post-treatment data. We
also limit the sample to minimum wage increases of at least 5 percent, and to treatment events with
at least 10 potential donors or untreated states. These restrictions yield the 32 treatment events in
the top panel of Figure 2 labeled in dark text.

The eligible events have valid pre- and post-treatment periods of varying length. West Virginia,
for example, has many years of data prior to its minimum wage change in 2006q3 available but only
one year of post-treatment data. By contrast, California’s treatment in 2001q1 allows only two years
of clean pre-treatment data but many years of post-treatment data. Also, California’s post-treatment
period includes an additional minimum wage increase in 2002q1. To simplify choices, for each event
we select its “maximal” pre-treatment period available from 8-32 quarters; having done so, we then
select each event’s maximal post-treatment window from 4-12 quarters. The bottom panel of Figure
2 illustrates these pre- and post-treatment selections in blue and red, respectively, with circles
indicating the times of treatment. Two features stand out. First, while the pre-treatment period
contains no minimum wage increases by definition, the post-treatment period includes multiple
minimum wage changes—states that raise their minimum wage often do so again within the next
year or two. Table 1, which lists all 32 treatment event configurations that form the basis for our
primary specifications, shows that most events include multiple minimum wage increases. There are
four events whose post-treatment period includes four minimum wage increases. For this reason
our treatment intensity definition incorporates the maximum minimum wage in the post-treatment
period.

Second, Figure 2 there are three states in the 2000s with recurring minimum wage changes

10For employment outcomes we use the Unicon CPS extracts for the monthly Basic Survey (http://unicon.com).
Wage data is only available in the outgoing rotation group subset of these data; for wage data, we use the NBER
Merged Outgoing Rotation Group extracts (http://www.nber.org/morg/annual/). We calculate wages as hourly
earnings or, if these are not reported, weekly earnings divided by usual weekly hours. State-quarter-level averages use
the sampling weights.

11We thank Sylvia Allegretto for providing monthly historical minimum data, which we convert to quarterly
averages.
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where the post-treatment period of one minimum wage change overlaps with the pre-treatment
period of a later minimum wage change: Hawaii, Rhode Island, and Vermont. For example, Hawaii’s
post-treatment period for its 2002q1 treatment overlaps with the pre-treatment period of Hawaii’s
2006q1 treatment. Delayed e�ects from the former 2002q1 treatment could in principle violate the
assumption that, for the latter 2006q1 event, Hawaii’s pre-treatment period is absent from treatment.
On the other hand, the pre-treatment period of Hawaii’s 2006q1 is absent from treatment using
our original definition that it contains no minimum wage changes. For our primary specifications
we will include all 32 events, but we will also describe results excluding the three events of Hawaii
2006q1, Rhode Island 2006q1, and Vermont 2004q1.

There is a trade-o� between window length and the number of events and donors. Allowing
relatively short pre- and post-treatment periods maximizes the number of treatment events but, at
the same time, may reduce the quality of the estimated counterfactual, as there is less pre-treatment
data informing the selection of synthetic controls. On the other hand, lengthy pre-treatment
periods limit both the number of events and potential donors, thereby reducing the credibility the
resulting estimates. When we limit our treatment events to those with more restrictive pre- and
post-treatment window lengths, we sharply reduce the number of case studies, as Table 2 illustrates.
The first line in Table 2 is our primary configuration: 32 events with at least 8 and 4 quarters of
respective pre- and post-treatment data. Requiring pre-treatment and post-treatment windows of at
least 16 and 8 quarters, respectively, curtails the number of case studies to 17. In terms of restricting
the donor availability, the configurations in Table 2 show only a small amount of variation. As we
limit the pool of case studies to the most restrictive window configurations, the mean minimum
wage treatment rises a small amount, from about a 19 percent increase to an increase of about 23
percent. Our primary results use the maximal window configuration with 32 events, but we explore
how the alternate window configurations a�ect our results in Section 4.3.

3.2 Specifying predictor variables

Any characteristics una�ected by the policy intervention are valid predictors under the synthetic
control approach, including demographic and industrial compositions or other economic attributes
of the region. However, the unbiasedness of the estimator relies on the predictors including some
linear combination of the pre-treatment values of the outcome of interest. There are two related
questions when it comes to these predictors. First, exactly which variables should one include in
the set of predictors? Second, what weight should one place on each of those predictor variables
when estimating the donor weights? ADH provides a simple answer to the second question of how
best to determine the weights on specific predictors within a set, which we describe first. Then
we tackle the more challenging question of what predictors—and specifically what pre-treatment
outcomes—one should include in this set.
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For a given event e, the optimal donor weights are defined as
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of alternatives such as manually specifying weights for predictors, or using the computationally less
intensive methods available to users.12

But exactly which sets of pre-treatment outcomes and other characteristics should the researcher
choose as predictors? When computationally feasible, perhaps the simplest strategy is to include
every pre-treatment outcome in the predictor set X. In their study of the e�ects of Arizona’s 2007
Legal Arizona Workers Act, Bohn et al. (2013) employ this strategy with annual CPS data, using
every pre-treatment value of the 1998-2006 non-citizen Hispanic share of the population, in addition
to other industrial and demographic shares.

Within the pre-intervention sample, one cannot do any better in terms of pre-intervention MSPE
than to include every pre-intervention outcome. However, this will not be true when predicting
out of the pre-intervention sample, which is ultimately the object of interest. Matching on higher
frequency pre-intervention data may actually produce less reliable synthetic controls. For example,
our study uses quarterly CPS data, we risk matching on noise when using as predictors every
quarterly pre-treatment value of teen employment-to-population ratios or average wages. As a
result, we also consider the predictor set X consisting of annualized averages of the pre-treatment
outcome.13

Di�erent sets of predictors may result in di�erent synthetic controls, and there is little explicit
guidance in the synthetic control literature to assess predictor choice. We consider four di�erent

12We implement the synthetic control approach in Stata using the synth package with nested optimization and
allopt starting point checks for robustness: http://www.mit.edu/~jhainm/synthpage.html. There is a option for
using a less computationally intensive but less reliable “regression-based” predictor weights. In our experience, the
regression-based weights can produce worse fit, and the nested optimization uses regression-based weights as an initial
set of values for optimization. The optimization process always converges to a solution for the 32 actual treatments,
but it fails to converge for a small subset of donor-based placebo treatments – in only these cases do we resort to the
regression-based predictor weights. Failure to converge on an employment solution occurs 0.01, 0.06, 0.05, and 0.01
percent of the time for synthetic control models 1, 2, 3, and 4, respectively. For wages, these failure rates are 1.73,
0.01, zero, and 1.53 percent.

13Here, annualized averages refer to the mean of the first through fourth quarter before treatment, the mean of
the fifth through the eighth quarter before treatment, etc. For Minnesota’s 2005q3 treatment, say, these refer to the
2004q3-2005q2 mean, the 2003q3-2004q2 mean, etc.
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predictor sets X, which vary according to whether we include every quarterly or annualized pre-
treatment outcome, and whether we include other pre-treatment average demographic, labor market,
industry shares.14 These predictor sets are summarized at the bottom of Table 3. Using teen
employment as an example outcome, predictor set 1 is all quarterly pre-treatment values of teen
employment-to-population ratios. Predictor set 2 is all annualized pre-treatment employment-to-
population ratios. Predictor set 3 includes all annualized pre-treatment employment and wage
outcomes. Predictor set 4 adds to predictor set 3 the pre-treatment demographic, labor market,
and industry shares described above. We note that when every quarterly pre-intervention outcome
is included in the predictor set, inclusion of other predictor variables is redundant when weights on
those predictors are calculated optimally using nested optimization. For this reason, it only makes
sense to include variables such as industry or demographic shares when using annualized and not
quarterly pre-treatment outcomes.

To identify the “best” choice for X, we use a cross-validation procedure to choose from di�erent
sets of predictors. Recall that in creating synthetic controls for each event, the pre-intervention
observations of donors e�ectively form a “training sample” upon which we select synthetic control
donor weights as well as predictor weights for a given set of predictors. Here, when choosing the most
reliable set of predictors, we use the post-intervention observations of the donors as our “validation”
sample to evaluate prediction error associated with a given set of predictors. For a given predictor
set X, we calculate the post-treatment mean-squared prediction error (MSPE) for each donor j

given by
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begins the post-treatment period in event e, and where q indexes the available N ≠2 donors
for (untreated) state j. We define the average RMSPE to be the square root of the mean of this
quantity across all donors for all 19 events. The optimal model will yield the smallest post-treatment
RMSPE, so predictor sets X with higher average RMSPE in the post-treatment period indicate
models with worse performance in the sample of untreated donors.15

Table 3 reports the average donor RMSPE in the training sample for both the post-treatment
and pre-treatment periods across four candidate specifications for predictors. Predictor set 1, which
uses quarterly pre-treatment outcomes, naturally obtains the best pre-treatment fit to quarterly
employment or wages when compared to predictor sets 2 through 4, which try to fit quarterly
frequency data using annualized pre-treatment outcomes. Incorporating both annualized outcomes
and additional controls improves pre-treatment fit relative to using only one annualized outcome:
for employment, pre-treatment RMSPE falls from about 0.040 in specification 2 to about 0.035 in

14The demographic and labor market variables are the pre-treatment means of white, black, female, and married
shares of the teen population, the teen population share, the share of the overall population with a college degree, and
the overall unemployment rate. Industry variables are the employment shares in agriculture & mining, construction,
manufacturing, wholesale & retail trade, transportation & utilities, information/finance/professional/business services,
education & health services, leisure/hospitality/personal services, and public administration.

15We do not use the treated states for this cross-validation exercise because use of the post-treatment period in
these states would require us to also have a valid estimate of the treatment e�ect.
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specifications 3 and 4.
While using every pre-treatment outcome by definition maximizes goodness-of-fit in the pre-

intervention sample, the same need not hold out of sample. In terms of post-treatment fit, the
specification 4 is actually mildly preferable to specification 1. Using both annualized outcomes and
demographic, labor market, and industry shares in specification 4, the post-treatment RMSPE for
teen employment is about 0.0472, compared to the RMSPE of about 0.0478 for quarterly predictors.
For wages, post-treatment RMSPE falls more—from 0.7911, when using quarterly outcomes in
specification 1, to about 0.7758 in specification 4. The observed reduction in RMSPE —although
admittedly small—is consistent with our a priori concerns about noise in the aggregations of
quarterly CPS data, leading us to select specification 4 as our primary configuration. Yet because
the small measured reduction in RMSPE makes our preference for this model somewhat weak, we
explore the robustness of estimates across all sets of predictors in section 4.3.

4 Synthetic control estimates of minimum wage e�ects

4.1 Donors selected by synthetic control

Conditional on other covariates, conventional regression e�ectively assigns equal weights to the
states the researcher selects as potential controls. By contrast, the synthetic control approach
selects a convex combination of donor states based on that combination’s pre-intervention fit to the
treated state. For our sample of treatment events, we observe that the synthetic control procedure
on average assigns greater weights for nearby donors, suggesting that nearby states generally form
better counterfactuals than do distant states. To illustrate this, Table 4 compares average per
donor weights for those donors near to and further away from the treated state. For each treated
state, some donors reside within the same Census region as the treatment, whereas other donors lie
outside that region. We first calculate the sum, across events, of all weights for these within-region
donors, and then we divide this sum by the total number of within-region donors. The first entry
in Table 4 is the resulting within-region per donor weight, 0.050, when the outcome of interest is
the teen employment-to-population ratio. For outside-region donors, the per donor weight is 0.027.
Calculating per donor weights in this way adjusts for the fact that the number of potential donors
within or outside a given area varies across treatments.

The primary statistic of interest in Table 5 is the ratio of within-area to outside-area per donor
weights: the relative per donor weight. For the employment-to-population ratio, the relative weight
is 1.836, indicating that donors within the same Census region as the treated state are, on average,
assigned weights almost twice as high as donors from outside the the same Census region. Relative
weights tend to increase as we restrict the relative distance band. Same-Census-division donors – a
finer aggregation level – receive even more weight, with relative weights of about 3.0 and 2.5, for
teen employment and wages, respectively.16 Donors within 1000 miles receive 1.3 to 1.5 times as

16The US Census Bureau partitions the country into four Census regions and nine Census divisions:
https://www.census.gov/geo/www/us_regdiv.pdf.
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much weight, and donors within 500 miles receive about 2.0 times as much weight. On the whole,
the evidence shows that nearby donors form better synthetic controls.

4.2 Primary results

We begin with reporting the estimates for each of the 32 treatment events in Table 5. First, the
results appear to indicate a positive impact of minimum wage increases on average teen wages. While
the wage elasticity estimates range from -0.188 to 1.337, we find that 27 out of the 32 estimates are
positive and almost half (15) are strictly greater than 0.25. As described earlier, the reported rank
is the percentile rank of the treated state’s elasticity relative to the placebo distribution. Six of the
32 estimated wage e�ects are statistically significant at the 10 percent level.

Turning to teen employment, the estimated elasticities range from -1.999 to 0.829, although 14
of the 32 events have employment e�ects less than 0.2 in magnitude. Consistent with a constant
zero treatment e�ect, or heterogeneous e�ects centered around zero, 15 out of the 32 employment
estimates are positive. There are two statistically significant employment e�ects: both Massachusetts
(-0.456) and Oregon (-1.081) have negative elasticities that are significant at the 10 percent level.
Highlighting the imprecision of individual case studies, we find that the confidence intervals are
wide, with an average spread of 1.669 (1.875) for employment (wage) elasticities.

The presence of occasionally very large estimates is partly due to the non-normality of the
distribution of synthetic control estimates. To show this, Figure 5 compares probability densities of
the donor employment and wage elasticities to normal probability densities. For both employment
and wage outcomes, the placebo distribution formed by the donors is clearly non-normal: although
centered relatively close to zero (about -0.01 and 0.01 in employment and wages, respectively),
extreme values give the placebo distribution fatter tails. The estimated kurtosis is 5.82 for donor
employment elasticities and 58.37 for wage elasticities, compared to the value of 3.0 for any normally
distributed sample. The especially severe departure from normality in wage estimates is partly
due to extreme estimates in this space with poor pre-intervention fit, as discussed in Section 4.3.
Shapiro-Wilk tests clearly reject the null of normality in both cases, with p-values close to zero. In
the presence of such fatter tails, the placebo-based confidence intervals are wider than those formed
under large sample assumptions.

The imprecision of individual estimates highlights the gains from pooling case studies. Table 6
presents our preferred aggregated results as both the mean elasticity and median elasticity across
events. As discussed earlier, we also present the mean ranks, and the associated Hodges-Lehmann
confidence intervals; both the median estimate and the Hodges-Lehman interval are less swayed
by potential outliers, a concern that is highlighted by the presence of fatter tails. The median and
mean employment elasticities for the 32 treatment events are relatively small: -0.019 and -0.039,
respectively. Across treatment events, the mean employment rank is 0.497, essentially what would
be expected under the null of a zero treatment e�ect. The pooled Hodges-Lehman e�ect is small
at -0.003 and statistically insignificant, as the mean rank falls between the cuto�s (0.400, 0.600)
derived from the 2.5th and 97.5th percentiles of the mean of 32 uniformly distributed variables.
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The associated 95 percent confidence interval is (-0.153, 0.104). Although somewhat wide, pooling
across the 32 events nonetheless allows us to draw economically meaningful inference, and rules out
a substantial portion of the old “consensus” estimate of -0.1 to -0.3. (Brown 1999).

These small-to-zero aggregated employment e�ects contrast sharply with those for wages, where
the median and mean elasticity are 0.220 and 0.317, respectively. The pooled wage elasticity of
0.265 is statistically significant at the 1 percent level, as the mean rank is 0.763. The associated
confidence interval rules out wage e�ects smaller than 0.174 and larger than 0.382.

Figure 3 illustrates these aggregate e�ects by showing the time path of the mean annualized
employment and wage elasticities, both before and after the minimum wage increase.17 The top
panel shows the mean annualized employment elasticities ranging from 8 years prior to the minimum
wage increase (i.e., quarters -32 through -29) to 3 years afterward (i.e., quarters 8 through 11). The
middle panel shows the analogous estimates for wages. The bottom panel shows the number of
treated states used for the estimation of the elasticity of each 4-quarter bin, as well as the associated
proportionate change in the minimum wage.

For employment, all pre-treatment point estimates but the 8th year lead (i.e., quarters -32
through -29) are small in magnitude, adding validity to our research design. After the minimum
wage increase, employment nominally falls, but the elasticity remains less than 0.1 in magnitude.
For wages, pre-treatment elasticities are centered around zero until about the first two years prior
to treatment (quarters -8 through -5), at which point we detect a statistically significant elasticity
of about 0.1 on employment. Positive pre-treatment elasticities for wages suggest that the synthetic
control research design may not be as reliable for wage impacts – partly because wages for minimum
wage increasing states are generally higher than potential donor states, making good matches
di�cult. At the same time we do find a sharp increase in teen wages at the time of and after the
minimum wage increase. The Hodges-Lehmann point estimate for the teen wage elasticity lies
between 0.2 and 0.4 in the post-treatment period. Approaching 0.40, the pooled wage elasticity is
high after three years of treatment, but this is not inconsistent with the fact that nearly 38 percent
of teens during the 1979-2013 period earned within 10 percent of the minimum wage.

Before exploring match quality and robustness issues, we take stock of our baseline estimates
in Figure 4. The Figure shows all 32 individual employment elasticities (vertical axis) and wage
elasticities, along with the mean and pooled e�ects. Overall, while the estimates appear noisy, there
is very little relation between the magnitude of the wage elasticity and employment elasticity. In
particular, the dotted line shows the locus of unitary elastic labor demand (÷emp/÷wage = ≠1),
where the wage e�ects of the minimum are completely o�set by the employment e�ects, ignoring
any changes in hours. Of the 32 treatment events, 21 lie clearly above this locus, as do the mean

17Specifically, we annualize actual treated state and synthetic control outcomes by taking the event-specific mean
of these values at every pre- and post-treatment four-quarter interval. The percent di�erence between these values,
divided by the actual minimum wage increase, forms the event-specific elasticity at each time interval. The figure
displays the mean elasticity across events at each time interval. Performing the analogous calculation for the donors,
we then construct event-time-specific percentile ranks, which we invert to calculate Hodges-Lehmann point estimates
and 95% confidence intervals, where the latter use mean uniform cuto�s from Appendix Table A1 with the appropriate
number events.
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and pooled e�ects. Discounting issues of statistical precision, the point estimates in the Figure seem
inconsistent with the idea that negative employment e�ects are more likely when there is a more
binding minimum wage: only when wage elasticities fall below the pooled estimate of 0.265 do we
observe events with employment elasticities below the elastic demand locus.

4.3 Accounting for match quality

Pre-treatment fit to actually treated state is the key criterion for the credibility of a synthetic control
analysis. The extent to which a synthetic control matches the treatment unit in the pre-treatment
period indicates how well it accounts for time-varying confounders. For a single case study, the
pre-treatment match quality is usually apparent: for example, the synthetic control for New York in
in Sabia et al. (2012) never coincides with the actual treated state. However, when pooling across
many cases, it may be di�cult to evaluate and account for match quality merely by inspection.
Some of the the synthetic controls for the 32 treatment events in this paper also su�er from poor
pre-treatment fit, but our pooling of estimates does not account for di�erences in match quality.

To assess this issue more systematically, we progressively exclude events with particularly poor
pre-treatment fit and examine how this a�ects our post-treatment elasticities. For each treatment
event, we calculate a pre-treatment RMSPE between the synthetic and actual treatment outcomes—
this is our measure of pre-treatment fit. We also calculate an estimated pre-treatment elasticity,
defined just as our conventional treatment e�ect ÷1 except calculated over the pre-treatment period
(and scaled by the actual minimum wage increase). Next, we trim our sample of case studies on
pre-treatment fit and examine how the trimming a�ects the pooled pre-treatment and post-treatment
elasticities.18

Figure 7 shows how pre- and post-treatment elasticities vary after trimming up to 11 events
(about one-third of our sample). The top panel shows that the post-treatment Hodges-Lehmann
point estimate remains relatively for both employment and wages. One exception is the mean wage
e�ect, which rises from to just below 0.40 after removing 11 events with the worst match quality.
We discuss how the mean wage e�ect is susceptible to three large elasticities (greater than 1.0) in
the next section. In the bottom panel, pre-treatment elasticites for employment remain close to
zero. For wages, as we eliminate events with the worst match quality, pre-treatment elasticities
fall only slightly. The pooled pre-treatment wage elasticity is always statistically significant at the
5 percent level, indicating that our research design spuriously detects some pre-trends in wages.
These spurious e�ects are nonetheless very small, always less than 0.05.

While the foregoing trimming of treatment events aims to improve the identification of the
pooled treatment e�ect, there is also a concern that poor match quality for donor-based (placebo)
synthetic controls biases our inference. In particular, donors whose synethetic controls have poor
pre-treatment fit are not informative for assessing the post-treatment rank of the treated state.

18Note that a reduction in the pre-treatment RMSPE can occur either from a reduced pre-treatment variance or a
pre treatment bias. Therefore, an improved pre-treatment fit does not automatically guarantee a smaller pre-treatment
elasticity, which is the measure of bias.
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In the context of a single treatment event, ADH address this concern by limiting inference to
the subset of donors with better pre-treatment synthetic control fit relative to the treated state.
Specifically, using the ratio “

j

= MSPE
j

/MSPE1 of donor-to-treated synthetic control fit during
the pre-treatment period, ADH limit randomization inference to subsets of donors with lower values
of this ratio. Following this guidance, we explore how mean ranks and the associated confidence
intervals change when we limit donors to those with event specific ratios “

ej

= MSPE
ej

/MSPE
e1

less than 20, 10, 5, and 2.
Table 7 presents the pooled e�ects from this exercise. Restricting donors has almost no e�ect

on the mean rank or Hodges-Lehmann confidence intervals for the pooled employment elasticity,
even when we limit the number of donors to those with MSPE ratios of less than 2, removing
nearly one-quarter of donor states from the full sample. For wages, removing donors with the worst
relative pre-treatment fit has removes some extreme donor elasticities: moving from the full sample
to the subset of donors with a MSPE ratio of less than 20, the maximum donor of elasticity of
8.170 and kurtosis of 58.4 fall to 3.439 and 12.0, respectively. But as with employment, inference
for wages remains relatively unchanged.

4.4 Robustness to window configuration length and predictor sets

Researchers using synthetic controls face choices about the exact length of pre- and post-treatment
windows: more lengthy pre-treatment windows provide more pre-treatment predictor information
but also reduce the number of available treatment events. Similarly, synthetic control-based research
designs require decisions about the exact set of predictor variables. In this section, we consider
how the aggregated results change when modifying window configuration length and the predictor
variable set.

We explore two issues using alternative configuration lengths: first, what happens to our
estimates when we allow for longer lagged e�ects? Second, we examine how our estimates vary
when we only consider events with a longer pre-intervention period to fit the model. To consider
lagged e�ects, Table 8 begins by showing employment e�ect estimates for the subsets of events
with longer post-treatment periods. When we restrict the sample to those with at least 3 years
of post-treatment data (12 quarters), the mean and Hodges-Lehmann point estimates stay very
close zero. Only in the case of restricting the sample to post-treatment periods of at least 10
quarters, where the mean employment elasticity is -0.06, are we unable to reject a pooled elasticity
greater than -0.20 in magnitude. In short, although we cannot reject moderately sized lagged e�ects
of, say, -0.10, we are unable to detect any presence of lagged e�ects through the third year of
treatment. Table 8 also shows that our employment e�ect estimates are similar for events with
longer pre-intervention periods. After requiring events to have longer pre-intervention windows,
pooled employment elasticities remain small and range from -0.003 to 0.072.

Table 8 reports suggestive evidence of lagged wage e�ects, as the pooled elasticity rises monoton-
ically from 0.265, to 0.303, and then to 0.392, moving from the full sample to events to those with
two and then three years of post-treatment data, respectively. Mean elasticities for these subsets

19



seem rather high, ranging from 0.317 to 0.505, and sometimes come close to the upper bound of the
Hodges-Lehmann confidence intervals. These large elasticities are substantially influenced by three
events with wage elasticities greater than 1.0 (MA 1986q3, ME 1985q1, NH 1987q1). As we require
samples with longer pre-intervention windows, the mean and pooled wage elasticity estimates rise
to 0.379 and 0.289, respectively, but then begin fall sharply to about 0.250 and 0.188 and below
when requiring at least six years of treatment. These requirements drop the aforementioned extreme
elasticites and mechanically lower our pooled estimates. While the magnitude of the wage e�ect
shifts depending on window configuration requirements, we find statistically significant teen wage
e�ects of the minimum in all configurations except the most restrictive pre-treatment configuration
of 8 years, which reduces our sample to only 4 events.

We additionally consider how alternative predictor sets a�ect pooled estimates of the teen
employment and wage e�ects. Testing four candidate models, we found in Section 3.2 a weak
preference for the most saturated model with annualized outcomes, including both annualized wage
and employment outcomes and other labor market controls. This set of predictors provided all of
the above estimates in this paper. Table 9 shows pooled estimates for all of these candidate models
in columns 1 through 4. For both teen employment and teen wages, mean elasticities, ranks, and
pooled elasticities change little across predictor sets. Hodges-Lehmann estimates for employment
range from -0.003 to 0.073; for wages, the pooled elasticities lie between 0.265 and 0.294, all of
which are statistically significant at the one percent level. With predictor set 4 (our preferred
specification), confidence intervals are somewhat tighter.

One concern with the synthetic control estimator is that by matching on the levels of wages and
employment, we do not positively weight donors that match the treated state’s trend. For su�ciently
many pre-treatment periods, this is less of a concern, as matching levels or matching trends will
produce similar results. But for a small number of pre-treatment periods, synthetic control estimates
may di�er. To assess the magnitude of this problem Table 9 presents two additional models, where
we de-mean the data, as in a di�erence-in-di�erence specification. Specifically, for each donor and
treated state in a treatment event, we subtract the pre-intervention mean of each predictor and
match on the deviations from this pre-treatment mean.19 Because we do not know the asymptotic
properties of this “centered” synthetic control estimator, we view these results as a robustness check.

We calculate synthetic control estimates for “centered” models using two predictor sets. Column
5 uses quarterly outcomes and is the “centered” version of the model in column 1. Column 6 uses
the most saturated annualized model — the “centered” version of our preferred specification in
column 4. Employment estimates become slightly more negative: the mean and pooled elasticities
rise from -0.039 and -0.003 in our preferred specification, to -0.039 and -0.067 in column 5, to
-0.065 and -0.087 in column 6. These “centered” results are somewhat more consistent with a small
disemployment e�ect, but the mean ranks are close to 0.45 and 0.43, and at the five percent level we
cannot rule out small positive employment e�ects. For wages we find evidence of smaller impacts,

19We only use the pre-treatment mean rather than the entire state mean, to avoid any complications arising from
the minimum wage increase a�ecting the overall mean through the post-treatment period.
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with the pooled elasticity falling from 0.265 to 0.211 to 0.163 over specifications 4 through 6. The
mean rank for wage e�ects remains above 0.66 and statistically significant at the one percent level
in all specifications. On the whole, the “centered” specifications are largely consistent with our
preferred specification’s pattern of small employment e�ects with sizable and statistically significant
e�ects on teen wages.

4.5 Alternative methods of inference

For multiple case studies, the mean percentile rank is an intuitive test statistic and is also a natural
extension of the donor-based randomization inference proposed in ADH. The results presented
thus far assume that under the sharp null of zero treatment e�ects, the mean percentile rank is
distributed as the mean of independent uniform distributions. There are two sets of potential
problems with this assumption. First, because some of our events contain as little as 20 donors, the
mean percentile rank is too discrete to be assumed to be uniform. In what follows, we assess how
our results change using an alternate “discrete” null distribution of percentile ranks. The second
and potentially more serious set of problems is that because some of our treatment events occur at
the same time period, they may have the same donors. The donor overlap means that the estimated
ranks from two events may be correlated across events, violating the assumption that the ranks
are independent. Moreover, recurring treatments may also induce serial correlation in the donor
ranks across time. We assess the extent of these problems through a Monte Carlo simulation of
synthetic control-based elasticities using placebo interventions, where the timing, treatment overlap,
and donor overlap mimics our actual 32 treatment events.

We compare our primary results with these two alternative rank-based methods of conducting
inference on the pooled Hodges-Lehmann employment elasticity. These three procedures represent
three di�erent ways of conducting rank-based randomization inference on the pooled Hodges-
Lehmann employment elasticity; for each of these we estimate the Hodges-Lehman confidence
interval. In contrast, our fourth method constructs a confidence interval for the mean e�ect using
randomization inference on the means of donor elasticities (as opposed to the ranks). These
four methods provide researchers a toolkit of possibilities for conducting inference with synthetic
controls with multiple events. First we describe how we construct three rank-based counterfactual
distributions used to test the sharp null ÷

e1 = 0 for all N events, along with the mean elasticity
randomization inference method. Then we discuss the results using these four methods .

The first appraoch is the baseline one used throughout this paper, which assumes that the
percentile ranks p

e1 of these elasticities vis-à-vis the donor states are distributed continuously as
independent uniform variables on [0, 1]. We use one million simulations of the mean of N uniforms
to calculate the 95% critical values for this Irwin-Hall distribution. Table A1 lists these critical
values for N = 1 . . . 35. These are the preferred critical values for the mean percentile rank used
throughout the paper. For the full sample of 32 events, the 5% critical values of this distribution
are 0.400 and 0.600.

The second method recognizes that in practice the percentile ranks are calculated for a finite,
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event-specific number N
e

of donor states. For this second method, we relax the assumption of
continuous approximation, and calculate percentile ranks with the Weibull-Gumbel rule p

e

=
r

e

/(N
e

+ 1) by simulating the uniform integer ranks r
e

œ [1, N
e

] with the appropriate number of
donor states present in our data. The distribution of the mean of these percentile ranks across 32
treatment events forms the counterfactual of the mean percentile rank.

The third method further relaxes the assumption that the ranks are independently distributed.
As described above and in Section 2.3, the set of placebo elasticities is not independently distributed
because some distinct treatments occur around the same time period. For example, the five states
that raise their minimum wages during 2005 share many of the same donors. Therefore these
treatments are associated with similar donor elasticities, inducing a correlation in donor ranks across
this set of events. To account for donor overlap we use a Monte Carlo simulation using placebo laws,
calculating synthetic controls for teen employment-to-population ratios in each of the 50 states,
using the remaining 49 states as potential donors. These synthetic controls are constructed using
the exact timing and pre-/post-treatment window length present in our sample of 32 events.20

To form the counterfactual distribution of mean percentile ranks accounting for donor overlap, in
this third approach we randomly permute state identifiers of the placebo law sample and then merge
the shu�ed outcomes and associated synthetic controls to the actual 32 treatment events. The
resulting dataset shares the exact timing and structure of donor overlap in our actual sample of 32
events, as well as the actual sample’s event-specific pre- and post-treatment window configurations.
The dataset also retains the same structure of recurring treatments. For each event, and for each
“treated” and donor state, we calculate the percentile ranks of the placebo-treatment e�ects, defined
as the post-treatment percent di�erence of employment-to-population ratios between the state and
its synthetic control. Finally, we calculate the mean percentile rank of the 32 “treated” states.
We iterate this procedure one million times. Note that although the placebo-law sample contains
actually treated states, the resulting distribution remains a valid counterfactual because all states
have the same probability of treatment assignment, before permuting state identifiers.

Table 10 describes all three methods of rank-based inference associated with our sample’s 32
treatment events. The first column of results lists the 2.5 and 97.5 percentiles of each counterfactual
distribution. These 95% critical values are very similar across methods, with the third method
(0.392, 0.607) having the largest deviation from the uniform-based distribution (0.400, 0.600). In the
second column, we calculate the 5% rejection rates for each counterfactual distribution using the
95% critical values of uniform-based distribution. By construction, this is exactly 5.0% for the first
method using uniform-based distribution. For the second method, the rejection rate is similar but
slightly lower, at about 4.3%. Finally, for the third method accounting for overlap using a Monte
Carlo simulation, the rejection rate rises to about 6.9%, suggesting that donor overlap causes the

20For example, Alaska’s treatment event in 2003q1 has a pre-treatment window of 20 quarters and a post-treatment
window 12 quarters (see Table 1). For the Monte Carlo simulation we construct synthetic controls for all 50 states using
the same date of treatment and the same pre-/post-treatment window lengths. We repeat this for all 32 treatment
events. For the synthetic control procedure, we use the preferred predictor set used throughout most of the paper
(predictor set 3 in Table 3)
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uniform-based distribution to over-reject somewhat, although the bias is modest.
To see how these methods a�ect estimates of the confidence intervals of the aggregate e�ects,

columns 3-5 show the Hodges-Lehmann point estimate and associated confidence interval. Here,
we form confidence intervals as described in Section 2.3 by inverting the mean rank, but we use
the critical values from the respective distributions for each method. The 95% Hodges-Lehman
elasticity confidence of (-0.153, 0.104) with the first method remains essentially unchanged when
using the critical values accounting for the discreteness of the ranks. Using the critical values based
on the Monte Carlo simulation accounting for donor overlap, the 95% confidence interval widens a
small amount to (-0.164, 0.112). The over-statement in precision due to ignoring overlap therefore
appears to be very small in terms of Hodges-Lehmann confidence intervals: about 0.01 in elasticity
space. These results provide a strong justification for simply using the Irwin-Hall distribution.

In the fourth row of Table 10 we compare the above results using the Hodges-Lehmann pooled ef-
fect and rank-based inference to randomization inference for the mean e�ect. To form randomization-
based confidence intervals around the mean employment elasticity estimate of -0.039, we first
construct the counterfactual distribution of the mean of 32 donor elasticities: we select, at random,
one donor from each of the treatment events, and calculate the mean of the synthetic control-based
elasticities. Repeating this process one million times, we use the resulting 2.5 and 97.5 percentiles
of this distribution to calculate the 95% randomization inference confidence interval. For the mean
e�ect of -0.039, the 95% randomization confidence interval is (-0.179, 0.137). Slightly wider than
than our preferred confidence interval (-0.153, 0.104) around the Hodges-Lehmann point estimate,
the randomization inference confidence interval for the mean, based on means of donor elasticities,
is somewhat more influenced by large elasticities in the donor space.

Relatedly, one reason to prefer conducting inference using the mean rank is that under the
independence assumption, we know its exact distribution under the sharp null of no e�ects. The
sample mean rank is, therefore, a pivotal statistic. This virtue cannot be claimed by the sample
mean elasticity, whose distribution under the null is unknown. We must empirically estimate the
mean elasticity under the null using the mean of donor elasticities. A second, and related, reason to
prefer rank-based inference is that it allows for conceptually simple tests of the distribution of e�ects.
For example, given the independence assumption, the percentile ranks of treated states should
follow a uniform distribution under the sharp null. In the next section we extend this distributional
analysis of the percentile ranks to test of heterogenous e�ects.

4.6 Heterogeneity

Thus far we have focused on the average e�ects of the treatment, and found employment estimates
that are close to zero. However, it is possible that such an average e�ect is composed of causal e�ects
of di�ering signs. For example, if the low wage labor market is characterized by monopsonistic
competition, employment e�ects there could be positive in some cases and negative in others (Card
and Krueger 1995, Burdett and Mortensen 1989, Manning 2003). Conversely, the spread in the
estimated elasticities could simply be due to sampling error, with a true e�ect of zero everywhere.
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Here we take advantage of the fact that the distribution of the percentile ranks is of a known
form under the sharp null hypothesis of a zero e�ect—it is uniformly distributed over the unit
interval. If the distribution of empirically estimated percentile ranks di�ers su�ciently from the
theoretical distribution, this constitutes evidence against the sharp null. This possibility can arise
either from a non-zero constant e�ect everywhere, or heterogeneous e�ects across events.

We use the Kolmogorov-Smirnov test of equality of distributions to determine both the presence
of any minimum wage e�ect and heterogeneous minimum wage e�ects. Under the sharp null of
zero e�ects everywhere, ÷

e

= 0, the percentile ranks of the nineteen treatment e�ects should be
uniformly distributed. The empirical CDF of the actual percentile ranks is given by

Ĥ(x) = 1
E

ÿ

e

I(p
e1 Æ x)

where I is the indicator function. The one-sample Kolmogorov-Smirnov test of the null hypothesis
Ĥ(x) = x has as its test statistic the maximum distance between the empirical CDF and the uniform
CDF (see Gibbons and Chakraborti 2003):

D = sup
x

---Ĥ(x) ≠ x
--- .

The top panel of Figure 6 shows the uniform CDF and the empirical CDF for employment and
wages. Visually, the percentile ranks of the employment e�ects are very similar to what would be
expected under the sharp null, whereas the wage e�ects have a di�erent percentile rank distribution.
The Kolmogorov-Smirnov test p-values confirm this impression with p = 0.726 for employment and
p = 0.000 for wage elasticity percentile ranks, leading us to reject the sharp null of zero e�ect only
in case of wages.

The above test is against a sharp null of zero e�ect. To detect heterogeneous e�ects that average
to something other than zero, we extend the procedure above to test for a constant e�ect equal to
the mean e�ect: ÷

e

= ÷. This is particularly relevant for wage elasticities whose average is positive
and substantial in magnitude. Under this sharp null, after centering the 32 elasticities around the
mean e�ect, the adjusted percentile ranks Âp

e1 = F̂
e

(÷
e1 ≠ ÷) should be uniformly distributed. The

new Kolmogorov-Smirnov test statistic is

ÂD = sup
x

-----
1
E

Eÿ

e=1
I(Âp

e1 Æ x) ≠ x

----- .

The bottom panel of Figure 6 shows the distribution of adjusted percentile ranks for employment
and wage elasticities after centering the e�ects around their means of -0.039 and 0.317, respectively.
With Kolmogorov-Smirnov p-values of 0.502 for employment and 0.337 for wages, the re-calculated
ranks appear to be uniformly distributed, revealing no evidence of heterogeneous e�ects in our
sample of treatment events.

The Kolmogorov-Smirnov test can be relatively insensitive to distributional di�erences near
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the tails, because there, by construction, the distributional deviations converge to zero (as the
empirical distributions converge to 0 and 1). We may expect precisely this kind of heterogeneity
if most minimum wage increases have small employment impacts, but a few su�ciently binding
increases lead to large employment e�ects. As an alternative test of uniformly distributed ranks Âp

e1,
we use the Anderson-Darling test statistic A2, which places relatively more weight on the tails of
the distribution (see Conover 1999):

A2 = ≠n ≠
Eÿ

e=1

2e ≠ 1
E

1
log(p̃

e1) + log(1 ≠ Âp(E+1≠e)1)
2

.

For completeness we perform this test both for heterogeneous e�ects (using the de-meaned percentile
ranks Âp

e1) and for a constant zero e�ect (using the original percentile ranks p
e1). As shown in

Figure 6, the resulting Anderson-Darling tests p-values are very similar to our previous tests:
In summary, we find that the minimum a�ects teen wages but no indication of heterogeneous

treatment e�ects for either teen employment or the average teen wage. For the events analyzed
in this paper, the synthetic control-based estimates are consistent with a constant positive wage
elasticity coupled with a zero employment elasticity of the minimum wage.

5 Conclusion

The appeal of using a data-driven method to choose control groups has led to the increased popularity
of the synthetic control method. Since there may be a multitude of case studies one can investigate,
the ability to pool across events is useful in many contexts. In this paper we propose and implement
and way to pool across synthetic control case studies. We use a variant of the rank sum test to
conduct exact inference appropriate for small samples. We also invert the mean rank to provide the
Hodges-Lehman confidence interval for the pooled e�ect.

Although constructing confidence intervals of estimates using permutation-based inference is
relatively straightforward in the case of a single treatment event, estimates from individual case
studies are often imprecise. Pooling across them allows one to draw economically meaningful
inference with, in our case, just 32 events. Our mean employment elasticity is -0.039, and with a 95
percent level of confidence, we reject teen employment elasticities more negative than -0.153. The
Hodges-Lehmann pooled wage elasticity of 0.265 is statistically significant at the 1 percent level.

Within the minimum wage literature, our estimates are similar to those from border discontinuity
designs and estimates controlling for time-varying heterogeneity. Using CPS data on teens for
1990-2012, Allegretto et al. (2013) find a similar wage elasticity (0.167) and also small employment
elasticities: 0.002 with spatial controls and -0.025 with lagged dependent variables. While we cannot
rule out moderate negative employment e�ects of the minimum wage (say, an elasticity around -0.1),
our pooled estimates are consistent with small teen employment e�ects and substantially larger
e�ects on teen wages.

A substantial limitation of pooled synthetic control-based case studies concerns window length.
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Due to the nature of minimum wage variation in the United States, increasing the post-treatment
window requirements quickly limits the number of available case studies and potential donors.
Although we find no lagged e�ects three years after the treatment, focusing on these events cuts our
sample in half. Similar limitations apply to increasing the pre-treatment window in the hope of
obtaining better quality matches. In contrast, a clear advantage of a more conventional regression-
based approach is the greater ease of considering lagged e�ects. Lagged e�ects may be a particularly
relevant concern in minimum wage studies when examining whether the short-term and medium-term
employment responses di�er. Nevertheless, Dube, Lester and Reich (2010) find similar results of
small employment impacts even when considering longer lags up to 16 quarters.

Finally, the method we propose for rank-based inference need not be applied to synthetic control
estimates, but instead can be used in other di�erence-in-di�erence settings with multiple treatments.
Calculating and conducting inference on pooled e�ects is natural once the researcher identifies
treatment events and potential controls. In particular, the mean percentile rank is an intuitive
test statistic with a known distribution that can be derived for a relatively small number of events,
including the case where both the number of treated and control units is small. Moreover, the
appeal of a rank-based inferential method extends to the testing of heterogeneous treatment e�ect
more generally, only requiring the comparison of the empirical ranks of the treatment e�ects from
the set of treated units against a known distribution.
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Figures

Figure 1: Forming confidence intervals by inverting the mean rank statistic
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Figure 2: Quarterly minimum wage changes and usable treatment events during 1979-2013
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windows of the 32 treatment events, with red circles showing the minimum wage increases during the post-treatment
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Figure 3: Mean annualized elasticities, minimum wage changes, and number of donors, by time
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Figure 4: Event-specific and aggregated elasticities
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Figure 5: Probability density functions for the employment and wage elasticities of donors
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Notes: The donor employment (wage) elasticity distributions have mean -0.012 (0.012), standard deviation 0.452
(0.565), and kurtosis 5.82 (58.37). For each outcome, the illustrated normal distributions have the same mean and
variance. Shapiro-Wilk normality test p-values are 0.000 for both outcomes.
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Figure 6: Cumulative distribution of estimated percentile ranks
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Figure 7: Employment and wage elasticities, trimming events on pre-treatment match quality
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Tables

Table 1: Extrema of the distribution of the mean of N uniformly distributed random variables

Window length MW increases

Event Pre Post Donors Number Percent

AK 2003q1 20 12 33 1 0.265
CA 1988q3 28 6 36 1 0.269
CA 2001q1 8 12 39 2 0.174
CT 1987q1 24 12 36 3 0.269
CT 2006q1 8 6 21 2 0.077
FL 2005q2 28 8 21 4 0.295
HI 1988q1 28 8 36 1 0.149
HI 2002q1 16 12 38 2 0.190
HI 2006q1 12 6 21 2 0.160
IL 2004q1 24 12 29 2 0.262

MA 1986q3 20 12 39 4 0.119
MA 2000q1 8 12 40 2 0.286
ME 1985q1 16 12 44 3 0.090
ME 2002q1 16 12 38 3 0.233
MN 1988q1 28 8 36 2 0.149
MN 2005q3 28 8 20 2 0.194
NH 1987q1 24 12 36 3 0.090
NJ 2005q4 32 6 21 2 0.388
NY 2005q1 28 10 20 3 0.388
OR 2003q1 16 12 33 3 0.115
PA 1989q1 32 4 36 2 0.104
RI 1986q3 20 12 39 3 0.194
RI 2004q1 12 12 31 3 0.154
RI 2006q1 8 6 21 3 0.096
VT 1986q3 20 12 39 4 0.090
VT 1995q1 12 6 44 2 0.118
VT 1999q4 8 12 40 2 0.190
VT 2004q1 12 12 31 3 0.160
WA 1989q1 32 4 36 1 0.149
WA 1994q1 8 10 44 1 0.153
WI 2005q2 28 8 21 4 0.262
WV 2006q3 32 4 20 1 0.136

Notes: “Pre” and “Post” are the respective pre-treatment and post-treatment window lengths.
Percent minimum wage increase is the percent increase from the pre-treatment minimum to
the maximum post-treatment minimum.

36



Table 2: Summary of treatment events for more restrictive window configurations

Minimum Window Number of donors Percent MW change

Pre- Post- Events Treated states Min. Mean Max. Min. Mean Max.

8 4 32 19 20 32.5 44 0.077 0.187 0.388
8 8 23 16 20 34.0 44 0.090 0.194 0.388
8 12 16 11 29 36.6 44 0.090 0.180 0.286
16 4 22 19 20 32.1 44 0.090 0.200 0.388
16 8 17 14 20 32.8 44 0.090 0.197 0.388
16 12 11 10 29 36.7 44 0.090 0.174 0.269
24 4 14 13 20 28.9 36 0.090 0.222 0.388
24 8 9 8 20 28.3 36 0.090 0.229 0.388
24 12 3 3 29 33.7 36 0.090 0.207 0.269
32 4 4 4 20 28.2 36 0.104 0.195 0.388

Notes: Each row describes the subset of all 32 events in Table 1 with at least the specified number of
pre- and post-treatment quarters.

Table 3: Average pre- and post-treatment RMSPE for donors, by model specification

(1) (2) (3) (4)
Employment

Pre-treatment 0.0313 0.0400 0.0370 0.0347
Post-treatment 0.0478 0.0507 0.0490 0.0472

Wage
Pre-treatment 0.7084 0.7758 0.7574 0.7356
Post-treatment 0.7911 0.7810 0.7832 0.7758

Predictors
Quarterly outcomes Y
Annualized outcomes Y Y Y
Both annualized outcomes Y Y
Industry & Other controls Y

Notes: The average RMSPE is the square root of the mean of all donors’ MSPEs across all treatment events,
for either the pre- or post-treatment period. Predictor categories are either all quarterly pre-treatment outcomes
(Quarterly), annualized pre-treatment outcomes, both annualized employment and wage pre-treatment outcomes, or
pre-treatment means of industry shares and demographic/labor market variables.
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Table 4: Donor weights and distance to treated states

Weights per donor

Donor relation to treatment Inside Outside Relative weight

Employment
Same region 0.050 0.027 1.836
Same division 0.087 0.029 3.039
Within 0 - 500 miles 0.054 0.028 1.932
Within 0 - 1000 miles 0.036 0.028 1.281

Wage
Same region 0.051 0.027 1.872
Same division 0.074 0.029 2.544
Within 0 - 500 miles 0.054 0.028 1.954
Within 0 - 1000 miles 0.039 0.026 1.491

Notes: The inside (outside) weight per donor is equal to the sum across all treatment events of
the weights assigned to donors inside (outside) the specified area, divided by the total number
of inside (outside) donors. Relative weight is the ratio of inside-to-outside weights per donor.
Distance in miles is the distance between population-weighted state centroids.
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Table 5: Employment and wage elasticities, by event

Employment Wages

Event Elasticity Rank 90% CI Elasticity Rank 90% CI

AK 2003q1 0.097 0.714 (–0.280, 0.498) 0.540 0.971* ( 0.369, 0.985)
CA 1988q3 0.198 0.763 (–0.355, 0.526) 0.083 0.658 (–1.615, 0.598)
CA 2001q1 –0.200 0.268 (–0.768, 0.398) 0.405 0.951* ( 0.008, 0.758)
CT 1987q1 –0.150 0.211 (–0.593, 0.329) 0.237 0.816 (–0.711, 0.794)
CT 2006q1 0.718 0.826 (–1.004, 2.757) –0.149 0.522 (–2.361, 0.834)
FL 2005q2 –0.129 0.435 (–0.637, 0.381) 0.095 0.870 (–0.086, 0.312)
HI 1988q1 0.312 0.763 (–0.658, 0.928) 0.805 0.921 (–1.481, 1.523)
HI 2002q1 0.149 0.775 (–0.415, 0.705) 0.117 0.800 (–0.299, 0.400)
HI 2006q1 –0.354 0.261 (–1.096, 0.676) 0.473 0.870 (–0.472, 0.978)
IL 2004q1 –0.214 0.258 (–0.661, 0.235) 0.054 0.742 (–0.328, 0.382)

MA 1986q3 –0.015 0.512 (–1.149, 0.998) 1.337 0.951* ( 0.436, 1.996)
MA 2000q1 –0.456 0.024* (–0.834,–0.157) 0.215 0.905 (–0.205, 0.513)
ME 1985q1 0.072 0.543 (–1.003, 1.496) 1.027 0.935 (–0.011, 1.982)
ME 2002q1 0.133 0.775 (–0.328, 0.588) 0.153 0.800 (–0.187, 0.384)
MN 1988q1 0.362 0.789 (–0.607, 0.979) 0.409 0.763 (–1.878, 1.127)
MN 2005q3 –0.089 0.455 (–0.762, 0.750) 0.036 0.682 (–0.292, 0.573)
NH 1987q1 0.256 0.658 (–1.070, 1.693) 1.314 0.895 (–1.528, 2.986)
NJ 2005q4 –0.056 0.478 (–0.377, 0.423) 0.254 0.957* ( 0.118, 0.476)
NY 2005q1 –0.372 0.091 (–0.726, 0.065) 0.126 0.909 (–0.049, 0.274)
OR 2003q1 –1.081 0.029* (–1.889,–0.267) 0.225 0.686 (–0.247, 1.031)
PA 1989q1 0.245 0.684 (–1.197, 2.768) 0.043 0.605 (–8.128, 1.394)
RI 1986q3 0.218 0.707 (–0.479, 0.842) 0.663 0.951* ( 0.108, 1.069)
RI 2004q1 –0.051 0.515 (–0.727, 0.679) 0.130 0.758 (–0.329, 0.777)
RI 2006q1 –0.333 0.391 (–1.719, 1.306) 0.087 0.652 (–1.693, 0.878)
VT 1986q3 0.769 0.854 (–0.742, 2.120) 0.762 0.756 (–0.441, 1.641)
VT 1995q1 –0.689 0.087 (–1.310, 0.216) –0.070 0.543 (–1.147, 0.681)
VT 1999q4 –0.022 0.476 (–0.528, 0.518) 0.506 0.976* ( 0.183, 0.990)
VT 2004q1 0.361 0.818 (–0.292, 1.065) 0.400 0.939 (–0.044, 1.024)
WA 1989q1 0.829 0.947 (–0.181, 2.595) 0.352 0.737 (–5.368, 1.297)
WA 1994q1 –0.580 0.065 (–1.393, 0.022) –0.188 0.239 (–1.022, 0.257)
WI 2005q2 0.038 0.652 (–0.533, 0.613) –0.127 0.304 (–0.330, 0.117)
WV 2006q3 –1.199 0.091 (–2.207, 0.166) –0.162 0.364 (–1.117, 0.836)

Notes: * indicates significance at the 10% level using the percentile rank of the elasticity within the event-specific
donor-based placebo distribution. Inverting this rank obtains 90% CIs.
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Table 6: Employment and wage elasticities, pooled

Hodges-Lehmann

Median elasticity Mean elasticity Mean rank Elasticity 95% CI

Employment –0.019 –0.039 0.497 –0.003 (–0.153, 0.104)
Wages 0.220 0.317 0.763*** 0.265 ( 0.174, 0.382)

Notes: Critical values for the mean percentile rank are derived from the mean of 32 uniform distributions.
* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 7: Employment and wage confidence intervals, by pre-treatment donor MSPE ratios

Donor states Donor state elasticities Treated state elasticities

MSPE Ratio Number Fraction Min Max SD Kurtosis Mean rank 95% CI

Employment
. 1039 1.000 –2.522 1.722 0.452 5.816 0.497 (–0.153, 0.104)

20 1038 0.999 –2.038 1.722 0.445 5.199 0.497 (–0.153, 0.104)
10 1033 0.994 –2.038 1.722 0.442 5.115 0.497 (–0.153, 0.104)
5 987 0.950 –2.038 1.722 0.443 5.125 0.494 (–0.161, 0.103)
2 802 0.772 –2.038 1.722 0.449 5.141 0.502 (–0.155, 0.115)

Wages
. 1039 1.000 –1.671 8.170 0.565 58.371 0.763*** ( 0.174, 0.382)

20 978 0.941 –1.671 3.439 0.426 11.969 0.774*** ( 0.186, 0.387)
10 954 0.918 –1.671 3.439 0.415 12.290 0.777*** ( 0.186, 0.387)
5 912 0.878 –1.671 3.439 0.413 12.594 0.777*** ( 0.178, 0.387)
2 759 0.731 –1.671 3.439 0.417 13.796 0.764*** ( 0.176, 0.389)

Notes: Rows show results for samples where donors limited to those with donor-to-treated MSPE ratios less than
X, where X=. indicates the full sample.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 8: Employment and wage elasticities, by minimal window length

Window length Hodges-Lehmann

Pre- Post- Events Mean elasticity Mean rank Elasticity 95% CI

Employment
. 4 32 –0.039 0.497 –0.003 (–0.153, 0.104)
. 6 29 –0.038 0.489 –0.007 (–0.161, 0.097)
. 8 23 –0.026 0.495 –0.005 (–0.165, 0.121)
. 10 18 –0.060 0.461 –0.062 (–0.242, 0.105)
. 12 16 –0.009 0.509 0.015 (–0.191, 0.161)
8 . 32 –0.039 0.497 –0.003 (–0.153, 0.104)
12 . 26 –0.014 0.533 0.038 (–0.114, 0.165)
16 . 22 0.017 0.554 0.050 (–0.099, 0.196)
20 . 18 0.061 0.559 0.048 (–0.094, 0.218)
24 . 14 0.002 0.520 0.015 (–0.153, 0.206)
28 . 11 0.013 0.559 0.047 (–0.129, 0.260)
32 . 4 –0.045 0.550 0.072 (–0.587, 0.693)

Wages
. 4 32 0.317 0.763*** 0.265 ( 0.174, 0.382)
. 6 29 0.342 0.784*** 0.267 ( 0.176, 0.384)
. 8 23 0.402 0.805*** 0.303 ( 0.184, 0.439)
. 10 18 0.446 0.832*** 0.350 ( 0.208, 0.485)
. 12 16 0.505 0.865*** 0.392 ( 0.256, 0.541)
8 . 32 0.317 0.763*** 0.265 ( 0.174, 0.382)
12 . 26 0.357 0.776*** 0.289 ( 0.168, 0.407)
16 . 22 0.379 0.776*** 0.290 ( 0.158, 0.435)
20 . 18 0.379 0.770*** 0.289 ( 0.145, 0.481)
24 . 14 0.251 0.730*** 0.188 ( 0.060, 0.358)
28 . 11 0.174 0.706** 0.173 ( 0.021, 0.319)
32 . 4 0.122 0.666 0.256 (–0.310, 0.646)

Notes: Window length of X restricts the events to the subset with a pre- or post-period greater than X quarters,
where X = . is eight pre-treatment or four post-treatment quarters. Critical values for the mean percentile rank
are derived from the mean of appropriate number of uniform distributions.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix Tables

Table A1: Extrema of the distribution of the mean of N uniformly distributed random variables

Percentile

N 0.5 2.5 5.0 95.0 97.5 99.5

1 0.005 0.025 0.050 0.950 0.975 0.995
2 0.050 0.111 0.158 0.842 0.888 0.950
3 0.103 0.176 0.223 0.777 0.823 0.896
4 0.147 0.220 0.261 0.738 0.780 0.852
5 0.182 0.249 0.287 0.713 0.751 0.819
6 0.206 0.271 0.305 0.694 0.729 0.793
7 0.227 0.288 0.320 0.680 0.712 0.774
8 0.244 0.301 0.332 0.668 0.699 0.757
9 0.258 0.312 0.341 0.658 0.687 0.743

10 0.269 0.322 0.350 0.650 0.678 0.731
11 0.280 0.330 0.357 0.643 0.670 0.720
12 0.289 0.337 0.363 0.637 0.663 0.711
13 0.297 0.344 0.368 0.632 0.656 0.703
14 0.304 0.349 0.373 0.627 0.651 0.696
15 0.311 0.354 0.377 0.623 0.646 0.689
16 0.317 0.359 0.381 0.619 0.641 0.683
17 0.322 0.363 0.385 0.615 0.637 0.679
18 0.327 0.367 0.388 0.612 0.633 0.673
19 0.331 0.370 0.391 0.609 0.630 0.669
20 0.335 0.374 0.394 0.606 0.626 0.665
21 0.339 0.377 0.396 0.604 0.623 0.660
22 0.343 0.379 0.398 0.601 0.620 0.657
23 0.346 0.382 0.401 0.599 0.618 0.654
24 0.349 0.384 0.403 0.597 0.615 0.650
25 0.352 0.387 0.405 0.595 0.613 0.647
26 0.355 0.389 0.407 0.593 0.611 0.645
27 0.358 0.391 0.408 0.591 0.609 0.642
28 0.360 0.393 0.410 0.590 0.607 0.639
29 0.363 0.395 0.412 0.588 0.605 0.637
30 0.365 0.397 0.413 0.587 0.603 0.635
31 0.367 0.398 0.415 0.585 0.601 0.632
32 0.369 0.400 0.416 0.584 0.600 0.630
33 0.371 0.401 0.417 0.583 0.598 0.628
34 0.373 0.403 0.418 0.581 0.597 0.627
35 0.375 0.404 0.420 0.580 0.595 0.625

Notes: Simulated using one million iterations of the mean of N uniformly distributed variables
on [0, 1]. 44
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