
Beating the Heat: Temperature and Spatial Reallocation
over the Short and Long-run

Christos Andreas Makridis and Tyler Ransom∗

February 24, 2021

PRELIMINARY AND INCOMPLETE, click here for updates.

Abstract

Does temperature affect real economic activity? Using the annual Current Population
Survey between 1963 and 2015, we show that there is no association between temperature
and earnings, hours, or output after controlling for time-invariant spatial heterogeneity and
time-varying demographic factors. These results are robust to five separate sources of micro-
data, different sampling horizons, functional forms, spatial measures of temperature, and sub-
sets of the data. This paper studies the relationship between temperature and productivity
across space and time. Motivated by these null results, we develop a spatial equilibrium model
where temperature can affect not only firm productivity, but also individual locational choice,
industry choice, and labor supply. After estimating the model, we use it to disentangle the
role of reallocation versus actual productivity losses in the U.S. economy between 1980 and
2015. Nearly all of the variation is driven by reallocation. We subsequently use the model to
evaluate a counterfactual climate scenario and recover a new spatial equilibrium for the U.S.
economy by 2050.
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1. Introduction

The relationship between temperature and economic development has been the subject of signifi-
cant economic inquiry dating back to Charles de Montesquieu’s Spirit of Laws that “excess heat
makes men slothful and dispirited” and more recently from Gallup et al. (1999). Integrated As-
sessment Models (IAMs) have emerged as popular tools for modeling the costs of climate change
on the aggregate economy. These studies apply general circulation models of the climate and
environment with computable general equilibrium models of the economy in order to evaluate the
effects of counterfactual policies. While they are effective at incorporating both environmental
and economic margins, they have been labeled as a black-boxes (Pindyck, 2013), containing many
parameters that have not been disciplined to micro-data in any shape or form.

This paper fills that void in understanding the relationship between temperature and pro-
ductivity—a relationship that IAMs often invoke without empirical evidence. While there is
recognition that climate fluctuations will affect economic activity, there is less evidence on how.
This paper joins an emerging literature on the economics of climate fluctuations and its effects on
real economic activity, including its effects on the quality of life (Albouy et al., 2015; Sinha and
Cropper, 2016), propensity for conflict (Hsiang and Burke, 2014; Hsiang et al., 2011; Iyigun et al.,
2016), temperament (Baylis, 2015; Lan et al., 2010), capital stock (Hsiang and Jina, 2014), mor-
tality (Deschenes and Greenstone, 2011; Barreca et al., 2016; Greenstone et al., 2017), and even
aggregate productivity (Dell et al., 2012; Deryugina and Hsiang, 2017). If the mean or standard
deviation of climate changes (as some forecasts indicate), understanding the relationship between
temperature and real economic activity will be a prerequisite to designing optimal mitigation and
adaptation policies. The primary contribution of this paper is to quantify the impact of tem-
perature on productivity by: (i) assembling the most comprehensive micro-database to date on
individual and weather outcomes, (ii) estimating a series of reduced-form relationships between
temperature and productivity, and (iii) developing a spatial equilibrium model that allows for the
endogenous reallocation of workers across locations for long-run counterfactual analysis.

Temperature can affect real economic activity through the demand or supply of labor services.
On the supply side, higher temperatures might discourage time spent outside since it makes
physical activity more uncomfortable and/or strenuous. Inferring causality, however, from these
regressions must reconcile the presence of non-random sorting based on preferences for market and
non-market goods (Tiebout, 1956; Rhode and Strumpf, 2003; Banzhaf and Walsh, 2008; Makridis,
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2014). For example, since individuals prefer colder climates over warmer ones (Albouy et al.,
2015). On the demand side, higher temperatures might affect the distribution of spatial activity.
Reallocation could be driven by either households deciding to move to another area based on
underlying preferences, or by industries shifting their demand for labor based on their exposure to
heat across locations. For example, the 1930s Dust Bowl had a significant impact on agricultural
land values, which led to a large reallocation of workers (Hornbeck, 2012).

The first part of the paper brings new evidence on the reduced-form association between
temperature and productivity by assembling micro-data from a number of sources at both the
metropolitan statistical area (MSA) and county levels, including: monthly individual-level data
from the Current Population Survey (CPS) between 1995-2015, annual individual-level data from
the CPS between 1989-2015, decadal individual-level data from the Census Bureau between
1950-2015, occupation-by-industry-level data from the census between 1950-2015, and three-digit
industry-by-metro from the Quarterly Census of Earnings and Wages (QCEW), and industry-by-
county data from the Longitudinal Household-Employer Database (LEHD) and County Business
Patterns (CBP). Remarkably, no matter how temperature is measured—in logs, levels, semi-
parametrically, or either maximum or average temperatures—temperature has no statistically
significant association in any of the datasets, conditional on controls and location fixed effects.1

Do these results imply that climate has no causal effect on real economic activity? We motivate
an alternative mechanism about the role of reallocation as an adaptation mechanism in response
to climate fluctuations in two ways. First, the null association between temperature and earnings
was not always the case. For example, Figure 12 plots the coefficients associated with regressions
of logged occupational earnings scores on maximum temperature at a state-level, conditional
on demographic controls, illustrating that the association between the two vanished by the late
1950s—precisely the era when air conditioning penetrated the marketplace (Barreca et al., 2016).
Second, long-run changes in temperature are associated with significant changes in industrial
composition. For example, Figure 2 shows that the growth in average county temperature between
1960 and 1970 is negatively correlated with the employment share of manufacturing (Panel A) and

1Our results contrast with two recent empirical exercises, such as Dell et al. (2012) in the case of countries and
Deryugina and Hsiang (2017) in the case of counties. The source of the differences with Deryugina and Hsiang
(2017) appears to be in their inclusion of a lagged value of the dependent variable. In fixed effects models, dynamic
panel regressions can produce biased estimates (Nickell, 1981). Our results indicate that there are three practical
solutions: (i) using detailed micro-data to raise the sample size and reduce the potential for bias in smaller samples,
(ii) omit the lagged dependent variable as a control, and (iii) add detailed demographic covariates as controls to
reduce the ratio of the variance between the error and the lagged dependent variable. However, this is an ongoing
issue that we are working to better understand.
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agriculture (Panel B) between 1990 and 2000. While we interpret these merely as correlations, the
fact that historical shocks have such a precise effect on future outcomes suggests that reallocation
moderates the response among households and firms to changes in temperature.2

[INSERT FIGURES 12 and 2 HERE]

The second part of our paper develops a spatial equilibrium model estimated using techniques
from Diamond (2016) to better understand the impact of temperature on the reallocation of
economic activity. While our reduced-form evidence suggests that there is no direct effect on
productivity, if climate shocks affect the spatial distribution of economic activity, then the central
issue for policymakers is to understand the areas that are likely to be most adversely affected such
that mitigation activities and transfers can be undertaken. We estimate our model using data
between 1970 and 2010 for different states and industries.3 After showing our model does a good
job characterizing the data, we use our model to conduct two quantitative experiments. First, we
use it to decompose how reallocation costs versus direct costs of temperature affect productivity.
Second, we use it to examine how changes in the distribution of temperature over the next 50
years would affect the spatial dispersion of economic activity.

Our paper is connected with two separate veins of literatures. The first literature is a series of
reduced-form contributions that examine how temperature affects real economic outcomes. Our
paper is closest to Dell et al. (2012) and Deryugina and Hsiang (2017) who use cross-country and
county data to examine the impact of temperature on per capita GDP and income, respectively.
We bring several sources of micro-data to the table and estimate similar econometric models,
finding no evidence of a negative association between temperature and earnings once demographic
characteristics and location fixed effects are introduced. Our paper is also closely related to
Albouy et al. (2015) and Sinha and Cropper (2016) who estimate a demand-side sorting model
to recover preferences over temperature. Our paper is also related with other areas of empirical
environmental economics, including the impact of temperature on conflict (Hsiang and Burke,
2014; Hsiang et al., 2011; Iyigun et al., 2016), temperament (Baylis, 2015; Lan et al., 2010), and

2The descriptive evidence suggests that a one percentage point (pp) rise in average temperature between 1960-70
is associated with a 0.63pp decline in the employment share of manufacturing and a whopping 5.60pp decline in
the employment share of agriculture between 1990 and 2000. We also found similar evidence using other decades
and looking at contemporaneous growth rates. We also found similar evidence when we work at a state-level.

3We use states rather than cities or commuting zones (CZs) in order to maintain tractability of estimation of
the model. We focus on four industries: agriculture, manufacturing, high-skilled services (e.g. finance, real estate,
administration, health care, and education), and low-skilled services (e.g. transportation, retail, and personal
services).
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capital stocks (Hsiang and Jina, 2014).
The second literature involves components of industrial organization and urban economics

that estimate demand-side preference parameters and spatial sorting models, respectively. Ever
since Berry et al. (1995), and more recently Berry et al. (2004), economists have been able to
estimate structural models containing rich heterogeneity in preferences to conduct policy-relevant
counterfactual analyses. We build specifically on a spatial equilibrium model from Moretti (2013)
and Diamond (2016) with two new features: (i) temperature as an amenity that individuals sort
on across locations, and (ii) different industries that individuals can work in and be more versus
less susceptible to temperature shocks. Our focus on temperature is connected with a broader
literature in urban economics focusing on the role of amenities and locational choice.4 Our paper
is also closely connected with Costinot et al. (2016) who develop an international trade model to
examine how climate change will affect cross-country trade flows, finding that reallocation is a
primary channel through which markets adapt to these shocks.

2. Preliminaries

2.1. Why Does Temperature Matter?
There is a detailed literature on the effects of temperature fluctuations on agriculture dating all the
way back to Mendelsohn et al. (1994). Schlenker et al. (2005) addressed a number of flaws in the
early hedonic approach by accounting for cross-sectional heterogeneity in irrigation, water prices,
and a number of other omitted variables, finding that a five degree Fahrenheit rise in temperature
and 18% rise in precipitation is associated with a $5.3-5.4 billion loss in dryland areas.5 There
is also increasing evidence that higher temperatures raise the propensity of conflict by reducing
agricultural productivity, thereby increasing resource scarcity (Iyigun et al., 2016; Hsiang and
Burke, 2014; Burke et al., 2015). This paper, however, is not about the link between agriculture

4For example, Glaeser et al. (2001) argue that continued growth in per capita incomes has accelerated cities
as centers of consumption and other amenities (e.g., climate). Rappaport (2007) also documents evidence of
an increase in the hedonic price associated with nice weather as a consumption amenity and Rappaport (2008)
subsequently shows that these spatial differences can generate substantial heterogeneity in population density. The
paper is also related to another strand of literature on the relationship between climate / geography and economic
growth (Gallup et al., 1999; Andersen et al., 2016; Michalopoulos and Papaioannou, 2013). Among two of the
most prominent examples are Easterly and Levine (2003) and Acemoglu et al. (2002) who argue that omitted
determinants of growth are highly correlated with geography and climate.

5Deschenes and Greenstone (2007) emphasized the importance of including fixed effects in these analyses to
control for additional sources of heterogeneity, but Fisher et al. (2012) shortly reconciled the controversy.
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and climate. These facts are generally already well-documented and the mechanism is straight
forward since crops are sensitive to not only extreme heat, but also volatility in climate (Burke
and Emerick, 2016; Roberts and Schlenker, 2011).

What are the potential mechanisms whereby temperature can impact aggregate productivity?6

Broadly speaking, there exist demand and supply channels. On the demand side, there are three
main ways. The first way involves the impact of temperature on preferences. Higher temperatures,
for example, might discourage time allocated to outside activities because those activities become
more strenuous and uncomfortable. In these cases, individuals’ willingness to pay for avoiding
extreme heat might rise, giving rise to changes in mobility. Sinha and Cropper (2016) provide
some of the first evidence using cross-sectional variation from the census, finding that prime-age
(older) individuals are willing to pay $518 ($1,035) for a one degree increase in winter temperatures
and $627 ($1,424) for a one degree decrease in summer temperatures. These estimates a little
greater than those found in Albouy et al. (2015) who use a Roback-Rosen framework and cross-
sectional data from the census. The second way involves affecting the relative productivity of
individual activities.7 For example, Baylis (2015) uses millions of records from Twitter and finds
a robust relationship between temperature and sentiment: higher temperatures tend to make
people more irritable. Heal and Park (2014) provide additional cross-sectional evidence on the
link between temperature and physiology, but cross-sectional estimates are inherently challenging
to interpret as causal in light of omitted variables (Deschenes and Greenstone, 2011). Graff Zivin
and Neidell (2014) use the American Time Use Survey and find that employees in industries that
are relatively “climate-exposed” tend to reduce the number of hours they work. There is also some
evidence in experimental setups that higher temperatures affects comfort, perceived air quality,
and sick building syndrome symptoms (Seppanen et al., 2006).8 A third way involves the impact
of temperature on mortality. While there was some early evidence documented in the scientific
and health literature (Grover, 1938; Curriero et al., 2002), Deschenes and Greenstone (2011) and
Burgess et al. (2014) provide more recent evidence about the link in the United States and India,
respectively. Barreca et al. (2016) also illustrate the role of adaptation in mitigation the effects

6See Heal and Park (2015) for a survey.
7As an extreme example, a leading digital media company (Captivate Network) produced a study arguing that

employee productivity and attendance declines by 20% and 19%, respectively, during summer months. These
studies, however, fail to control for even the most basic omitted variables, such as seasonality and demographics.

8An important limitation of the experimental studies is the lack of external validity. Individuals have many
adjustment mechanisms at their disposal, ranging from locating elsewhere to adjusting their schedule. What
matters, therefore, is the equilibrium response to temperature fluctuations.
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of temperature on mortality—that mortality declined by about 70% over the 20th century with
most of the gains accruing after 1960 driven by the introduction of air conditioning.

On the supply side, temperature can affect productivity on both the intensive and extensive
margins. On the intensive margin, hotter temperatures might make individuals in physically
strenuous activities (e.g., construction), especially those without strong substitutes, less produc-
tive. However, heat exposure might be thought of more broadly. Certain types of consumer
goods, for example, are less in demand in hotter climates. For example, pool repair companies
are less likely to be found in New York than in Phoenix. On the extensive margin, expectations
of permanently hotter temperatures might lead to the reallocation of firms from on geography.
In these cases, weather behaves as a shock to their inputs, much like corporate taxes affect the
profitability of firms producing in one location over another. While these supply-side effects are
clearly large in agriculture (Schlenker et al., 2005; Fisher et al., 2012; Schlenker et al., 2006; Burke
et al., 2015), there is some preliminary evidence from Somanathan et al. (2015) that weather may
have a consequential impact on firms more generally. Using a panel of firms from Compustat,
and proxying for the location of the firm using its headquarters location, Deryugina et al. (2016)
find that higher temperatures are associated with increases in both revenues and costs. Using a
panel of firms from the manufacturing sector in India, Somanathan et al. (2015) find that higher
temperatures impact employee performance with the caveat that these estimates are specific to a
developing country and a relatively manual-intensive sector. Zhang et al. (2018) also examines the
effects of temperature on total factor productivity using a decade of data among manufacturing
firms in China, finding adverse effects on output at very hot temperatures. While these differences
in results may emerge due to differences in cross-country productivity and institutions, they also
find null associations between hot temperatures and labor, which is our focus too.

The two papers that are most closely related to this one are Deryugina and Hsiang (2017)
and Costinot et al. (2016). Deryugina and Hsiang (2017) use county-level data between 1969
to 2011 and focus on characterizing the reduced-form impact of temperature on productivity,
which is proxied using county-level earnings.9 They find that every 1.8 degree Fahrenheit rise in
temperature is associated with a 1.7% decline in an individual’s productivity within a day. After
aggregating, they find that weekdays above 86 degrees Fahrenheit costs an average county $20 per

9An important assumption in Deryugina and Hsiang (2017) is that the output process each day is the same,
meaning that there is no cross-substitution or reallocation in productivity across days within a week. Since consumer
demand declines at higher temperatures (e.g., fewer people go out to spend, rather they stay indoors), then higher
temperatures are correlated with declines in output per person due to unobserved factors.
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person. Compared to their results, ours suggest that the effects of temperature are muted in the
short-run. While our exercises point to some possibilities in our diverging results, the main source
is still not clear. To this end, our robustness exercises include data from six different sources at
different levels of aggregation, geographic location, and frequency to help obviate concerns that
our null effect is not driven by measurement error or other potential confounders. Costinot et al.
(2016) focus on structurally modeling the ways in which changes in temperature might affect the
location of agricultural production. For example, if temperatures in one region become warmer,
agricultural production in that region may shift to another. However, many developing countries
may simply lack the infrastructure or resources to adapt to climate shocks (Kahn, 2005).

2.2. Data and Measurement
Repeated Individual Cross-sections.–This paper leverages a number of sources of micro-data, in-
cluding: the 1962-2015 annual Current Population Survey (CPS), the 1994-2015 monthly CPS,
and the 1900-2015 Decennial Census (with an emphasis on 1970-2015). Each are accessed through
the Integrated Public Use Microdata (IPUMS) data portal at the University of Minnesota. The
advantage of the CPS is its ability to provide high frequency micro-variation in earnings and wages
at local levels, whereas the advantage of the census is its long-run time series and large sample
size.10 We restrict our samples to full-time workers between ages 20 and 65 with over $5,000
in annual labor income and over $2 hourly wages (both deflated using the 2010 real personal
consumption expenditure index).

Individual rental rates are imputed for home owners as follows. Using self-reported housing
values, we first impute housing values for renters by multiplying their annualized rental payments
by 14. We subsequently estimate regressions of logged rental rates, which are missing for roughly
70% of the sample (home owners), on logged housing values, interacted with census division
dummies, number of children dummies (one, two, three+ with zero as the base), number of rooms
dummies (two, three, four+ with one as the base) and controls (race, age, marital status, gender).
The implied R-squared is 0.99 and the correlation between actual and predicted rental rates (for
non home owners) is 0.99.

10While the CPS was started in 1962, it was not until 1989 that an individual’s metropolitan area was tracked.
For sufficiently large metro areas, the CPS is uniquely suited to examine high-frequency within-group movements
between wages and temperature. For example, using the panel dimension of the CPS to create a new longitudinal
database that identifies individuals who moved, Nekarda (2009) estimates a bound on the bias from geographic
mobility and finds that it is quite minor, meaning that attenuation bias is an unlikely concern.
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Longitudinal County-by-industry Panel.–The paper also leverages several administrative sources
of industry-by-county data for robustness exercises, namely: the County Business Patterns (CBP),
the Quarterly Census of Earnings and Wages (QCEW), and the Longitudinal Employer-Household
Dynamics (LEHD).11 Each of them are at the three-digit industry-by-geography-level where the
geography for the QCEW is an MSA and for the CBP and LEHD is a county. The QCEW and
LEHD are both at the quarterly frequency, whereas the CBP is annual. These datasets serve as
consistent panels for investigating the effects of temperature shocks over a 25 year period.

Longitudinal County and Metropolitan Temperature Panel.–Measures of temperature and pre-
cipitation are obtained from two sources: (i) the PRISM database, which is used in ongoing work
by Deryugina and Hsiang (2017) and provided by Wolfram Schlenker, and (ii) independently ex-
tracted measures from the National Ocean and Atmospheric Administration (NOAA) at daily,
monthly, and annual frequencies.12 These data are measured as the average temperatures within
each grid (0.5 latitude × 0.5 longitude degree) from large gridded raster files. Temperature is
measured in several ways: (i) average temperature, (ii) maximum temperature, and (iii) and the
number of days within a certain duration of time (e.g., month) within a certain temperature
range (e.g., 0-15 degrees Fahrenheit). Approach (iii) has been used in recent literature to flexibly
characterize the impact of temperature on outcomes at different points of the distribution.

The Appendix details several basic descriptive statistics over the data—in particular, the extent
of the variation at monthly frequencies over the past century—and documents the cleaning and
validation procedures applied to the data.

3. Productivity’s Short-Run Invariance to Temperature

3.1. Empirical Specification
Consider the following baseline specification that relates temperature in a location j and period
t, denoted Tjt, with real economic outcomes possibly at an individual level i, denoted y:

yijt = αXjt + βDit + ψf(Tjt) + φj + λt + εijt (1)
11We also draw on the historical census records to obtain county-level population measures for weights when

appropriate: https://www.census.gov/population/www/censusdata/pop1790-1990.html.
12http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
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whereX denotes a vector of individual covariates, D denotes a vector of location covariates, f(·)
denotes an arbitrarily flexible function of temperature, and φ and λ are fixed effects on location and
time, respectively. Recent literature has began emphasizing the potential non-linearities between
temperature and real outcomes, which involves approximating f(·) in Equation 1 using a spline:

f(Tjt) =
∑
k

ψkT
k
jt (2)

T k denotes the number of days in location j and period t that fall between the range T k ∈
[T k, T k]. While the intervals on T k in Equation 2 can be be arbitrarily flexible, we follow the
literature in using 15 degrees Fahrenheit intervals, which is in the neighborhood of the norm in
the literature (Deschenes and Greenstone, 2011; Deryugina and Hsiang, 2017).

The inclusion of location and time fixed effects in Equation 1 is hugely important because of
the presence of “Tiebout” non-random sorting into locations based on preferences for non-market
goods (Tiebout, 1956); see, for example, Albouy et al. (2015) and Sinha and Cropper (2016).
To the extent fixed effects help absorb time-invariant sources of heterogeneity, it is also possible
that demographic shifts are taking place and correlated with changes in temperature. Since, for
example, temperature tends to move along the business cycle, migration flows may tend to bias the
estimated gradient since inflows and outflows will affect the equilibrium wage (Saks and Wozniak,
2011; Molloy et al., 2011). In this sense, controlling for both individual and local characteristics
helps mitigate bias arising from time-varying shocks. An additional side issue in this area is the
fact that there is often measurement error in temperature data (Aufhammer et al., 2013), as well
as the earnings data (Lemieux, 2006), which can introduce attenuation bias.

3.2. Individual-level Results
Having illustrated that county-level data do not appear to reflect a negative association between
temperature and earnings, we now turn towards individual-level data. One reason that the county-
level data (without the lagged dependent variable) may be close to zero is because it is pooling
an array of compositional effects. For example, if certain sectors are affected, but not others, then
the effects may wash out in the aggregate. Similarly, time-varying demographic shocks may be
correlated with temperature and economic development, which may bias the estimates towards
zero. The introduction of individual-level data addresses these concerns by allowing us to estimate
heterogeneous treatment effects, controlling for demographic covariates.
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While there are several sources of micro-data that are well-suited for this analysis, we begin
by presenting results using the annual Current Population Survey (CPS) between 1963 and 2015,
which contains individuals identified at a metropolitan-level. While a concern with the data is
that it samples from larger metropolitan areas, the sample weights are created to help ensure that
the data produces externally valid results. We also present and discuss results using the Decennial
Census, which contains more comprehensive coverage. Figure 4 presents the results associated
with Equation 29, conditional on a richer set of demographic controls, separately for four groups:
those with versus without a college degree, and those in manufacturing versus services sectors.13

In each case, there is not an association between temperature and earnings, which is also robust
to using personal income (rather than labor income).

[INSERT FIGURE 4 HERE]

Given that these results differ in some ways with some of the county-level data from Deryugina
and Hsiang (2017), Appendix Section 8.2.1. begins by replicating their main results on the same
sample and proceeds by examining potential sources of endogeneity, most notably through the
inclusion of a lagged dependent variable as an additional control. We show that the correlation
between mobility and lagged income likely creates an additional source of endogeneity that biases
towards finding a negative association between temperature and per capita income.

Appendix Section 8.3.1. also presents a wide array of supplementary results. First, we show
that there is also not an association with hours worked, which addresses the concern that earnings
might not be affected simply due to changes in the intensive margin of labor services in response
to temperature (see Figure 14). We also validate these results using the monthly CPS between
1994 and 2014. Second, we show a simpler set of results that simply examines the marginal effect
of a change in mean and maximum metropolitan temperatures (see Table 9). Importantly, while
there is a strong negative gradient in the cross-section, the inclusion of demographic controls cuts
it in half and the inclusion of fixed effects completely eliminates it, consisting with our concern
about demographic shifts. Third, we show that there is no evidence of lagged effects by estimating
an impulse response function with up to 10 forward variables (see Figure 16).

13Manufacturing includes both durables and non-durables sectors. Services is defined as transportation, com-
munications, utilities, retail and wholesale trade, finance, real estate, insurance, professional and management
services, and personal services, entertainment, and accommodation. Demographic controls include a quadratic in
educational attainment and age, number of children, gender, marital status, and race.
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3.3. Industry-by-location-level Results
While the individual-level results do not point towards a meaningful association between temper-
ature and earnings, one concern is that these individual-level data are fraught with measurement
error and may, therefore, attenuate the main results; see, for example, Lemieux (2006) in the con-
text of the CPS and Bound et al. (2001) more generally. Although measurement error is unlikely
to play such a large role, especially across three separate datasets (annual CPS, monthly CPS, and
Census), it is still possible. To overcome this concern, we turn towards three separate sources of
administrative data at the county-by-industry level: annualized versions of the Quarterly Census
of Employment and Wages (QCEW) between 1990 and 2014, the County Business Patterns (CBP)
between 1984 and 2014, and the Longitudinal Employer-Household Dynamics (LEHD) between
1997 and 2014. To maintain brevity, we focus on the QCEW.

Using a three-digit industry-by-county panel between 1990 and 2014, Figure 5 plots the esti-
mated coefficients associated with Equation 29 for four industries with an outcome variable set
equal to logged annual wages. Like before, there is no association between temperature and earn-
ings, even for heat-exposed industries, like agriculture, mining, utilities, and manufacturing. In
fact, while there is a decline in the gradient for three of the four sectors, there is a much flatter
gradient for the agricultural, mining, and utilities sector.

Appendix Section 8.3.2. presents a massive series of robustness exercises on the QCEW data.
First, we replicate these results using total pay as an outcome variable, recognizing that there
are other forms of compensation that might be curtailed in response to temperature shocks even
if base salary is not adjusted (see Figure 17). Second, we replicate these results using a lagged
value of the outcome variable as a control (see Figure 18). It is interesting to note that the same
endogeneity bias that arose in the earlier results with the lagged dependent variable does not arise
here.14Third, we replicate the results using completely separate temperature data collected at the
metropolitan level, rather than county, data to address the potential concern that adjustment
mechanisms take place at a broader labor market level (see Figure 19). In addition to these series
of robustness exercises with the QCEW, we also present additional results in Appendix Section
8.3.2. using the CBP between 1984 and 2014 and the LEHD between 1997 and 2014.

[INSERT FIGURE 5 HERE]
14A series of diagnostics suggests that greater disaggregation mitigates the omitted variables bias problem that

would result if the aggregation were at a county-level. In particular, migration flows at the county-level are less
correlated with industry-by-county changes in wages and total pay.



13

3.4. Direct Productivity Measurements
While all these results provide evidence that there is not a reduced-form relationship between
temperature and earnings, it is also possible that earnings is a poor proxy for actual productivity.
To address this shortcoming, we turn towards recent data from the BEA on metropolitan GDP
between 2001 and 2015. Appendix Section 8.3.2. presents additional evidence (see Figure 20) on
the lack of a relationship between temperature and GDP when using the semiparametric measure,
but Figure 6 below turns towards a similar characterization. In particular, it shows that there
is an economically significant, but fairly imprecise, relationship between temperature and GDP
concentrated in the agricultural and mining sectors. These results are consistent with evidence on
the response of crop yields to temperature shocks (Schlenker et al., 2006; Schlenker and Roberts,
2009). However, the gradients decline in magnitude when weighting by metropolitan population
since agriculture and mining activities are concentrated in less populated areas.

[INSERT FIGURE 6 HERE]

3.5. Motivating Evidence of Long-run Effects
The lack of a direct and contemporaneous effect of temperature on earnings is not (on its own)
evidence that it has no impact on productivity. Indeed, climate may affect the spatial allocation
of activity—that is, where an individual or firm decides to locate. Certain areas, for example,
might be more productive for certain firms or individuals, or they simply might be preferable
due to other idiosyncratic taste-related reasons. In either case, locational choice is an important
mechanism that the earlier reduced-form results are not able to capture.

To measure the potential role of reallocation, we use decadal county-level data between 1970
and 2010 and allow for both medium and short run effects to impact median family income, which
is used as a proxy for productivity. Following Iyigun et al. (2016) who implement a variant of this
strategy, we estimate regressions of the form:

∆10yct = α∆10Dct + ψ∆10 lnTct + ζ∆20 lnTct + ξ(∆10 lnTct ×∆20 lnTct) + ηc + λt + εict (3)

where y denotes family income, D denotes a vector of demographic controls, T denotes tem-
perature, η and λ denote fixed effects on county and year, and ∆τ denotes a growth rate operator
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for τ years, i.e., ∆10xct = (xct − xct−10)/xct−10 and ∆20xct = (xct−10 − xct−20)/xct−20. While a
special case of Equation 3 is simply a long-run first-differenced regression where ζ = ξ = 0, here
we allow for long-run temperature growth to affect family income, together with its interaction
with medium-run temperature growth. In this sense, Equation 3 allows for the possibility that a
sustained period of temperature growth can adversely affect productivity even more than if it is
just a particular decade that is warmer than usual.

How should the parameter estimates be interpreted in light of the potential for adaptation?
First, when ψ < ζ, hotter temperatures might allocate individuals from one location to another.
For example, individuals might reflect on growing temperatures and decide to move elsewhere.
Second, when ξ > 0, hotter temperatures two decades prior are less costly based on actions taken
in the prior decade. For example, individuals might reflect on growing temperatures and undertake
mitigation activities today that reduce the costs of temperature shocks in the next decade.15

Table 1 documents these results. Columns 1 and 2 present a simplified version of Equation 3
where the 20-year growth rate and interaction with the 10-year growth rate is not included. Both
suggest that there is a statistically significant and strong negative relationship between increases
in temperature and family income, which offers a different perspective from the results presented
earlier. Not surprisingly, growth in population, marital status, and the share of college graduates
are associated with large increases in income with and without county and year fixed effects. In
contrast, increases in the growth rate of unemployment are associated with declines in income.

While the negative gradient on temperature might appear to offer a counter perspective to
the earlier results, the remaining columns in Table 1 allow for a more nuanced set of adaptation
mechanisms. For example, turning towards columns 5 and 6, which present estimates of Equation
3 with and without population weights, there is a negative association between 10-year tempera-
ture growth rates, but a positive association between 20-year temperature growth rates and the
interaction term. Since these data are roughly a complete census of the population, we focus on
the unweighted results as the baseline. In this sense, a one percentage point rise in the 10-year
temperature growth rate is associated with a direct 0.78 percentage point (pp) decline in the
growth rate of family income, whereas a comparable rise in the 20-year temperature growth rate
is associated with a 1.22pp rise in the growth rate of family income.

While the fact that ζ > ψ is consistent with the notion that individuals adapt, potentially
15Compared to Iyigun et al. (2016), these signs are flipped since they are looking at a negative amenity (conflict),

whereas we are looking at a positive amenity. Even holding fixed the signs, these results would be consistent with
“intensification”, which is good in the setting of productivity as an outcome variable.
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through mitigation activities, what is especially remarkable is the consistency and magnitude
of the interaction effect between 10-year and 20-year growth rates in temperature. Despite the
large coefficient estimate on the interaction, the mean level is actually quite small, and thus must
be scaled to have a realistic interpretation. Since the mean of ∆10T is 0.0055pp and the mean
of ∆20T is 0.0072pp, the product of the two is roughly 0.000012pp, or 0.0012 percent, which
makes the mean effect of 38 roughly 0.04 percent (= 38 × 0.00122)—comparable to the other
elasticities. The fact that the interaction is robustly positive is consistent with the presence of
reallocation of economic activity from hotter areas to more temperature areas. Finally, Table 1
shows that not only are the medium-run effects of temperature shocks larger in areas with high
shares of agriculture and mining—a significant elasticity of -1.44 versus an insignificant elasticity
of 0.30—but also the long-run adaptation and reallocation effects are larger—an elasticity of 55
versus 21. In this sense, areas with more exposed industrial sectors reallocated more heavily due
to the greater adverse effects they may have faced.

[INSERT TABLE 1 HERE]

4. A Spatial Equilibrium Sorting Model

This section introduces a spatial equilibrium model for inferring the valuation of temperature
using information on housing rents, wages, and population. While the model builds upon the
canonical Rosen (1974) and Roback (1982) sorting models, we develop extensions to Moretti (2013)
and Diamond (2016) by introducing sectoral heterogeneity and climate amenities into a general
equilibrium structure. Incorporating both these features is important since they allow for climate
to affect not only productivity directly through firm-side effects, but also indirectly through the
sorting patterns of households (which feed back into firm optimality conditions). Several recent
contributions have pointed towards sorting based on climate amenities as an important mechanism
(Chen and Rosenthal, 2008; Albouy et al., 2015; Sinha and Cropper, 2016). We do not, however,
allow for search frictions and intersectoral linkages as in Beaudry et al. (2012).

4.1. Technology
Suppose that each location, indexed by j, contains a unique composition of four sets of industries,
indexed by k ∈ {A,M, S,B} for agriculture, manufacturing, services, and business with sectoral
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production functions that combine capital and labor:

Yjkt = N θk
jktK

1−θk
jkt exp(zjkt) (4)

where z denotes total factor productivity that is decomposed into:

zjkt = αkTjt + ujkt (5)

where T denotes the temperature (e.g., average) in location j and u denotes idiosyncratic variation
in productivity. Under the assumption of perfect competition, then the equilibrium demand for
labor and capital is given by

wjkt = θkN
θk−1
jkt K1−θk

jkt exp(zjkt) (6)

κt = (1− θk)N θk
jktK

−θk
jkt exp(zjkt) (7)

where the assumption on capital is that capital markets are frictionless and can be supplied
elastically at a price κ across all cities. Substituting out the level of capital, the logged county-
level demand curves for labor are given by:

lnwjkt = ct + θk lnNjkt + αkTjt + ujkt (8)

ct = ln
θk

(
1− θk
κt

)(1−θk)/θk
 (9)

which means that Yjkt = wjktNjkt/θk. It follows that the aggregate production function can be
written as follows:

Yjt = exp(zjt)
[∑
k

χk(wjktNjkt/θk)ρ
]1/ρ

(10)

wjkt = exp(zjt)Y 1−ρ
jt θkN

θk
jkt exp(−αjTjt))ρ−1N

(θk−1)
jkt exp(−αjTjt) (11)
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which can be re-written after taking logs as

lnwjkt = (1− ρ) ln Yjt + (θkρ− 1) lnNjkt − αjTjt + zjkt (12)

where z can be decomposed into a set of time-varying covariates (e.g., educational attainment,
age) and a permanent fixed effect

zjt = βXjt + φj + λt + εjt (13)

where E[wkjt|εjt, Xjt, φj, λt] = 0 must hold in order to consistently recover the coefficient estimates
associated with each of the right hand side variables. The equilibrium wage equation shows that
temperature can affect productivity in two ways: directly by influencing an industry’s productivity
of labor and indirectly by influencing aggregate output through the elasticity of substitution across
sectors (governed by ρ).

Before continuing, it is useful to take stock of several assumptions. The first is the abstraction
of capital. Since the analysis is conducted over decades, perfect mobility of capital is a reasonable
assumption, meaning that introducing capital in an additively separable way would leave the
labor demand equations unaltered. We also allow the factor shares on labor to vary by industry.
Moreover, to our knowledge, there is no available micro-data on capital at a metro-by-industry level
that would enable us to explicitly incorporate it in a data-driven way. The second is the abstraction
of additional industries. However, the four that are included is a relatively parsimonious set
given data constraints and the available frontier of knowledge on structural transformation, which
emphasizes the shift from agriculture to manufacturing to services (Herrendorf et al., 2014). The
third is the parametric structure on temperature. Since the effects of temperature may vary
depending on the units (e.g., Fahrenheit versus Celsius), taking logarithmic transformations can
generate coefficient estimates that are not fully comparable (see Hsiang (2016)). The specification
here allows for temperature to reduce productivity, albeit in a somewhat parametric form.

4.2. Preferences and Labor Supply
Individuals, denoted by i, also make decisions about where to locate by choosing the location that
offers the highest utility. Preferences are Cobb-Douglas over a local good, denotedM , with a price
Rjt, a national good, denoted O, with a price Pt, and location-specific temperatures T such that
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the representative household maximizes utility:

max
M,O

{
ln(M ζ) + ln(O1−ζ) + gi(Tjt)

}
(14)

subject to a budget constraint:

PtO +RjtM = W k
jt (15)

where 0 ≤ ζ ≤ 1 denotes the relative preference (and share of income) for the national good
over the local good, and g(·) denotes an arbitrarily flexible functional form over temperature and
allows for individual heterogeneity in the preferences for temperature. The implied indirect utility
function is given by

Vijt = ln
(
W k
jt

Pt

)
︸ ︷︷ ︸

wkjt

− ζln
(
Rjt

Pt

)
︸ ︷︷ ︸

rjt

+ gi(Tjt) (16)

The demand for local goods is given by:

Dijt = ζW k
jt/Rjt (17)

Given our indirect utility function in Equation 16, we simply need to specify a functional
form for temperature and take our preferences to the data. We allow for temperature to flexibly
affect locational choice through both mean and distributional channels, decomposing residual
variation of preferences into location and industry fixed effects, respectively denoted ξj and ξk,
and an idiosyncratic component, denoted εijkt, which is distributed with an extreme value type I
distribution as in McFadden (1973):

vijkt = (wijkt − ζrjt) βw + ηikT
mu
jt + πikT

sd
jt + βstikx

st
j + βdivik x

div
j + ξj + ξk + εijkt

= βixijkt + βstikx
st
j + βdivik x

div
j + ξj + ξk + εijkt (18)

where wijkt is the individual’s expected log earnings for working in location j and industry
k (estimated from a Mincerian wage regression), rjt denotes a location’s logged median housing
values, and Tmu and T sd denote the mean and standard deviation of logged temperature within a
location; x is simply short-hand for all these. xst and xdiv are indicators for if an individual was
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born in the same state or Census division as location j. Including these accounts for additional
important determinants of location choice as shown in the literature on internal migration in the
United States (Kennan and Walker, 2011; Bishop, 2012; Diamond, 2016; Ransom, 2018). What
is essential to Equation 18 is that we allow for rich heterogeneity in the underlying preference
parameters, specifically η and π since different types of individuals will be more versus less vulner-
able to temperature fluctuations (e.g., older versus younger). We accomplish this by estimating
the preference parameters on individual data in a similar fashion as Diamond (2016).16

4.3. Housing Supply
Housing prices vary by location and capitalize the value of both housing costs and the price of local
market goods and services (Rosen, 1974). Following Diamond (2016), developers use construction
materials (“construction costs”) and land (“land costs”) order to produce a homogeneous housing
good that they sell equal to their marginal costs, parameterized as:

Rjt = ιtMC(CMjt, LCjt) (19)

where ι is the interest rate. Houses are owned by landlords who rent housing to their local
residents. From Equation 17, land costs are a function of the aggregate demand for local goods.
When wages rise of prices for the local good fall, the demand for the local good rises, which in
turn impacts the demand for housing. Following Diamond (2016), these housing supply equations
are specified as:17

lnRjt = ln ιt + ln(CMjt) + γ ln(HDjt) (20)

HDjt =
∑

k∈{A,M,S,B}
Nk
jt

ζW k
jt

Rjt

(21)

16We estimate our model on decennial Census data from 1970-2000 and the 2010-2014 ACS, all provided by
Ruggles et al. (2018). We restrict attention to household heads who are working full-time full-year and are between
the ages of 25–55, and who live in the contiguous 48 states.

17The setup here differs slightly from Diamond (2016) who allows for heterogeneity in the housing supply regula-
tion across metropolitan areas. However, we focus on a different layer of aggregation, but control for these factors
using location fixed effects.
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where HD denotes the aggregate demand for the local good. We use data from the Lincoln
Institute to measure construction costs, which are available for 46 metropolitan areas.18 We
crosswalk into economic areas and subsequently impute the remaining construction costs using
demographic characteristics across these locations.

4.4. Equilibrium
The equilibrium is defined by a sequence of wages and rents, {wjkt, rjt} with employment levels
{Njkt} such that:

• The demand for workers in industry k equals the supply of those workers:

Njkt =
∑
i∈jk

exp(δijkt)∑
i′∈jk exp(δijkt)

(22)

lnwjkt = (1− ρ) ln Yjt + (θkρ− 1) lnNjkt − αjTjt + zjkt (23)

• The demand of housing equals the supply:

lnRjt = ln ιt + ln(CMjt) + γj ln(HDjt) (24)

HDjt =
∑

k∈{A,M,S,B}
Njkt

ζW k
jt

Rjt

(25)

• Indirect utilities are given by

δijkt = wjkt − ζirjt + ψiDjt + ηiTjt +
M∑
m=1

ηmi d
m
jtTjt + ξjkt (26)

18http://datatoolkits.lincolninst.edu/subcenters/land-values/metro-area-land-prices.asp
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4.5. Estimation and Identification
We estimate the model in two stages. First, we recover preference estimates via maximum like-
lihood estimation of a conditional logit model. We then combine our preference estimates with
estimates of labor demand and impose the equilibrium conditions via GMM (Berry et al., 2004).
We provide further details in the Appendix.

5. Quantitative Evaluation

5.1. Parameter Estimates and Model Fit
Table 6 begins by presenting a measure of model fit to validate our simulation results. We find a
close correspondence between the data and model, although we tend to overestimate the manufac-
turing employment share, but underestimate the shares in business and services. Table 3 presents
similar results across states. Overall, the choice probabilities, however, fit the data quite well.

We now present our estimates for the underlying wage parameters in Table 4. Our first specifi-
cation contains demographic characteristics and fixed effects on year, industry, and state, whereas
our second specification adds in state by industry fixed effects. We defer to the latter because it
controls for changes in structural transformation that could be correlated with individual wages.

Not surprisingly, we find statistically significant and positive associations between GDP and
wages, which reflects not only an exogenous causal link, but also likely endogeneity in the allocation
of labor. While we find positive gradients on employment in each sector in the first specification,
we find a negative association on services employment in the second specification. The negative
association could reflect, at least in part, Baumol’s cost disease, which characterizes settings when
a less productive sector in an economy expands and begins reducing aggregate GDP.

Turning towards temperature, we find a positive association between it and wages, but a
negative association between its square and wages. We also find a positive association between
the volatility of temperature and wages. These patterns may reflect the presence of compensating
differentials: wages are higher in hotter areas because they are a disamenity to households who
demand higher wage compensation.

Table 5 subsequently presents estimates associated with our preference parameters. We include
a detailed set of interactions between temperature and demographic characteristics to allow for
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greater heterogeneity in the taste for climate amenities, time-invariant location amenities, and
time-invariant industry amenities.

[INSERT TABLE 4 HERE]

[INSERT TABLE 5 HERE]

5.2. The Long-run Effect of Temperature
Having estimated and validated our model, we now explore the effects of long-run changes in
temperature on U.S. economic activity, specifically wages, GDP, and employment across sectors.
Given our parameters, we simulate our model under the assumption that state-level temperature
remained at 1970s levels for every subsequent decade—that is, we obtain counterfactual predictions
under the assumption that temperature remained invariant from 1970 onwards.

Figure 7 summarizes one of our exercises. We plot the actualy difference in average temperature
across states between 2010 and 1970 with the counterfactual change in state employment shares,
which is obtained by holding fixed the 1970 distribution of temperature. We see a strong correlation
between the two series: a 10 degree increase in actual temperature between 1970 and 2010 is
associated with a 1.7pp rise in counterfactual state population shares. Although the comparison of
the two series may seem counterintuitive, these results are sensible given our parameter estimates:
since individuals dislike hotter and more volatile temperatures, shutting down the increase in
temperature means that more people would have moved to the states (in the counterfactual) that
(in the actual) became hotter.

[INSERT FIGURE 7 HERE]

5.3. Disentangling Demand and Supply Factors
While our parameter estimates suggest that changes in the demand for labor are not quantita-
tively important for explaining the observed patterns, we can more formally test our intuition by
simulating our model under counterfactuals where we shut down the two channels sequentially.
That is, we can assume that there is no link between temperature and output in the production
function, or that there is no link between temperature and residential sorting.
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Our findings indicate that labor supply is more responsive to changes in temperature than is
productivity. We examine this by comparing the result of Figure 7 (where we shut down tempera-
ture’s effect on labor reallocation) with the result of Figure 8 (where we shut down temperature’s
effect on productivity as measured by wages). In Figure 7 we measure an increased inflow of labor
supply of 0.17% for each degree increase between 1970–2010. In Figure 8, we measure a decrease
in productivity of 0.03% for each 1970–2010 degree increase.

5.4. Projecting the Effects of Climate Change
Using state-of-the-art climate projection models, we can obtain state-level projections for temper-
ature by 2099 from the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-
DCP30) dataset (https://cds.nccs.nasa.gov/nex/) and simulate our model under that new
distribution.19 We specifically focus on the moderate (“stabilization”) scenario because it is a
more likely outcome, according to climate researchers.

6. Conclusion

Integrated Assessment Models (IAMs) have become routine tools for evaluating the costs of climate
change and counterfactual environmental policies. However, they impose an important assumption
on the relationship between temperature and aggregate productivity. Using an array of individual
and industry datasets covering multiple decades, this paper evaluated the empirical content of this
assumption by examining the effect of temperature fluctuations on earnings, weekly wages, hourly
wages, and other measures of productivity. Understanding the relationship between temperature
and productivity comes at an important time as emerging environmental models forecast increasing
weather fluctuations and higher temperatures in the years ahead.

19The dataset provides data on minimum and maximum temperature at a monthly time-step mapped to
a 30 arc-second (1kilometer) grid. Version 5.0 of the Community Atmosphere Model - Community Earth
System Model (CESM-CAM5) (http://www.cesm.ucar.edu/models/cesm1.0/cam/) was used for deriving the
temperature values in 2099. In addition, the Representative Concentration Pathway (RCP) 6.0 was selected.
RCP 6.0 is characterized as a stabilization scenario where greenhouse gas emissions stabilize shortly after 2100
(https://skepticalscience.com/rcp.php?t=3). The data was downloaded for the period 2096–2099 for the
continental USA via a climate data portal https://esgf.nccs.nasa.gov/search/nex-dcp30/. We used the
ncdf4, raster, rgdal and maptools libraries in R. The raw data (in NetCDF format) was converted to a spatial
points layer – where each point was placed at the center of the grid cell and given the underlying attribute of
interest: tasmin and tasmax. A shapefile of USA states was overlaid over the point data and used to match the
points to individual states. The temperature values were extracted, averaged per state, and converted from Kelvin
to Fahrenheit.

https://cds.nccs.nasa.gov/nex/
http://www.cesm.ucar.edu/models/cesm1.0/cam/
https://skepticalscience.com/rcp.php?t=3
https://esgf.nccs.nasa.gov/search/nex-dcp30/
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The results suggest that temperature is not statistically or economically associated with any
of these measures of productivity after controlling for time-invariant differences across geography
and time-varying demographic differences. Our results are robust to different functional forms and
inclusion of dynamic effects. Our empirical setting offers several important advantages over earlier
work. First, because the granularity of our data is at the individual-level, we are not only able
to leverage more cross-sectional variation, but also control for differences in the composition of
the labor force within narrow geographies over time. These compositional differences account for
much of the variation in the unconditional correlation between temperature and earnings. These
mobility patterns are also correlated with temperature, which generates downwards bias in prior
estimates. Second, using micro-data on consumption expenditures, we show that the cyclicality
of product demand coincides with the seasonal cycles of temperature fluctuations. In this sense,
just as temperature is beginning to cool down in many areas, consumer spending rises, generating
downwards bias in prior estimates.

While we have worked hard to create a simultaneously tractable and realistic model that cap-
tures the general equilibrium effects of temperature fluctuations, we have abstracted from a number
of potentially interesting and important factors. For example, we have abstracted from technolog-
ical change, which is important for understanding not only output growth over the long-run, but
also industrial composition (Kongsamut et al., 2001; Ngai and Pissarides, 2007). Second, we have
abstracted from other spatial amenities, which are important for understanding residential choice
(Diamond, 2016). While we do not think that either condemn the implications of our analysis,
future work should continue using additional micro-data to discipline more realistic models of
the economy and environment. Adding additional structure will not only help separate between
selection versus real effects associated with climate fluctuations, but also reveal the mechanisms
through which individuals and geographies adapt to climate fluctuations.
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Figure 1: Changes in the Relationship between Temperature and Productivity, 1900-2010
Notes.–Sources: Census Bureau and NOAA. The figures plot the estimated coefficient from a regression of logged annual labor
income at the occupation-level on average maximum temperature (within a month) at the state-level interacted with year fixed
effects. 1900 is the omitted group. Controls include a quadratic in age and educational the fraction of people who are male, white,
black, and married.Standard errors are clustered at the state-level.
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Figure 2: Growth in Average Temperature (1960-1970) and Sectoral Employment Shares in
Manufacturing and Agriculture (1990-2000)
Notes.–Sources: Census Bureau (SocialExplorer) and PRISM. The figure the growth in average temperature between 1960 and 1970
with the growth in the employment share of manufacturing and agriculture between 1990 and 2000 for each county. Observations are
weighted by county population and standard errors are clustered by county.
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Figure 3: (Average Daily) Temperature and Per Capita Income / Farm Income
Notes.–Sources: PRISM and BEA regional data, 1970-2014. The figure plots the coefficients associated with regressions of logged county
per capita income and logged county farm earnings on counts of the days in different temperature bins (based on average daily) and
precipitation (as well as their one-year lags), conditional on county and year fixed effects. The difference between the specifications is
that two contain lagged values of the outcome variable as additional controls to allow for dynamic effects. Observations are unweighted
by county population. The sample is restricted to counties with at least 340 days of temperature records observed.
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Figure 4: Semiparametric Response of Earnings to Temperature, 1963-2015
Notes.–Sources: NOAA, Current Population Survey (CPS) from 1963-2015. The figure reports the coefficients associated regressions
of logged earnings (deflated using the 2010 personal consumption expenditure index) on bins for the number of days in a year that fall
within the corresponding bin (e.g., number of days in a year below zero degrees Fahrenheit), which is unique at the metropolitan level.
Controls include: a quadratic in both educational attainment and age, number of children, gender, marital status, and race. Standard
errors are clustered at the metropolitan level (2013 OMB codes) and observations are weighted by the survey sample weights.



34

-.3
-.2

-.1
0

.1
.2

gr
ad

ie
nt

 x
 1

00

be
low

 0
0-1

5
16

-30
31

-53
54

-59
60

-70
71

-84

ab
ov

e 8
5

days w/in year (temp bin)

agriculture, mining, utilities

0
.1

.2
.3

.4
gr

ad
ie

nt
 x

 1
00

be
low

 0
0-1

5
16

-30
31

-53
54

-59
60

-70
71

-84

ab
ov

e 8
5

days w/in year (temp bin)

manufacturing

0
.0

5
.1

.1
5

.2
gr

ad
ie

nt
 x

 1
00

be
low

 0
0-1

5
16

-30
31

-53
54

-59
60

-70
71

-84

ab
ov

e 8
5

days w/in year (temp bin)

trade, education, other

0
.0

5
.1

.1
5

.2
.2

5
gr

ad
ie

nt
 x

 1
00

be
low

 0
0-1

5
16

-30
31

-53
54

-59
60

-70
71

-84

ab
ov

e 8
5

days w/in year (temp bin)

information, FIRE, professional

Figure 5: Semiparametric Response of Industry Earnings to Temperature, 1990-2014
Notes.–Sources: PRISM and Quarterly Census of Employment and Wages from 1990 to 2014. The figure reports the coefficients
associated regressions of logged three-digit industry-by-county annual wages (deflated using the 2010 personal consumption expenditure
index) on bins for the number of days in a year that fall within the corresponding bin (e.g., number of days in a year below zero degrees
Fahrenheit), precipitation, and their lags, conditional on county, three-digit NAICS, and year fixed effects. Standard errors are clustered
at the county-level. All observations are weighted equally.
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Figure 6: The Effects of Temperature on Metropolitan-by-Industry Gross Domestic Product
Notes.–Sources: BEA and NOAA, 2001-2015. The figure reports the coefficients associated with regressions of logged
metropolitan-by-industry GDP on logged average temperature, conditional on metropolitan and year fixed effects. Standard errors
are clustered at the metropolitan level.
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Table 1: Long-run Differences and Evidence of Adaptation to Temperature

Dep. var. = 10-year growth rate in county average family income
All All All All All All LowAgMining HiAgMining

10-∆ temperature -2.76∗∗∗ -.87∗∗∗ -4.09∗∗∗ -3.00∗∗∗ -.78∗∗∗ -.85∗∗∗ .30 -1.44∗∗∗
[.21] [.14] [.25] [.34] [.18] [.24] [.25] [.26]

20-∆ temperature -.57∗∗ -.91∗∗ 1.22∗∗∗ .39 1.33∗∗∗ 1.13∗∗∗
[.23] [.41] [.15] [.27] [.20] [.21]

interaction 141.22∗∗∗ 107.31∗∗∗ 38.03∗∗∗ 36.08∗∗∗ 21.77∗∗∗ 55.23∗∗∗
[9.25] [9.31] [6.19] [8.44] [6.21] [9.35]

10-∆ precipitation -.10∗∗∗ .04∗∗∗ -.13∗∗∗ -.02 .02 .00 .05∗∗∗ -.04∗∗
[.02] [.01] [.02] [.04] [.01] [.02] [.02] [.02]

10-∆ population .17∗∗∗ .12∗∗∗ .16∗∗∗ .06∗∗∗ .11∗∗∗ .07∗∗ -.00 .23∗∗∗
[.01] [.03] [.01] [.02] [.03] [.03] [.03] [.05]

10-∆ marriage 1.68∗∗∗ .44∗∗∗ 1.67∗∗∗ 1.67∗∗∗ .46∗∗∗ .57∗∗∗ .48∗∗∗ .35∗∗∗
[.11] [.05] [.10] [.09] [.05] [.09] [.08] [.06]

10-∆ unemployment -.02∗∗∗ -.03∗∗∗ -.02∗∗∗ -.06∗∗∗ -.03∗∗∗ -.04∗∗∗ -.04∗∗∗ -.03∗∗∗
[.00] [.00] [.00] [.01] [.00] [.00] [.01] [.01]

10-∆ college .32∗∗∗ .06∗∗∗ .30∗∗∗ .45∗∗∗ .06∗∗∗ .14∗∗∗ .14∗∗∗ .04∗∗
[.03] [.01] [.03] [.02] [.01] [.02] [.02] [.02]

10-∆ white .25∗∗∗ .51∗∗∗ .23∗∗∗ -.13∗∗ .47∗∗∗ .31∗∗∗ .59∗∗∗ .38∗∗∗
[.05] [.04] [.05] [.06] [.04] [.05] [.07] [.05]

R-squared .83 .94 .84 .91 .94 .97 .96 .93
Sample Size 12381 12381 12381 12381 12381 12381 5894 6487
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Weights No No No No No Yes No No
Year FE No Yes No No Yes Yes Yes Yes
County FE No Yes No No Yes Yes Yes Yes

Notes.–Sources: NOAA and Census Bureau, 1960-2010. The table reports the coefficients associated with regressions of 10-year
growth rates in family income on 10-year growth rates in average temperature, 20-year growth rates in average temperature,
their interactions, conditional on 10-year differences in the control variables. Controls include: precipitation, semiparametric bins
on the age distribution, race, male, marital status, college attainment, population, and the unemployment rate. Weights refers to
the use of population weights. LowAgMining and HiAgMining refers to whether the county has at least 7% of its labor force
working in the agriculture or mining sectors. Standard errors are clustered at the county-level.

Table 2: Model Fit: Industry shares (%)

Industry Data Model
Agriculture 2.9318 2.5936
Manufacturing 30.6759 33.0660
Business 33.0485 31.4581
Services 33.3438 32.8814

Notes.–“Data” refers to our data; “Model” refers to implied average choice probabilities using the estimates of the individual
preference model.
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Table 3: Model Fit: State shares (%)

State Data Model State Data Model
AL 1.5859 1.5127 MT 0.2873 0.2589
AZ 1.5260 1.6435 NE 0.6592 0.5923
AR 0.8758 0.7709 NV 0.6196 0.7034
CA 9.9445 10.2835 NH 0.4913 0.4874
CO 1.6638 1.6680 NJ 3.1781 3.4080
CT 1.3603 1.4514 NM 0.5268 0.4905
DE 0.2949 0.2871 NY 6.8754 7.0920
DC 0.3066 0.2990 NC 2.9773 2.7670
FL 5.0567 5.0828 ND 0.2175 0.1995
GA 2.9633 2.8790 OH 4.6460 4.6140
ID 0.4057 0.3885 OK 1.1568 1.0632
IL 4.8725 5.0023 OR 1.1487 1.1126
IN 2.5036 2.4698 PA 4.8027 4.8315
IA 1.1595 1.0985 RI 0.3872 0.3667
KS 1.0325 0.9696 SC 1.4310 1.3024
KY 1.4341 1.3343 SD 0.2454 0.2063
LA 1.5111 1.4609 TN 2.0848 1.9283
ME 0.4566 0.4139 TX 7.3558 7.4962
MD 2.2019 2.3225 UT 0.7295 0.7339
MA 2.4536 2.5199 VT 0.2233 0.1964
MI 3.7324 3.8669 VA 2.7413 2.7672
MN 1.8826 1.9074 WA 2.0132 2.0772
MS 0.9001 0.7904 WV 0.6376 0.5890
MO 2.1222 1.9967 WI 2.1181 2.0931

WY 0.1999 0.2028
Notes.–“Data” refers to our data; “Model” refers to implied average choice probabilities using the estimates of the individual
preference model.
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Table 4: Structural Wage Estimates

Variable (1) (2)
log GDP 0.158*** 0.219***

(0.002) (0.002)
log employment (agriculture) 0.023*** 0.034***

(0.001) (0.002)
log employment (manufacturing) 0.017*** 0.000

(0.000) (0.001)
log employment (business) 0.035*** 0.071***

(0.000) (0.001)
log employment (services) 0.060*** -0.043***

(0.001) (0.001)
Average temperature 0.035*** 0.021***

(0.001) (0.001)
Avg temperature squared / 100 -0.024*** -0.014***

(0.001) (0.001)
Std Dev temperature 0.025*** 0.019***

(0.001) (0.001)
ρ 0.842 0.781

(0.002) (0.002)
θ agriculture 1.287 1.269

(0.074) (0.042)
θ manufacturing 1.280 1.226

(0.073) (0.041)
θ business 1.301 1.317

(0.074) (0.042)
θ services 1.260 1.225

(0.072) (0.040)
N 7,400,291 7,400,291
Demographic characteristics Yes Yes
Year fixed effects Yes Yes
Industry fixed effects Yes
State fixed effects Yes
State-Industry fixed effects Yes

Notes.–Sources: 2% sample of the 1970 Census (Form 1 State and Form 2 State samples), 5% samples of 1980, 1990, and 2000
Censuses, and 2010–2014 1% samples from the American Community Survey. “Demographic characteristics” includes dummies for
highest degree attained, race dummies, gender dummy, and a cubic in age. All individuals are household heads.
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Table 5: Household Preference Estimates

Variable (1)
log(wage) 1.0671
log(rent) -0.1003
Avg temperature -0.0389
Avg temperature × college 0.0228
Avg temperature × non-white 0.0063
Avg temperature × age ≥ 40 -0.0056
Avg temperature × female 0.0243
(Avg temperature)2 0.0004
(Avg temperature)2 × college -0.0002
(Avg temperature)2 × non-white -0.0001
(Avg temperature)2 × age ≥ 40 0.0000
(Avg temperature)2 × female -0.0002
SD(temperature) 0.0337
SD(temperature) × college -0.0107
SD(temperature) × non-white -0.0152
SD(temperature) × age ≥ 40 -0.0024
SD(temperature) × female -0.0190
Born in state 4.5447
Born in state × college -0.8003
Born in state × non-white -0.1589
Born in state × age ≥ 40 -0.1353
Born in state × female -0.0354
Born in division 0.0550
Born in division × college -0.0651
Born in division × non-white 0.1681
Born in division × age ≥ 40 -0.0189
Born in division × female -0.0390
industry FE Yes
industry-demographic interactions Yes
state FE Yes
state-demographic interactions Yes
N 222,083

Notes.–Sources: NOAA and Census Bureau, 1970-2014. Demographics include college degree dummy, non-white dummy,
age≥ 40 dummy, and gender dummy.
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Figure 7: 2010 - 1970 Actual Temperature with Counterfactual Population Change
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Table 6: 1970 temperature counterfactual wages by industry

Industry ∆w
Agriculture -.0064
Manufacturing -.0053
Business -.0063
Services -.0061
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Figure 9: 1970–2010 change (◦F) in temperature by state
Notes.–The figure plots the 1970–2010 change in temperature by state.
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Figure 10: 2010–2099 projected change in temperature (◦F) by state
Notes.–The figure plots the 2010–2099 projected change in temperature by state.
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Figure 11: Percent change in state shares if temperature distribution were same as 1970
Notes.–The figure plots the percentage difference in the probability of living in a given state in the 1970 temperature counterfactual
compared to the baseline.
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Figure 12: Percent change in state shares if temperature distribution were same as 2099 projec-
tion
Notes.–The figure plots the percentage difference in the probability of living in a given state in the 2099 temperature counterfactual
compared to the baseline. We hold standard deviation of temperature fixed at the baseline (status quo) since there is not a future
projection for this measure.

8. Online Appendix (Not for Print)

8.1. A Stylized Model for Demand
This section begins by outlining a stylized model that focuses purely on the potential effects of
temperature on the allocation of time as motivating evidence for plausible demand-side mech-
anisms. Suppose an individual has preferences over consumption (c), leisure (l = 1 − n), and
temperature (T ) through the following equation20

u(c, l;T ) = c1−ν

1− ν + χ
(lαT 1−α)1−γ

1− γ (27)

20The approach here involves modeling temperature as an input in preferences. The Appendix develops a stylized
model with temperature indirectly affecting productivity through the presence of moral hazard in the work place.
Since temperature may decrease individual-level productivity, this raises the desire for employees to shirk since
labor services are not perfectly observed. While this alternative formulation is reasonable and promising, it is
analytically intractable, and thus is omitted for the sake of a simple stylized model.
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subject to a budget constraint equal to c = w(1− l). ν governs the intertemporal elasticity of
substitution, χ governs the relative disutility of working, α ∈ (0, 1) governs the relative elasticity
of temperature and leisure, and γ governs the elasticity of labor supply. While the individual can
choose consumption and leisure, temperature is taken as exogenous. The first-order conditions
produce the following equilibrium condition

w = cνχαT 1−α(lαT 1−α)−γlα−1 = cχαT (1−α)(1−γ)lα(1−γ)−1 (28)

Equation 28 is nothing more than the standard intratemporal Euler with non-separable inter-
actions between labor supply and temperature. Taking logs of Equation 28 produces

lnw = β0 + ν ln c+ [α(1− γ)− 1] ln l + (1− α)(1− γ) lnT (29)

where β0 = lnχ+ lnα. The income elasticity of temperature is, therefore, given by

∂ lnw/∂ lnT = (1− α)(1− γ) (30)

The introduction of temperature in Equation 27 is grounded in the observation that higher
levels of temperature make leisure activities, such as time out doors, less desirable (Graff Zivin
and Neidell, 2014). Solving for the optimal allocation of leisure from Equation 28 produces

l∗ =
[
wT (1−α)(1−γ)

χαcν

] 1
α(1−γ)−1

(31)

which shows that the optimal allocation of leisure is decreasing in temperature

∂l

∂T
= −

[
1

α(1− γ)− 1

] [
wT (1−α)(1−γ)

χαcν

] 2−α(1−γ)
α(1−γ)−1

(1− α)(1− γ)wT (1−α)(1−γ)−1/(χα) < 0 (32)

when γ > 1 with an elasticity of leisure and temperature given by

∂ ln l
∂ lnT = −(1− γ)(1− α)

α(1− γ)− 1 (33)

While there is still a debate between the elasticity of labor supply (e.g., see Chetty (2012)
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and Keane and Rogerson (2012) for competing views), an elasticity greater than unity means that
an increase in temperature is associated with a decline in the hourly wage. The key empirical
question is the magnitude of the coefficient on lnT in Equation 29: how does temperature affect
the hourly wage? Whether or not the coefficient on lnT is small depends crucially on the extent to
which individuals adapt to weather fluctuations by undertaking defensive investments (e.g., in the
case of tropical cyclones, building sand walls (Hsiang and Narita, 2012) or buy consumer durables
(e.g., in the case of heat, using air conditioning (Barreca et al., 2016) as forms of adaptation.
These regressions are also conceptually related to a much older hedonic pricing literature that
examined how risk is priced into different jobs (Aldy and Viscusi, 2008; Viscusi, 1979).21 If
random temperature fluctuations reflect truly idiosyncratic risk, then areas that are very hot or
very cold must compensate employees more.

8.2. Supplement to Short Run Invariance to Temperature

8.2.1. Replication Exercises of Hsiang and Deryugina

8.3. Replication of Deryugina and Hsiang (2014)
Before turning to the main results, it is useful to begin by replicating an important, salient,
and recent contribution from Deryugina and Hsiang (2017). Using per capita income between
roughly 1970 and 2011 at the county level, they document a negative gradient on temperature:
an additional 1.8F increase in daily temperature is associated with a 1.7% decline in per capita
income (productivity). For comparability, we follow their data construction and specification for
the baseline results and pointing out points of deviation when presenting different results.

The top-right plot in Figure 3 replicates their main results by estimating the relationship
between logged per capita income and the flexible function of temperature across different parts of
the distribution. It shows that there is a statistically significant negative gradient between the two
at the top of the temperature distribution, whereas there is a null relationship below 70 degrees.
The bottom-right plot in Figure 3 also documents the strong negative relationship at the top of
the temperature distribution when the outcome variable is logged farm earnings.

21Cropper and Arriaga-Salinas (1980), Cropper (1988), and Smith (1983) showed that linking the job with the
site characteristics (e.g., air quality) was important for identification since sites differ for many unobserved reasons.
This is addressed through measures of individual skill content, occupation and industry fixed effects, and MSA
fixed effects.
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However, several modifications of the specification lead to different results. For example, the
top-left plot in Figure 3 takes out the lagged dependent variable (per capita income), which
removes the negative relationship. Importantly, the decline in the temperature gradient is not
coming from the lack of a dynamic relationship—lagged values of the temperature bins are still
included in the regression. Instead, the difference comes exclusively from the inclusion of the
lagged outcome variable. Interestingly, however, including it in the case of farm earnings as the
outcome variable does not alter the results. We are still looking into potential counter-explanations
for our contrasting results, but we believe there are two possible reasons.

The first is that there is the well-known Nickell (1981) bias. However, given that the sample
series covers such a wide range of years, it is unlikely the main culprit. In other (omitted)
diagnostics where we vary the length of the sample horizon, the bias does not seem to change
considerably. The second is that lagged per capita income is likely correlated with many other
factors, in particular mobility, that are also correlated with temperature. While these endogeneity
concerns would be present even without the lagged variable inserted as a control, introducing a
lag can amplify these concerns. For example, Reed (2013) shows that lagging highly persistent
variables can introduce significant bias and create an appearance of an effect when none exists
in reality. Bias is often accelerated when the sample size grows. Bellemare et al. (2016) further
highlights that the inclusion of lagged values introduces a “no dynamics among unobservables”
assumption that is unlikely to hold in reality.

[INSERT FIGURE 3 HERE]

Why, then, are the results with farm income as the outcome variable relatively invariant to the
inclusion of lagged farm income as a control? While per capita income is likely to be correlated
with shocks affecting migration probabilities and other correlates of quality of life, farm income
is less so because of the low employment share in agriculture. In this sense, to the extent there
are unobserved factors bundled in the ε in Equation 1 that are correlated with temperature, these
factors will be amplified when including lagged per capita income since these unobserved factors
are likely to be even more heavily correlated with per capita income.

We now explore several additional specifications in Table 7: (i) weighting by population, and
(ii) endogeneity arising from the inclusion of lagged income. Column 1 presents the baseline
results, which includes lagged values of the semiparametric temperature spline and precipitation.
These coefficients are unweighted. Column 2 now weights by population, showing that there is
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no significant gradient at the top of the distribution for these areas. Columns 3 and 4 restrict
the sample to counties with over 350 and 360 days of observations, respectively, which does not
produce any meaningful differences relative to the benchmark. Column 5 now includes population
growth as an additional control, which does not alter the coefficients by much.

Column 6 removes the lags on temperature and precipitation, which reduces the magnitude
of the coefficients at the top of the temperature distribution by only a few percentage points.
Columns 7 and 8 both include lagged per capita income as a control on the right hand side of the
equation. However, one concern, especially when N > T , is that bias can emerge in dynamic panel
data models (Nickell, 1981). Therefore, column 8 instruments for lagged per capita income using
third and fourth period lags (Arellano and Bond, 1991). However, the results are only marginally
affected.

Table 7: Temperature and Productivity Robustness Exercises

Dep. var. = ln(per capita income)
base weighted >350days 365days popgrowth nolags dynamic dynamic

days t < 0, F -.0009∗∗∗ -.0009∗∗ -.0009∗∗∗ -.0009∗∗∗ -.0008∗∗∗ -.0007∗∗∗ .0002∗∗ .0008∗∗∗
[.0002] [.0004] [.0002] [.0002] [.0002] [.0002] [.0001] [.0001]

days 0 < t < 15, F .0006∗∗∗ .0003 .0006∗∗∗ .0005∗∗∗ .0006∗∗∗ .0007∗∗∗ .0003∗∗∗ .0003∗∗∗
[.0001] [.0003] [.0001] [.0001] [.0001] [.0001] [.0001] [.0001]

days 16 < t < 30, F -.0006∗∗∗ -.0006∗∗∗ -.0006∗∗∗ -.0007∗∗∗ -.0006∗∗∗ -.0006∗∗∗ -.0003∗∗∗ -.0002∗∗∗
[.0001] [.0002] [.0001] [.0001] [.0001] [.0001] [.0000] [.0000]

days 31 < t < 53, F -.0002∗∗∗ -.0002 -.0002∗∗∗ -.0002∗∗∗ -.0002∗∗∗ -.0002∗∗∗ -.0000 .0000
[.0001] [.0001] [.0001] [.0001] [.0001] [.0001] [.0000] [.0000]

days 60 < t < 70, F -.0005∗∗∗ -.0003∗∗∗ -.0006∗∗∗ -.0005∗∗∗ -.0005∗∗∗ -.0005∗∗∗ -.0002∗∗∗ -.0001∗∗∗
[.0001] [.0001] [.0001] [.0001] [.0001] [.0001] [.0000] [.0000]

days 71 < t < 84, F -.0006∗∗∗ -.0003 -.0006∗∗∗ -.0007∗∗∗ -.0006∗∗∗ -.0005∗∗∗ -.0004∗∗∗ -.0003∗∗∗
[.0001] [.0002] [.0001] [.0001] [.0001] [.0001] [.0000] [.0000]

days t > 85, F -.0004∗∗∗ -.0000 -.0004∗∗∗ -.0004∗∗∗ -.0004∗∗∗ -.0002∗∗∗ -.0006∗∗∗ -.0006∗∗∗
[.0001] [.0002] [.0001] [.0001] [.0001] [.0001] [.0000] [.0000]

population growth .3528∗∗∗
[.0394]

ln(pc income)t−1 .7805∗∗∗ .8619∗∗∗
[.0072] [.0066]

R-squared .88 .94 .88 .89 .88 .89 .95 .95
Sample Size 95569 95569 94075 77161 95569 105159 95566 76792
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes

Notes.–Sources: Bureau of Economic Analysis and PRISM, 1970-2014. The table reports the coefficients associated with
regressions of logged county per capita income on a semiparametric measure of temperature that counts the number of days
within a year-county between a given temperature threshold, conditional on controls.

We now turn towards actual evidence that the introduction of the lagged outcome variable
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(Maximum Daily) Temperature and Per Capita Income / Farm Income
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Figure 13: Notes.-Sources: PRISM and BEA regional data, 1970-2014. The figure plots the coefficients associated with regressions
of logged county per capita income and logged county farm earnings on counts of the days in different temperature bins (based on
maximum daily), conditional on county and year fixed effects and county precipitation all at the county-by-year level. The difference
between the specifications is that two contain lagged values of the outcome variable as additional controls to allow for dynamic effects.
Observations are weighted by county population. The sample is restricted to counties with at least 340 days of temperature records
observed.
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creates a new source of endogeneity. The main concern is that unobserved shocks to per capita
income that are correlated with temperature shocks will be amplified when a lagged value of
the outcome variable are included. For example, if migration across counties is influenced by
economic development, and economic development is correlated with temperature, then the lagged
dependent variable accelerates the rate at which bias takes place.

Table 8 tests this hypothesis by using the population growth rate—which behaves as a proxy for
migration—regressed on not only the growth rate of average temperatures (or maximum daily), but
also the growth rate of per capita income and farm earnings. While increases in the growth rates
of both temperature and per capita income are associated with statistically significant declines in
county population growth rates, increases in the growth rate of farm income are not. These results
are consistent with the hypothesis that changes in migration are likely correlated with both per
capita income and temperature shocks, but not with farm earnings shocks.

Table 8: Testing for Bias with Lagged Dependent Variables

Dep. var. = county population growth rate
(1) (2)

∆ ln(avg temperature) -.0037∗∗∗ -.0024∗
[.0013] [.0012]

∆ ln(per capita income) -.0266∗∗∗
[.0016]

∆ ln(farm income) -.0000
[.0000]

R-squared .01 .00
Sample Size 95699 92956

Notes.–Sources: Bureau of Economic Analysis and PRISM, 1970-2014. The table reports the coefficients associated with
regressions of the county population growth rate on the growth in average temperature and the growth in per capita income or
farm income. Both per capita income and farm income are deflated using the 2010 personal consumption expenditure index.
Standard errors are clustered at the county-level.

8.3.1. Individual Level Regressions
The main text presented results using the annual CPS between 1963 and 2015 to assess the impact
of temperature on earnings. Figure 14 now examines the impact of temperature on weekly hours
worked. Like before, there is no statistically significant association between temperature and
hours for any of the four sub-groups (college, non-college, manufacturing, and services). Figure
15 also plots the semiparametric response between temperature and earnings using the monthly
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CPS between 1994 and 2014; the results are unchanged. If anything, hours appears to rise at the
top of the temperature distribution.
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Figure 14: Semiparametric Response of Hours to Temperature, 1963-2015
Notes.–Sources: NOAA, Current Population Survey (CPS) from 1963-2015. The figure reports the coefficients associated regressions
of logged weekly hours worked (deflated using the 2010 personal consumption expenditure index) on bins for the number of days in a
year that fall within the corresponding bin (e.g., number of days in a year below zero degrees Fahrenheit), which is unique at the
metropolitan level. Controls include: a quadratic in both educational attainment and age, number of children, race, gender, marital
status, and race. Standard errors are clustered at the metropolitan level (2013 OMB codes) and observations are weighted by the
survey sample weights.
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Figure 15: Semiparametric Response of Earnings / Hours to Temperature, 1994-2014
Notes.–Sources: NOAA, Current Population Survey (CPS) monthly from 1994-2014. The figure reports the coefficients associated
with least squares and fixed effects regressions of logged weekly earnings (deflated using the 2010 personal consumption expenditure
index) and separately of logged weekly hours worked on bins for the number of days in a month that fall within the corresponding bin
(e.g., number of days in a month below zero degrees Fahrenheit), which is unique at the metropolitan level. Controls include: a
quadratic in both educational attainment and age, number of children, race, gender, marital status, and race. Standard errors are
clustered at the metropolitan level (2013 OMB codes) and observations are weighted by the survey sample weights.

While the semiparametric results do not suggest that there is an association, we now consider
simpler results involving a regression of logged earnings and hours worked on logged average and
maximum metropolitan temperature. Table 9 documents these. While there is a very signifi-
cant negative correlation in the cross-section—for example, a 1% rise in maximum (mean) annual
temperature is associated with a 0.37% (0.17%) decline in annual earnings—the magnitude and
precision drop significantly once individual controls are included. The negative correlation van-
ishes once metropolitan and year fixed effects are introduced. In fact, column 5 suggests that, if
anything, there is a positive association! Although not reported, we also examined the potential
for alternative functional forms, including non-linearities through the inclusion of a polynomial
for temperature and linear (rather than log) terms. However, these specifications affected neither
the magnitude nor the precision.22

22For example, when temperature is measured in logs, the coefficients on the direct and non-linear terms (for a
quadratic specification) are 0.075 (p-value = 0.969) and -0.010 (p-value =0.966). When temperature is measured
in levels, the coefficients o 0.00025 (p-value = 0.979) and 0.00000979 (p-value =0.999).
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Table 9: Temperature and Income & Labor Supply using the Current Population Survey, 1963-
2015

Dep. var. = ln(annual earnings)
(1) (2) (3) (4) (5) (6)

Panel A
ln(mean temperature) -.17∗∗∗ -.09∗∗ -.01

[.04] [.04] [.06]
ln(max temperature) -.37∗∗∗ -.19∗∗ .14∗∗

[.10] [.08] [.06]
R-squared .00 .00 .30 .30 .31 .31
Sample Size 1464264 1464264 1353166 1353166 1353166 1353166
Dep. var. = ln(weekly hours worked)

Panel B
ln(mean temperature) .04∗∗∗ .05∗∗∗ .02

[.01] [.01] [.02]
ln(max temperature) .11∗∗∗ .13∗∗∗ .04∗

[.01] [.01] [.02]
R-squared .00 .00 .06 .06 .06 .06
Sample Size 1464264 1464264 1353166 1353166 1353166 1353166
Controls No No Yes Yes Yes Yes
Year FE No No No No Yes Yes
Metro FE No No No No Yes Yes

Notes.–Sources: NOAA, Current Population Survey (CPS) from 1963-2015. The table reports the coefficients associated with
regressions of logged annual earnings (deflated using the 2010 personal consumption expenditure index) on logged temperature,
which is proxied using both the average across months in the same year and the maximum across months. Controls include: a
quadratic in both educational attainment and age, number of children, race, gender, marital status, and race. Standard errors
are clustered at the metropolitan level (2013 OMB codes) and observations are weighted by the survey sample weights.
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One concern with these results, however, is that the gradient between temperature and income
might have longer-lasting dynamic effects. To examine the potential for dynamic effects, we
estimate regressions of the form

yijt = βXit +
10∑
l=0

ψlTj,t+l + φj + λt + εijt (34)

where y denotes logged annual earnings, X denotes the usual vector of controls, ∑l ψ
l denotes

the cumulative impulse response associated with a rise in logged average temperatures, and φ and
λ are fixed effects on metropolitan area and year. Figure 16 plots the estimated ψl’s associated
with Equation 34 using 10 forward variables. While the OLS estimates are not identified due to
non-random sorting, it is interesting to point out that they suggest an initial rise in income in
response to a temperature shock, which slowly decline in magnitude and turns negative around
roughly the t+7-th forward variable. However, the more plausibly exogenous fixed effects estimates
display no trend and hover around zero.
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Figure 16: Examining Dynamic Effects via an Impulse Response Function
Notes.–Sources: NOAA, Current Population Survey (CPS) from 1963-2015. The table reports the coefficients associated with
regressions of logged annual earnings (deflated using the 2010 personal consumption expenditure index) on logged average
temperature and 10 one-year forward variables. Controls include: a quadratic in both educational attainment and age, number of
children, race, gender, marital status, and race. Standard errors are clustered at the metropolitan level (2013 OMB codes) and
observations are weighted by the survey sample weights.
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8.3.2. Industry-level Regressions
This section explores a large series of robustness exercises using industry-by-location-level data to
assess the relationship between temperature and earnings. First, Figure 17 considers a broader
measure of employee earnings based on their total pay, rather than annual wages. While wages al-
ready include bonuses, stock options, severance pay, and other gratuities (https://www.bls.gov/cew/cewfaq.htm#Q17),
total pay includes several additional components of compensation. Evidently, there is no qualita-
tive change in the main result that there is no association between earnings and temperature. If
anything, there appears to be an uptick in earnings at the top of the temperature distribution.
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Figure 17: Semiparametric Response of Industry Total Pay to Temperature, 1990-2014
Notes.–Sources: PRISM and Quarterly Census of Employment and Wages from 1990 to 2014. The figure reports the coefficients asso-
ciated regressions of logged three-digit industry-by-county annual total pay (deflated using the 2010 personal consumption expenditure
index) on bins for the number of days in a year that fall within the corresponding bin (e.g., number of days in a year below zero
degrees Fahrenheit), precipitation, and their lags, conditional on county, three-digit NAICS, and year fixed effects. Standard errors are
clustered at the county-level. All observations are weighted equally.

Second, Figure 18 explores the same specification as the result in the main section with one
minor exception—lagged logged annual wages is included as a control. Unlike the results with
the BEA county data, the gradient does not turn negative even at the top of the temperature
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distribution. The argument presented in the main text in the context of the BEA data was that
unobserved shocks to per capita income are likely to be amplified when its lag is included as
a right hand side variable. However, since here the disaggregation is greater (at a three-digit
industry-level within a county), the concern for omitted variables bias declines, especially after
the inclusion of industry fixed effects. There does appear to be a negative gradient when working
at the data at a county-level, or when not including industry fixed effets.
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Figure 18: Semiparametric Response of Industry Wages to Temperature w/ Lag, 1990-2014
Notes.–Sources: PRISM and Quarterly Census of Employment and Wages from 1990 to 2014. The figure reports the coefficients asso-
ciated regressions of logged three-digit industry-by-county annual total pay (deflated using the 2010 personal consumption expenditure
index) on bins for the number of days in a year that fall within the corresponding bin (e.g., number of days in a year below zero
degrees Fahrenheit), precipitation, and their lags, conditional on county, three-digit NAICS, and year fixed effects. Standard errors are
clustered at the county-level. All observations are weighted equally.

Third, Figure 19 presents results using metropolitan level data—that is, the number of days
within a year for a given metropolitan area between a certain temperature range. These results also
suggest that there is no relationship between wages and temperature throughout the distribution.
The results are also strengthened if controls, such as logged employment and establishments, are
inserted to mitigate concerns about omitted variables bias. The results also hold if a lagged
outcome variable is included. Figure 20 presents analogous results using metropolitan GDP as a
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direct measure of productivity.
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Figure 19: Semiparametric Response of Industry Wages to Temperature, 1990-2014
Notes.–Sources: NOAA and Quarterly Census of Employment and Wages from 1990 to 2014. The figure reports the coefficients
associated regressions of logged three-digit industry-by-metro annual wages (deflated using the 2010 personal consumption expenditure
index) on bins for the number of days in a year that fall within the corresponding bin (e.g., number of days in a year below zero
degrees Fahrenheit), and their lags, conditional on county, three-digit NAICS, and year fixed effects. Standard errors are clustered at
the metropolitan-level. All observations are weighted equally.
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Figure 20: Semiparametric Response of Metro GDP to Temperature, 2001-2015
Notes.–Sources: NOAA and BEA GDP data from 2001 to 2015. The figure reports the coefficients associated regressions of logged
three-digit industry-by-metro annual gross domestic product (deflated using the 2010 personal consumption expenditure index) on bins
for the number of days in a year that fall within the corresponding bin (e.g., number of days in a year below zero degrees Fahrenheit),
and their lags, conditional on county, three-digit NAICS, and year fixed effects. Standard errors are clustered at the metropolitan-level.
All observations are weighted equally.

Using the LEHD data, increases in the average maximum monthly temperature are uncorre-
lated with in both the least squares and fixed effects regressions. Applying the semiparametric
estimator also produces a precise zero estimate for days above 31 degrees Fahrenheit, meaning
that the only negative point estimates are those arising from cold days. Using the QCEW also
produces similar results with the semiparametric estimator, the standard measure of logged tem-
perature, and the dynamic impulse response function (using up to 10 forward quarter variables).
Lastly, using the County Business Patterns (CBP), we conduct similar regressions using logged
wage bills (ratio of payroll expenditures to employment) as the outcome variable and estimate
industry-specific temperature gradients. Figure 21 documents these results. The data suggests
that there is no statistically significant association except slightly for the agricultural sector, which
has a large confidence interval.
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Figure 21: The Effects of Temperature on County-by-Industry Wage Bills
Notes.–Sources: County Business Patterns and PRISM. The figure reports the coefficients associated with regressions of logged wage
bills (the ratio of payroll to employment) on logged maximum temperature (the average across the maximum of all months in a year),
conditional on county and year fixed effects. Standard errors are clustered at the county level and observations are weighted by the
long-run average industry-by-county employment.

8.4. Supplement to Computational Algorithm
The methodological approach is based on Berry et al. (2004) and Bayer et al. (2007) who provide
a strategy for integrating micro-data into discrete-continuous choice models.

8.4.1. Step 1a: Household Preferences with Homogeneous

Logit
Before turning to the more nuanced version of the estimation, it is useful to start with a ba-
sic homogeneous logit regression where there is no heterogeneity in tastes. Consider our utility
function
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ukjt = αwkjt − ζrjt + ψDjt + ηTjt +
M∑
m=1

ηmd
m
jtTjt + εjt = xjtβ + ξjt (35)

where wkjt denotes a location’s logged wage bill in industry k, rjt denotes a location’s logged
median housing values, Djt denotes a vector of controlling covariates, and Tjt denotes average
temperature and dmjtTjt denotes the spline on temperature; x is simply short-hand for all these.
Denote the following “mean” utility components for each location

δjt = αwkjt + ζrjt + βDjt + ηTjt +
M∑
m=1

ηmd
m
jtTjt (36)

where in practice ζ < 0 will be estimated (since higher rents reduce individual utility). Given
a “guess” on each of the parameters, denoted

θ1 = (α, ζ, β, η, η1, ..., ηM) (37)

then we can recover predicted population shares for each location by industry by exploiting
the fact that ε is distributed extreme value type I such that the population shares are given by

skjt =
exp(δkjt)∑J
n=0 exp(δknt)

, sk0t = 1∑J
n=0 exp(δknt)

(38)

where δ0t = 0 is a normalization. Practically, that means dividing the population shares by
the outside option for some j = ĵ

skjt/s
k
0t = exp(δkjt) (39)

Taking logarithms, that reduces down to
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ln(skjt)− ln(sk0t) = δkjt = αwkjt + ζrjt + βDjt + ηTjt +
M∑
m=1

ηmd
m
jtTjt + ξjt (40)

Under the assumption of exogeneity for wages and housing prices, then this can be estimated
using least squares. However, allowing for endogeneity and given a set of instruments, denoted
Z, then the system can be solved in two steps. First, compute δ̂kjt = ln(skjt) − ln(sk0t) and let
θ = (α, ζ, β, η, η1, ..., ηM) and denote

ξjt(θ) = δ̂kjt − xjtβ (41)

Second, use the method of moments condition that E[ξ(θ)× Z] = 0 by minimizing

min
θ
ξ(θ)′ZWZ ′ξ(θ) (42)

8.4.2. Step 1b: BLP
Building on the homogeneous logit example, this procedure allows for individual taste heterogene-
ity

uijkt = xjktβi + ξjt + εjt (43)

where x denotes a vector of the relevant covariates (e.g., wages and rents) and βi denote the
random coefficients (equal to the dimension of the observable characteristics) and are related to
the individual characteristics based on

βi︸︷︷︸
N×1

= β︸︷︷︸
N×1

+ Γ′
L×K

Di︸︷︷︸
L×1

+ ωi (44)

with ωi|Di ∼ N (0,Σ) and zi denote the L different individual characteristics (normalized to
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have a mean zero such that β’s can be interpreted as average marginal utilities). The ingenuity
behind BLP is that it does not require micro-data, rather using the employment shares (conven-
tionally market shares) for each discrete alternative, together with the marginal distributions of
individual characteristics, to back out individual heterogeneity.

1. Following convention, decompose the following components of utility

uijt = xjktβ + ξjt︸ ︷︷ ︸
δjkt

+ xjt(Γ′Di + ωi)︸ ︷︷ ︸
vijkt

+ εijkt (45)

Under homogeneous logit where Γ = 0 and Σ = 0, then given a guess on the parameter
vector, the employment shares can be computed as

sjkt(δjkt; Γ = 0,Σ = 0) = exp(δjkt)∑J
l=0 exp(δlkt)

(46)

2. Draw repeatedly from the distributions of Di, ωi, and εijkt to calculate the employment
shares for each discrete alternative, denoting the vector s(δ; Γ,Σ) with dimension JT × 1.

3. Fix only Γ and Σ. For every δjkt, there is an implied employment share. The goal now is
to find the vector of δjkt such that the implied employment shares are equal to the observed
employment shares for every j, k, and t. To do this, guess a starting value for δ0

jkt and solve
for the fixed point on

δn+1
jkt = δnjkt + ln sjkt − ln sjkt(δnjkt; Γ,Σ) (47)

which will converge to a function δ(s; Γ,Σ) because it is a contraction mapping. It follows
that the residual represents the unobserved location heterogeneity

ξ̂jt = δjkt(sjkt; Γ,Σ)− xjktβ (48)
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4. Since ξ̂jt → ξjt eventually, then generalized method of moments can be used to recover the
coefficients by introducing a vector of instruments and solving the following

min
θ
ξ(θ)′ZWZ ′ξ(θ) (49)

8.4.3. Step 2: Production Elasticities
In equilibrium, Equation 12 must hold. These elasticities can, therefore, be estimated externally
from the data. Unfortunately, output data is not available for counties and is only available from
1998 onwards for metropolitan areas. To resolve this problem, we first cross-walk counties and
metropolitan areas into commuting zones (CZs). We subsequently implement a random forest
algorithm to predict GDP in commuting zones based on a function of observables obtained from
the Census, i.e., Yj = g(Xj, θ), using data from the 2000 and 2010 Decennial Censuses. Table XX
presents validation exercises to illustrate that the GDP predictions for these counties are reliable.

[TABLE XX]

Based on these predictions, we now estimate Equation 12 separately for each k. Table XX
presents the elasticities under three specifications: least squares, first-differences, and instrumental
variables.

[TABLE XX]

8.4.4. Step 3: Firm Demand and Supply

8.5. Supplement to Quantitative Analys

8.5.1. Defense of Instruments
We now present evidence that there is sufficient variation in our instruments. We first begin with
the wage instrument, which exploits variation in the employment share of workers in different
industries and how they respond to national wage shocks. Figure 22 plots these distributions for
1980 and 2010, displaying the variation that exists across counties and within-counties, particularly
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for the manufacturing and business sectors. We subsequently plot a similar plot distribution of
households in different types of homes in Figure 23.
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Figure 22: Distribution of the Share of Workers in Different Industries
Notes.–Sources: Census Bureau (SocialExplorer). The figure plots the distribution of the share of workers in different industries
across all counties in the United States using data from 1980 and 2010.



66

0
20

40
60

80
de

ns
ity

0 .1 .2 .3 .4
percent in county

1980 2010

no bedrooms

0
5

10
15

de
ns

ity

0 .2 .4 .6
percent in county

1980 2010

1 bedroom

0
2

4
6

8
10

de
ns

ity

0 .2 .4 .6 .8
percent in county

1980 2010

2 bedrooms

0
2

4
6

de
ns

ity

0 .2 .4 .6 .8
percent in county

1980 2010

3 bedrooms

0
2

4
6

8
10

de
ns

ity

0 .1 .2 .3 .4
percent in county

1980 2010

4 bedrooms

0
10

20
30

de
ns

ity

0 .1 .2 .3
percent in county

1980 2010

5+ bedrooms

Figure 23: Distribution of the Share of Households in Different Homes
Notes.–Sources: Census Bureau (SocialExplorer). The figure plots the distribution of the share of households living in different types
of residences across all counties in the United States using data from 1980 and 2010.
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Figure 24: Housing Price Growth Across Bedroom Types, 1980-2010
Notes.–Sources: Census Bureau. The figure plots the growth rate in housing prices (including renters and owners) from one decade to
the next for different types of homes. Nominal self-reported property values are deflated using the 2010 personal consumption
expenditure index.

Table 10: Industry definitions from 3-digit NAICS codes

Industry Name 3-digit NAICS codes Major NAICS industries
Agriculture 10–50 Agriculture, Mining
Manufacturing 60–392 Construction, Manufacturing
High-skill services (i.e. business) 700–712, 812–932 FIRE, Science, Education, Health care
Low-skill services (i.e. services) 400–691, 721–810 Wholesale/Retail trade
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